Properties

Label 234.2.f.d.133.5
Level $234$
Weight $2$
Character 234.133
Analytic conductor $1.868$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,2,Mod(133,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.133"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: 12.0.157365759791601.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{10} + 11x^{8} - 6x^{7} - 17x^{6} - 12x^{5} + 44x^{4} + 16x^{2} - 96x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 133.5
Root \(1.40369 - 0.172227i\) of defining polynomial
Character \(\chi\) \(=\) 234.133
Dual form 234.2.f.d.139.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.25033 + 1.19862i) q^{3} +1.00000 q^{4} +(1.44068 + 2.49532i) q^{5} +(1.25033 + 1.19862i) q^{6} +(-2.39007 - 4.13973i) q^{7} +1.00000 q^{8} +(0.126635 + 2.99733i) q^{9} +(1.44068 + 2.49532i) q^{10} -3.77813 q^{11} +(1.25033 + 1.19862i) q^{12} +(-0.0450041 - 3.60527i) q^{13} +(-2.39007 - 4.13973i) q^{14} +(-1.18962 + 4.84679i) q^{15} +1.00000 q^{16} +(1.17963 - 2.04317i) q^{17} +(0.126635 + 2.99733i) q^{18} +(-2.90578 + 5.03295i) q^{19} +(1.44068 + 2.49532i) q^{20} +(1.97358 - 8.04080i) q^{21} -3.77813 q^{22} +(2.39782 - 4.15315i) q^{23} +(1.25033 + 1.19862i) q^{24} +(-1.65109 + 2.85977i) q^{25} +(-0.0450041 - 3.60527i) q^{26} +(-3.43431 + 3.89943i) q^{27} +(-2.39007 - 4.13973i) q^{28} +6.93228 q^{29} +(-1.18962 + 4.84679i) q^{30} +(0.501382 + 0.868419i) q^{31} +1.00000 q^{32} +(-4.72390 - 4.52853i) q^{33} +(1.17963 - 2.04317i) q^{34} +(6.88664 - 11.9280i) q^{35} +(0.126635 + 2.99733i) q^{36} +(0.590760 + 1.02323i) q^{37} +(-2.90578 + 5.03295i) q^{38} +(4.26507 - 4.56171i) q^{39} +(1.44068 + 2.49532i) q^{40} +(-0.693978 + 1.20200i) q^{41} +(1.97358 - 8.04080i) q^{42} +(-3.98744 - 6.90645i) q^{43} -3.77813 q^{44} +(-7.29686 + 4.63417i) q^{45} +(2.39782 - 4.15315i) q^{46} +(-5.24912 + 9.09174i) q^{47} +(1.25033 + 1.19862i) q^{48} +(-7.92491 + 13.7263i) q^{49} +(-1.65109 + 2.85977i) q^{50} +(3.92390 - 1.14071i) q^{51} +(-0.0450041 - 3.60527i) q^{52} -3.79134 q^{53} +(-3.43431 + 3.89943i) q^{54} +(-5.44306 - 9.42766i) q^{55} +(-2.39007 - 4.13973i) q^{56} +(-9.66575 + 2.80992i) q^{57} +6.93228 q^{58} +1.10523 q^{59} +(-1.18962 + 4.84679i) q^{60} +(1.37333 + 2.37868i) q^{61} +(0.501382 + 0.868419i) q^{62} +(12.1055 - 7.68807i) q^{63} +1.00000 q^{64} +(8.93148 - 5.30632i) q^{65} +(-4.72390 - 4.52853i) q^{66} +(3.93397 - 6.81383i) q^{67} +(1.17963 - 2.04317i) q^{68} +(7.97609 - 2.31872i) q^{69} +(6.88664 - 11.9280i) q^{70} +(-2.34406 + 4.06004i) q^{71} +(0.126635 + 2.99733i) q^{72} -10.6407 q^{73} +(0.590760 + 1.02323i) q^{74} +(-5.49218 + 1.59663i) q^{75} +(-2.90578 + 5.03295i) q^{76} +(9.03002 + 15.6404i) q^{77} +(4.26507 - 4.56171i) q^{78} +(-3.65213 + 6.32568i) q^{79} +(1.44068 + 2.49532i) q^{80} +(-8.96793 + 0.759135i) q^{81} +(-0.693978 + 1.20200i) q^{82} +(6.00937 - 10.4085i) q^{83} +(1.97358 - 8.04080i) q^{84} +6.79783 q^{85} +(-3.98744 - 6.90645i) q^{86} +(8.66761 + 8.30915i) q^{87} -3.77813 q^{88} +(2.23089 + 3.86402i) q^{89} +(-7.29686 + 4.63417i) q^{90} +(-14.8173 + 8.80317i) q^{91} +(2.39782 - 4.15315i) q^{92} +(-0.414010 + 1.68677i) q^{93} +(-5.24912 + 9.09174i) q^{94} -16.7451 q^{95} +(1.25033 + 1.19862i) q^{96} +(-1.82934 - 3.16850i) q^{97} +(-7.92491 + 13.7263i) q^{98} +(-0.478445 - 11.3243i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{2} + 12 q^{4} + q^{5} - 5 q^{7} + 12 q^{8} + 12 q^{9} + q^{10} - 16 q^{11} - q^{13} - 5 q^{14} - 3 q^{15} + 12 q^{16} + 3 q^{17} + 12 q^{18} - 7 q^{19} + q^{20} + 18 q^{21} - 16 q^{22}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.25033 + 1.19862i 0.721877 + 0.692022i
\(4\) 1.00000 0.500000
\(5\) 1.44068 + 2.49532i 0.644290 + 1.11594i 0.984465 + 0.175580i \(0.0561802\pi\)
−0.340175 + 0.940362i \(0.610486\pi\)
\(6\) 1.25033 + 1.19862i 0.510444 + 0.489333i
\(7\) −2.39007 4.13973i −0.903363 1.56467i −0.823100 0.567897i \(-0.807757\pi\)
−0.0802633 0.996774i \(-0.525576\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.126635 + 2.99733i 0.0422118 + 0.999109i
\(10\) 1.44068 + 2.49532i 0.455582 + 0.789090i
\(11\) −3.77813 −1.13915 −0.569575 0.821939i \(-0.692892\pi\)
−0.569575 + 0.821939i \(0.692892\pi\)
\(12\) 1.25033 + 1.19862i 0.360938 + 0.346011i
\(13\) −0.0450041 3.60527i −0.0124819 0.999922i
\(14\) −2.39007 4.13973i −0.638774 1.10639i
\(15\) −1.18962 + 4.84679i −0.307159 + 1.25144i
\(16\) 1.00000 0.250000
\(17\) 1.17963 2.04317i 0.286101 0.495542i −0.686774 0.726871i \(-0.740974\pi\)
0.972876 + 0.231329i \(0.0743073\pi\)
\(18\) 0.126635 + 2.99733i 0.0298482 + 0.706477i
\(19\) −2.90578 + 5.03295i −0.666631 + 1.15464i 0.312210 + 0.950013i \(0.398931\pi\)
−0.978840 + 0.204625i \(0.934402\pi\)
\(20\) 1.44068 + 2.49532i 0.322145 + 0.557971i
\(21\) 1.97358 8.04080i 0.430669 1.75465i
\(22\) −3.77813 −0.805501
\(23\) 2.39782 4.15315i 0.499980 0.865991i −0.500020 0.866014i \(-0.666674\pi\)
1.00000 2.27897e-5i \(7.25419e-6\pi\)
\(24\) 1.25033 + 1.19862i 0.255222 + 0.244667i
\(25\) −1.65109 + 2.85977i −0.330218 + 0.571955i
\(26\) −0.0450041 3.60527i −0.00882603 0.707052i
\(27\) −3.43431 + 3.89943i −0.660933 + 0.750445i
\(28\) −2.39007 4.13973i −0.451681 0.782335i
\(29\) 6.93228 1.28729 0.643646 0.765323i \(-0.277421\pi\)
0.643646 + 0.765323i \(0.277421\pi\)
\(30\) −1.18962 + 4.84679i −0.217194 + 0.884898i
\(31\) 0.501382 + 0.868419i 0.0900508 + 0.155973i 0.907532 0.419982i \(-0.137964\pi\)
−0.817481 + 0.575955i \(0.804630\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.72390 4.52853i −0.822326 0.788317i
\(34\) 1.17963 2.04317i 0.202304 0.350401i
\(35\) 6.88664 11.9280i 1.16405 2.01620i
\(36\) 0.126635 + 2.99733i 0.0211059 + 0.499554i
\(37\) 0.590760 + 1.02323i 0.0971204 + 0.168217i 0.910492 0.413528i \(-0.135703\pi\)
−0.813371 + 0.581745i \(0.802370\pi\)
\(38\) −2.90578 + 5.03295i −0.471379 + 0.816453i
\(39\) 4.26507 4.56171i 0.682957 0.730458i
\(40\) 1.44068 + 2.49532i 0.227791 + 0.394545i
\(41\) −0.693978 + 1.20200i −0.108381 + 0.187722i −0.915115 0.403194i \(-0.867900\pi\)
0.806733 + 0.590916i \(0.201233\pi\)
\(42\) 1.97358 8.04080i 0.304529 1.24072i
\(43\) −3.98744 6.90645i −0.608079 1.05322i −0.991557 0.129673i \(-0.958607\pi\)
0.383478 0.923550i \(-0.374726\pi\)
\(44\) −3.77813 −0.569575
\(45\) −7.29686 + 4.63417i −1.08775 + 0.690821i
\(46\) 2.39782 4.15315i 0.353539 0.612348i
\(47\) −5.24912 + 9.09174i −0.765663 + 1.32617i 0.174233 + 0.984704i \(0.444255\pi\)
−0.939896 + 0.341462i \(0.889078\pi\)
\(48\) 1.25033 + 1.19862i 0.180469 + 0.173005i
\(49\) −7.92491 + 13.7263i −1.13213 + 1.96091i
\(50\) −1.65109 + 2.85977i −0.233500 + 0.404433i
\(51\) 3.92390 1.14071i 0.549456 0.159732i
\(52\) −0.0450041 3.60527i −0.00624095 0.499961i
\(53\) −3.79134 −0.520781 −0.260390 0.965503i \(-0.583851\pi\)
−0.260390 + 0.965503i \(0.583851\pi\)
\(54\) −3.43431 + 3.89943i −0.467350 + 0.530645i
\(55\) −5.44306 9.42766i −0.733943 1.27123i
\(56\) −2.39007 4.13973i −0.319387 0.553195i
\(57\) −9.66575 + 2.80992i −1.28026 + 0.372183i
\(58\) 6.93228 0.910253
\(59\) 1.10523 0.143889 0.0719445 0.997409i \(-0.477080\pi\)
0.0719445 + 0.997409i \(0.477080\pi\)
\(60\) −1.18962 + 4.84679i −0.153579 + 0.625718i
\(61\) 1.37333 + 2.37868i 0.175837 + 0.304559i 0.940451 0.339930i \(-0.110403\pi\)
−0.764613 + 0.644489i \(0.777070\pi\)
\(62\) 0.501382 + 0.868419i 0.0636755 + 0.110289i
\(63\) 12.1055 7.68807i 1.52514 0.968605i
\(64\) 1.00000 0.125000
\(65\) 8.93148 5.30632i 1.10781 0.658169i
\(66\) −4.72390 4.52853i −0.581472 0.557424i
\(67\) 3.93397 6.81383i 0.480611 0.832442i −0.519142 0.854688i \(-0.673748\pi\)
0.999753 + 0.0222461i \(0.00708175\pi\)
\(68\) 1.17963 2.04317i 0.143051 0.247771i
\(69\) 7.97609 2.31872i 0.960209 0.279142i
\(70\) 6.88664 11.9280i 0.823111 1.42567i
\(71\) −2.34406 + 4.06004i −0.278189 + 0.481838i −0.970935 0.239344i \(-0.923068\pi\)
0.692746 + 0.721182i \(0.256401\pi\)
\(72\) 0.126635 + 2.99733i 0.0149241 + 0.353238i
\(73\) −10.6407 −1.24540 −0.622698 0.782462i \(-0.713964\pi\)
−0.622698 + 0.782462i \(0.713964\pi\)
\(74\) 0.590760 + 1.02323i 0.0686745 + 0.118948i
\(75\) −5.49218 + 1.59663i −0.634182 + 0.184363i
\(76\) −2.90578 + 5.03295i −0.333315 + 0.577319i
\(77\) 9.03002 + 15.6404i 1.02907 + 1.78239i
\(78\) 4.26507 4.56171i 0.482924 0.516512i
\(79\) −3.65213 + 6.32568i −0.410897 + 0.711694i −0.994988 0.0999939i \(-0.968118\pi\)
0.584091 + 0.811688i \(0.301451\pi\)
\(80\) 1.44068 + 2.49532i 0.161072 + 0.278986i
\(81\) −8.96793 + 0.759135i −0.996436 + 0.0843483i
\(82\) −0.693978 + 1.20200i −0.0766370 + 0.132739i
\(83\) 6.00937 10.4085i 0.659614 1.14248i −0.321102 0.947045i \(-0.604053\pi\)
0.980716 0.195440i \(-0.0626135\pi\)
\(84\) 1.97358 8.04080i 0.215335 0.877323i
\(85\) 6.79783 0.737328
\(86\) −3.98744 6.90645i −0.429977 0.744741i
\(87\) 8.66761 + 8.30915i 0.929266 + 0.890834i
\(88\) −3.77813 −0.402750
\(89\) 2.23089 + 3.86402i 0.236474 + 0.409585i 0.959700 0.281026i \(-0.0906748\pi\)
−0.723226 + 0.690611i \(0.757342\pi\)
\(90\) −7.29686 + 4.63417i −0.769156 + 0.488484i
\(91\) −14.8173 + 8.80317i −1.55327 + 0.922823i
\(92\) 2.39782 4.15315i 0.249990 0.432996i
\(93\) −0.414010 + 1.68677i −0.0429308 + 0.174910i
\(94\) −5.24912 + 9.09174i −0.541405 + 0.937741i
\(95\) −16.7451 −1.71801
\(96\) 1.25033 + 1.19862i 0.127611 + 0.122333i
\(97\) −1.82934 3.16850i −0.185741 0.321713i 0.758085 0.652156i \(-0.226135\pi\)
−0.943826 + 0.330443i \(0.892802\pi\)
\(98\) −7.92491 + 13.7263i −0.800536 + 1.38657i
\(99\) −0.478445 11.3243i −0.0480856 1.13813i
\(100\) −1.65109 + 2.85977i −0.165109 + 0.285977i
\(101\) 8.10134 0.806113 0.403057 0.915175i \(-0.367948\pi\)
0.403057 + 0.915175i \(0.367948\pi\)
\(102\) 3.92390 1.14071i 0.388524 0.112947i
\(103\) 6.62448 + 11.4739i 0.652729 + 1.13056i 0.982458 + 0.186485i \(0.0597095\pi\)
−0.329728 + 0.944076i \(0.606957\pi\)
\(104\) −0.0450041 3.60527i −0.00441302 0.353526i
\(105\) 22.9077 6.65947i 2.23556 0.649898i
\(106\) −3.79134 −0.368248
\(107\) −1.32937 2.30253i −0.128515 0.222594i 0.794587 0.607151i \(-0.207688\pi\)
−0.923101 + 0.384557i \(0.874354\pi\)
\(108\) −3.43431 + 3.89943i −0.330467 + 0.375222i
\(109\) 2.53982 0.243270 0.121635 0.992575i \(-0.461186\pi\)
0.121635 + 0.992575i \(0.461186\pi\)
\(110\) −5.44306 9.42766i −0.518976 0.898892i
\(111\) −0.487813 + 1.98746i −0.0463012 + 0.188642i
\(112\) −2.39007 4.13973i −0.225841 0.391168i
\(113\) 3.00622 0.282801 0.141401 0.989952i \(-0.454839\pi\)
0.141401 + 0.989952i \(0.454839\pi\)
\(114\) −9.66575 + 2.80992i −0.905280 + 0.263173i
\(115\) 13.8179 1.28853
\(116\) 6.93228 0.643646
\(117\) 10.8005 0.591447i 0.998504 0.0546793i
\(118\) 1.10523 0.101745
\(119\) −11.2776 −1.03381
\(120\) −1.18962 + 4.84679i −0.108597 + 0.442449i
\(121\) 3.27429 0.297663
\(122\) 1.37333 + 2.37868i 0.124336 + 0.215356i
\(123\) −2.30844 + 0.671086i −0.208145 + 0.0605098i
\(124\) 0.501382 + 0.868419i 0.0450254 + 0.0779863i
\(125\) 4.89200 0.437554
\(126\) 12.1055 7.68807i 1.07844 0.684907i
\(127\) 0.626292 + 1.08477i 0.0555745 + 0.0962578i 0.892474 0.451098i \(-0.148968\pi\)
−0.836900 + 0.547356i \(0.815634\pi\)
\(128\) 1.00000 0.0883883
\(129\) 3.29258 13.4147i 0.289896 1.18110i
\(130\) 8.93148 5.30632i 0.783342 0.465395i
\(131\) 4.54154 + 7.86618i 0.396796 + 0.687271i 0.993329 0.115318i \(-0.0367886\pi\)
−0.596532 + 0.802589i \(0.703455\pi\)
\(132\) −4.72390 4.52853i −0.411163 0.394158i
\(133\) 27.7801 2.40884
\(134\) 3.93397 6.81383i 0.339843 0.588625i
\(135\) −14.6781 2.95191i −1.26329 0.254060i
\(136\) 1.17963 2.04317i 0.101152 0.175201i
\(137\) 5.92225 + 10.2576i 0.505972 + 0.876369i 0.999976 + 0.00690921i \(0.00219929\pi\)
−0.494005 + 0.869459i \(0.664467\pi\)
\(138\) 7.97609 2.31872i 0.678970 0.197383i
\(139\) 14.6543 1.24296 0.621481 0.783429i \(-0.286531\pi\)
0.621481 + 0.783429i \(0.286531\pi\)
\(140\) 6.88664 11.9280i 0.582027 1.00810i
\(141\) −17.4606 + 5.07597i −1.47045 + 0.427473i
\(142\) −2.34406 + 4.06004i −0.196709 + 0.340711i
\(143\) 0.170032 + 13.6212i 0.0142188 + 1.13906i
\(144\) 0.126635 + 2.99733i 0.0105529 + 0.249777i
\(145\) 9.98716 + 17.2983i 0.829389 + 1.43654i
\(146\) −10.6407 −0.880629
\(147\) −26.3613 + 7.66349i −2.17425 + 0.632074i
\(148\) 0.590760 + 1.02323i 0.0485602 + 0.0841087i
\(149\) −2.93221 −0.240216 −0.120108 0.992761i \(-0.538324\pi\)
−0.120108 + 0.992761i \(0.538324\pi\)
\(150\) −5.49218 + 1.59663i −0.448435 + 0.130364i
\(151\) 3.09803 5.36595i 0.252114 0.436675i −0.711993 0.702186i \(-0.752207\pi\)
0.964108 + 0.265511i \(0.0855407\pi\)
\(152\) −2.90578 + 5.03295i −0.235690 + 0.408226i
\(153\) 6.27343 + 3.27699i 0.507177 + 0.264929i
\(154\) 9.03002 + 15.6404i 0.727660 + 1.26034i
\(155\) −1.44466 + 2.50222i −0.116038 + 0.200983i
\(156\) 4.26507 4.56171i 0.341479 0.365229i
\(157\) −9.25665 16.0330i −0.738761 1.27957i −0.953054 0.302802i \(-0.902078\pi\)
0.214293 0.976769i \(-0.431255\pi\)
\(158\) −3.65213 + 6.32568i −0.290548 + 0.503244i
\(159\) −4.74042 4.54437i −0.375940 0.360392i
\(160\) 1.44068 + 2.49532i 0.113895 + 0.197273i
\(161\) −22.9239 −1.80665
\(162\) −8.96793 + 0.759135i −0.704587 + 0.0596433i
\(163\) 4.35185 7.53762i 0.340863 0.590392i −0.643730 0.765252i \(-0.722614\pi\)
0.984593 + 0.174861i \(0.0559475\pi\)
\(164\) −0.693978 + 1.20200i −0.0541906 + 0.0938608i
\(165\) 4.49455 18.3118i 0.349900 1.42557i
\(166\) 6.00937 10.4085i 0.466417 0.807859i
\(167\) −8.94428 + 15.4919i −0.692129 + 1.19880i 0.279010 + 0.960288i \(0.409994\pi\)
−0.971139 + 0.238514i \(0.923340\pi\)
\(168\) 1.97358 8.04080i 0.152265 0.620361i
\(169\) −12.9959 + 0.324504i −0.999688 + 0.0249618i
\(170\) 6.79783 0.521370
\(171\) −15.4534 8.07221i −1.18175 0.617297i
\(172\) −3.98744 6.90645i −0.304039 0.526612i
\(173\) 9.18636 + 15.9112i 0.698426 + 1.20971i 0.969012 + 0.247014i \(0.0794493\pi\)
−0.270586 + 0.962696i \(0.587217\pi\)
\(174\) 8.66761 + 8.30915i 0.657090 + 0.629915i
\(175\) 15.7849 1.19323
\(176\) −3.77813 −0.284788
\(177\) 1.38190 + 1.32475i 0.103870 + 0.0995743i
\(178\) 2.23089 + 3.86402i 0.167212 + 0.289620i
\(179\) −3.28324 5.68673i −0.245401 0.425046i 0.716844 0.697234i \(-0.245586\pi\)
−0.962244 + 0.272188i \(0.912253\pi\)
\(180\) −7.29686 + 4.63417i −0.543876 + 0.345411i
\(181\) −0.608557 −0.0452337 −0.0226169 0.999744i \(-0.507200\pi\)
−0.0226169 + 0.999744i \(0.507200\pi\)
\(182\) −14.8173 + 8.80317i −1.09833 + 0.652534i
\(183\) −1.13401 + 4.62023i −0.0838287 + 0.341537i
\(184\) 2.39782 4.15315i 0.176770 0.306174i
\(185\) −1.70219 + 2.94828i −0.125147 + 0.216762i
\(186\) −0.414010 + 1.68677i −0.0303567 + 0.123680i
\(187\) −4.45678 + 7.71938i −0.325912 + 0.564497i
\(188\) −5.24912 + 9.09174i −0.382831 + 0.663083i
\(189\) 24.3508 + 4.89720i 1.77126 + 0.356219i
\(190\) −16.7451 −1.21482
\(191\) −5.76077 9.97795i −0.416835 0.721979i 0.578784 0.815481i \(-0.303527\pi\)
−0.995619 + 0.0935014i \(0.970194\pi\)
\(192\) 1.25033 + 1.19862i 0.0902346 + 0.0865027i
\(193\) −8.76136 + 15.1751i −0.630656 + 1.09233i 0.356762 + 0.934195i \(0.383881\pi\)
−0.987418 + 0.158133i \(0.949452\pi\)
\(194\) −1.82934 3.16850i −0.131339 0.227485i
\(195\) 17.5275 + 4.07078i 1.25517 + 0.291515i
\(196\) −7.92491 + 13.7263i −0.566065 + 0.980453i
\(197\) −4.49370 7.78331i −0.320163 0.554538i 0.660359 0.750950i \(-0.270404\pi\)
−0.980521 + 0.196412i \(0.937071\pi\)
\(198\) −0.478445 11.3243i −0.0340016 0.804783i
\(199\) 13.3927 23.1968i 0.949383 1.64438i 0.202656 0.979250i \(-0.435043\pi\)
0.746727 0.665130i \(-0.231624\pi\)
\(200\) −1.65109 + 2.85977i −0.116750 + 0.202217i
\(201\) 13.0859 3.80420i 0.923009 0.268327i
\(202\) 8.10134 0.570008
\(203\) −16.5687 28.6978i −1.16289 2.01419i
\(204\) 3.92390 1.14071i 0.274728 0.0798659i
\(205\) −3.99919 −0.279315
\(206\) 6.62448 + 11.4739i 0.461549 + 0.799427i
\(207\) 12.7520 + 6.66112i 0.886324 + 0.462980i
\(208\) −0.0450041 3.60527i −0.00312047 0.249981i
\(209\) 10.9784 19.0152i 0.759392 1.31531i
\(210\) 22.9077 6.65947i 1.58078 0.459547i
\(211\) −5.81398 + 10.0701i −0.400251 + 0.693255i −0.993756 0.111576i \(-0.964410\pi\)
0.593505 + 0.804830i \(0.297744\pi\)
\(212\) −3.79134 −0.260390
\(213\) −7.79727 + 2.26674i −0.534260 + 0.155314i
\(214\) −1.32937 2.30253i −0.0908737 0.157398i
\(215\) 11.4892 19.8999i 0.783558 1.35716i
\(216\) −3.43431 + 3.89943i −0.233675 + 0.265322i
\(217\) 2.39668 4.15117i 0.162697 0.281800i
\(218\) 2.53982 0.172018
\(219\) −13.3043 12.7541i −0.899023 0.861842i
\(220\) −5.44306 9.42766i −0.366971 0.635613i
\(221\) −7.41928 4.16092i −0.499074 0.279894i
\(222\) −0.487813 + 1.98746i −0.0327399 + 0.133390i
\(223\) 13.4250 0.899004 0.449502 0.893279i \(-0.351602\pi\)
0.449502 + 0.893279i \(0.351602\pi\)
\(224\) −2.39007 4.13973i −0.159694 0.276597i
\(225\) −8.78076 4.58671i −0.585384 0.305781i
\(226\) 3.00622 0.199971
\(227\) −1.09211 1.89158i −0.0724856 0.125549i 0.827504 0.561459i \(-0.189760\pi\)
−0.899990 + 0.435910i \(0.856426\pi\)
\(228\) −9.66575 + 2.80992i −0.640130 + 0.186092i
\(229\) −9.58555 16.6027i −0.633431 1.09713i −0.986845 0.161668i \(-0.948313\pi\)
0.353414 0.935467i \(-0.385021\pi\)
\(230\) 13.8179 0.911127
\(231\) −7.45643 + 30.3792i −0.490597 + 1.99881i
\(232\) 6.93228 0.455126
\(233\) −3.59859 −0.235751 −0.117876 0.993028i \(-0.537608\pi\)
−0.117876 + 0.993028i \(0.537608\pi\)
\(234\) 10.8005 0.591447i 0.706049 0.0386641i
\(235\) −30.2491 −1.97323
\(236\) 1.10523 0.0719445
\(237\) −12.1484 + 3.53166i −0.789125 + 0.229406i
\(238\) −11.2776 −0.731016
\(239\) −1.63290 2.82827i −0.105624 0.182945i 0.808369 0.588676i \(-0.200351\pi\)
−0.913993 + 0.405730i \(0.867017\pi\)
\(240\) −1.18962 + 4.84679i −0.0767897 + 0.312859i
\(241\) −10.8271 18.7531i −0.697435 1.20799i −0.969353 0.245673i \(-0.920991\pi\)
0.271917 0.962321i \(-0.412342\pi\)
\(242\) 3.27429 0.210479
\(243\) −12.1228 9.79994i −0.777675 0.628667i
\(244\) 1.37333 + 2.37868i 0.0879186 + 0.152280i
\(245\) −45.6689 −2.91768
\(246\) −2.30844 + 0.671086i −0.147181 + 0.0427869i
\(247\) 18.2759 + 10.2496i 1.16287 + 0.652167i
\(248\) 0.501382 + 0.868419i 0.0318378 + 0.0551446i
\(249\) 19.9895 5.81114i 1.26678 0.368266i
\(250\) 4.89200 0.309398
\(251\) −12.8310 + 22.2240i −0.809887 + 1.40277i 0.103055 + 0.994676i \(0.467138\pi\)
−0.912942 + 0.408090i \(0.866195\pi\)
\(252\) 12.1055 7.68807i 0.762572 0.484303i
\(253\) −9.05929 + 15.6911i −0.569553 + 0.986494i
\(254\) 0.626292 + 1.08477i 0.0392971 + 0.0680645i
\(255\) 8.49951 + 8.14800i 0.532260 + 0.510247i
\(256\) 1.00000 0.0625000
\(257\) −0.566168 + 0.980632i −0.0353166 + 0.0611702i −0.883143 0.469103i \(-0.844577\pi\)
0.847827 + 0.530273i \(0.177911\pi\)
\(258\) 3.29258 13.4147i 0.204987 0.835164i
\(259\) 2.82392 4.89117i 0.175470 0.303923i
\(260\) 8.93148 5.30632i 0.553907 0.329084i
\(261\) 0.877872 + 20.7783i 0.0543389 + 1.28614i
\(262\) 4.54154 + 7.86618i 0.280577 + 0.485974i
\(263\) 11.3194 0.697987 0.348993 0.937125i \(-0.386524\pi\)
0.348993 + 0.937125i \(0.386524\pi\)
\(264\) −4.72390 4.52853i −0.290736 0.278712i
\(265\) −5.46209 9.46063i −0.335534 0.581162i
\(266\) 27.7801 1.70331
\(267\) −1.84213 + 7.50527i −0.112737 + 0.459315i
\(268\) 3.93397 6.81383i 0.240305 0.416221i
\(269\) −1.92322 + 3.33111i −0.117261 + 0.203101i −0.918681 0.395000i \(-0.870745\pi\)
0.801421 + 0.598101i \(0.204078\pi\)
\(270\) −14.6781 2.95191i −0.893278 0.179647i
\(271\) −12.0427 20.8585i −0.731541 1.26707i −0.956224 0.292634i \(-0.905468\pi\)
0.224684 0.974432i \(-0.427865\pi\)
\(272\) 1.17963 2.04317i 0.0715253 0.123885i
\(273\) −29.0781 6.75340i −1.75988 0.408735i
\(274\) 5.92225 + 10.2576i 0.357776 + 0.619686i
\(275\) 6.23805 10.8046i 0.376168 0.651543i
\(276\) 7.97609 2.31872i 0.480104 0.139571i
\(277\) −4.45259 7.71211i −0.267530 0.463376i 0.700693 0.713463i \(-0.252874\pi\)
−0.968223 + 0.250087i \(0.919541\pi\)
\(278\) 14.6543 0.878906
\(279\) −2.53944 + 1.61278i −0.152032 + 0.0965544i
\(280\) 6.88664 11.9280i 0.411556 0.712835i
\(281\) 6.95175 12.0408i 0.414707 0.718293i −0.580691 0.814124i \(-0.697218\pi\)
0.995398 + 0.0958311i \(0.0305509\pi\)
\(282\) −17.4606 + 5.07597i −1.03977 + 0.302269i
\(283\) 8.84688 15.3232i 0.525892 0.910872i −0.473653 0.880712i \(-0.657065\pi\)
0.999545 0.0301607i \(-0.00960191\pi\)
\(284\) −2.34406 + 4.06004i −0.139095 + 0.240919i
\(285\) −20.9369 20.0710i −1.24019 1.18890i
\(286\) 0.170032 + 13.6212i 0.0100542 + 0.805438i
\(287\) 6.63463 0.391630
\(288\) 0.126635 + 2.99733i 0.00746206 + 0.176619i
\(289\) 5.71697 + 9.90208i 0.336292 + 0.582475i
\(290\) 9.98716 + 17.2983i 0.586466 + 1.01579i
\(291\) 1.51055 6.15434i 0.0885502 0.360774i
\(292\) −10.6407 −0.622698
\(293\) 8.48551 0.495729 0.247864 0.968795i \(-0.420271\pi\)
0.247864 + 0.968795i \(0.420271\pi\)
\(294\) −26.3613 + 7.66349i −1.53742 + 0.446944i
\(295\) 1.59228 + 2.75791i 0.0927061 + 0.160572i
\(296\) 0.590760 + 1.02323i 0.0343372 + 0.0594738i
\(297\) 12.9753 14.7325i 0.752902 0.854869i
\(298\) −2.93221 −0.169859
\(299\) −15.0811 8.45788i −0.872164 0.489132i
\(300\) −5.49218 + 1.59663i −0.317091 + 0.0921813i
\(301\) −19.0605 + 33.0138i −1.09863 + 1.90289i
\(302\) 3.09803 5.36595i 0.178272 0.308776i
\(303\) 10.1293 + 9.71040i 0.581914 + 0.557848i
\(304\) −2.90578 + 5.03295i −0.166658 + 0.288660i
\(305\) −3.95705 + 6.85382i −0.226580 + 0.392449i
\(306\) 6.27343 + 3.27699i 0.358628 + 0.187333i
\(307\) 27.3530 1.56112 0.780559 0.625082i \(-0.214935\pi\)
0.780559 + 0.625082i \(0.214935\pi\)
\(308\) 9.03002 + 15.6404i 0.514533 + 0.891197i
\(309\) −5.47009 + 22.2864i −0.311182 + 1.26783i
\(310\) −1.44466 + 2.50222i −0.0820510 + 0.142116i
\(311\) 12.2548 + 21.2259i 0.694903 + 1.20361i 0.970213 + 0.242252i \(0.0778862\pi\)
−0.275310 + 0.961356i \(0.588780\pi\)
\(312\) 4.26507 4.56171i 0.241462 0.258256i
\(313\) −6.63578 + 11.4935i −0.375076 + 0.649651i −0.990338 0.138671i \(-0.955717\pi\)
0.615262 + 0.788323i \(0.289050\pi\)
\(314\) −9.25665 16.0330i −0.522383 0.904793i
\(315\) 36.6242 + 19.1310i 2.06354 + 1.07791i
\(316\) −3.65213 + 6.32568i −0.205448 + 0.355847i
\(317\) −0.149603 + 0.259121i −0.00840256 + 0.0145537i −0.870196 0.492706i \(-0.836008\pi\)
0.861794 + 0.507259i \(0.169341\pi\)
\(318\) −4.74042 4.54437i −0.265829 0.254835i
\(319\) −26.1911 −1.46642
\(320\) 1.44068 + 2.49532i 0.0805362 + 0.139493i
\(321\) 1.09771 4.47232i 0.0612682 0.249621i
\(322\) −22.9239 −1.27750
\(323\) 6.85546 + 11.8740i 0.381448 + 0.660687i
\(324\) −8.96793 + 0.759135i −0.498218 + 0.0421742i
\(325\) 10.3846 + 5.82393i 0.576032 + 0.323054i
\(326\) 4.35185 7.53762i 0.241026 0.417470i
\(327\) 3.17560 + 3.04427i 0.175611 + 0.168348i
\(328\) −0.693978 + 1.20200i −0.0383185 + 0.0663696i
\(329\) 50.1831 2.76668
\(330\) 4.49455 18.3118i 0.247417 1.00803i
\(331\) −10.5581 18.2872i −0.580328 1.00516i −0.995440 0.0953874i \(-0.969591\pi\)
0.415112 0.909770i \(-0.363742\pi\)
\(332\) 6.00937 10.4085i 0.329807 0.571242i
\(333\) −2.99213 + 1.90028i −0.163968 + 0.104135i
\(334\) −8.94428 + 15.4919i −0.489409 + 0.847681i
\(335\) 22.6703 1.23861
\(336\) 1.97358 8.04080i 0.107667 0.438661i
\(337\) −10.2316 17.7217i −0.557351 0.965361i −0.997716 0.0675418i \(-0.978484\pi\)
0.440365 0.897819i \(-0.354849\pi\)
\(338\) −12.9959 + 0.324504i −0.706886 + 0.0176507i
\(339\) 3.75876 + 3.60330i 0.204148 + 0.195705i
\(340\) 6.79783 0.368664
\(341\) −1.89429 3.28100i −0.102581 0.177676i
\(342\) −15.4534 8.07221i −0.835623 0.436495i
\(343\) 42.3034 2.28417
\(344\) −3.98744 6.90645i −0.214988 0.372371i
\(345\) 17.2769 + 16.5624i 0.930159 + 0.891690i
\(346\) 9.18636 + 15.9112i 0.493862 + 0.855394i
\(347\) −23.5164 −1.26242 −0.631212 0.775610i \(-0.717442\pi\)
−0.631212 + 0.775610i \(0.717442\pi\)
\(348\) 8.66761 + 8.30915i 0.464633 + 0.445417i
\(349\) 9.29392 0.497492 0.248746 0.968569i \(-0.419982\pi\)
0.248746 + 0.968569i \(0.419982\pi\)
\(350\) 15.7849 0.843740
\(351\) 14.2130 + 12.2061i 0.758636 + 0.651515i
\(352\) −3.77813 −0.201375
\(353\) 15.1687 0.807351 0.403676 0.914902i \(-0.367732\pi\)
0.403676 + 0.914902i \(0.367732\pi\)
\(354\) 1.38190 + 1.32475i 0.0734472 + 0.0704096i
\(355\) −13.5081 −0.716937
\(356\) 2.23089 + 3.86402i 0.118237 + 0.204793i
\(357\) −14.1007 13.5175i −0.746286 0.715421i
\(358\) −3.28324 5.68673i −0.173524 0.300553i
\(359\) 15.1803 0.801185 0.400592 0.916256i \(-0.368804\pi\)
0.400592 + 0.916256i \(0.368804\pi\)
\(360\) −7.29686 + 4.63417i −0.384578 + 0.244242i
\(361\) −7.38707 12.7948i −0.388793 0.673409i
\(362\) −0.608557 −0.0319851
\(363\) 4.09394 + 3.92462i 0.214876 + 0.205989i
\(364\) −14.8173 + 8.80317i −0.776637 + 0.461411i
\(365\) −15.3298 26.5519i −0.802396 1.38979i
\(366\) −1.13401 + 4.62023i −0.0592758 + 0.241503i
\(367\) −12.3318 −0.643717 −0.321858 0.946788i \(-0.604307\pi\)
−0.321858 + 0.946788i \(0.604307\pi\)
\(368\) 2.39782 4.15315i 0.124995 0.216498i
\(369\) −3.69068 1.92786i −0.192129 0.100360i
\(370\) −1.70219 + 2.94828i −0.0884925 + 0.153274i
\(371\) 9.06159 + 15.6951i 0.470454 + 0.814851i
\(372\) −0.414010 + 1.68677i −0.0214654 + 0.0874550i
\(373\) 23.2521 1.20395 0.601974 0.798516i \(-0.294381\pi\)
0.601974 + 0.798516i \(0.294381\pi\)
\(374\) −4.45678 + 7.71938i −0.230455 + 0.399159i
\(375\) 6.11661 + 5.86364i 0.315860 + 0.302797i
\(376\) −5.24912 + 9.09174i −0.270703 + 0.468871i
\(377\) −0.311981 24.9927i −0.0160678 1.28719i
\(378\) 24.3508 + 4.89720i 1.25247 + 0.251885i
\(379\) 13.8465 + 23.9829i 0.711248 + 1.23192i 0.964389 + 0.264488i \(0.0852030\pi\)
−0.253141 + 0.967429i \(0.581464\pi\)
\(380\) −16.7451 −0.859007
\(381\) −0.517154 + 2.10700i −0.0264946 + 0.107945i
\(382\) −5.76077 9.97795i −0.294747 0.510517i
\(383\) 29.5563 1.51025 0.755127 0.655578i \(-0.227575\pi\)
0.755127 + 0.655578i \(0.227575\pi\)
\(384\) 1.25033 + 1.19862i 0.0638055 + 0.0611667i
\(385\) −26.0187 + 45.0656i −1.32603 + 2.29676i
\(386\) −8.76136 + 15.1751i −0.445941 + 0.772393i
\(387\) 20.1959 12.8263i 1.02662 0.651995i
\(388\) −1.82934 3.16850i −0.0928705 0.160856i
\(389\) 4.56147 7.90070i 0.231276 0.400582i −0.726908 0.686735i \(-0.759043\pi\)
0.958184 + 0.286153i \(0.0923767\pi\)
\(390\) 17.5275 + 4.07078i 0.887540 + 0.206132i
\(391\) −5.65706 9.79832i −0.286090 0.495522i
\(392\) −7.92491 + 13.7263i −0.400268 + 0.693285i
\(393\) −3.75012 + 15.2789i −0.189169 + 0.770717i
\(394\) −4.49370 7.78331i −0.226389 0.392118i
\(395\) −21.0461 −1.05895
\(396\) −0.478445 11.3243i −0.0240428 0.569067i
\(397\) 10.4876 18.1651i 0.526358 0.911679i −0.473170 0.880971i \(-0.656891\pi\)
0.999528 0.0307078i \(-0.00977614\pi\)
\(398\) 13.3927 23.1968i 0.671315 1.16275i
\(399\) 34.7342 + 33.2977i 1.73888 + 1.66697i
\(400\) −1.65109 + 2.85977i −0.0825546 + 0.142989i
\(401\) 4.09832 7.09850i 0.204660 0.354482i −0.745364 0.666658i \(-0.767724\pi\)
0.950024 + 0.312175i \(0.101058\pi\)
\(402\) 13.0859 3.80420i 0.652666 0.189736i
\(403\) 3.10832 1.84670i 0.154836 0.0919906i
\(404\) 8.10134 0.403057
\(405\) −14.8142 21.2842i −0.736122 1.05762i
\(406\) −16.5687 28.6978i −0.822289 1.42425i
\(407\) −2.23197 3.86589i −0.110635 0.191625i
\(408\) 3.92390 1.14071i 0.194262 0.0564737i
\(409\) −22.2821 −1.10178 −0.550890 0.834578i \(-0.685711\pi\)
−0.550890 + 0.834578i \(0.685711\pi\)
\(410\) −3.99919 −0.197506
\(411\) −4.89022 + 19.9239i −0.241217 + 0.982773i
\(412\) 6.62448 + 11.4739i 0.326365 + 0.565280i
\(413\) −2.64159 4.57536i −0.129984 0.225139i
\(414\) 12.7520 + 6.66112i 0.626726 + 0.327376i
\(415\) 34.6302 1.69993
\(416\) −0.0450041 3.60527i −0.00220651 0.176763i
\(417\) 18.3227 + 17.5649i 0.897265 + 0.860156i
\(418\) 10.9784 19.0152i 0.536972 0.930062i
\(419\) −14.2408 + 24.6658i −0.695708 + 1.20500i 0.274233 + 0.961663i \(0.411576\pi\)
−0.969941 + 0.243339i \(0.921757\pi\)
\(420\) 22.9077 6.65947i 1.11778 0.324949i
\(421\) 5.96859 10.3379i 0.290891 0.503839i −0.683129 0.730297i \(-0.739382\pi\)
0.974021 + 0.226459i \(0.0727149\pi\)
\(422\) −5.81398 + 10.0701i −0.283020 + 0.490205i
\(423\) −27.9156 14.5820i −1.35730 0.709000i
\(424\) −3.79134 −0.184124
\(425\) 3.89534 + 6.74693i 0.188952 + 0.327274i
\(426\) −7.79727 + 2.26674i −0.377779 + 0.109824i
\(427\) 6.56473 11.3705i 0.317690 0.550255i
\(428\) −1.32937 2.30253i −0.0642574 0.111297i
\(429\) −16.1140 + 17.2347i −0.777991 + 0.832101i
\(430\) 11.4892 19.8999i 0.554059 0.959658i
\(431\) −2.23690 3.87443i −0.107748 0.186625i 0.807110 0.590401i \(-0.201031\pi\)
−0.914858 + 0.403777i \(0.867697\pi\)
\(432\) −3.43431 + 3.89943i −0.165233 + 0.187611i
\(433\) 5.29421 9.16984i 0.254424 0.440674i −0.710315 0.703884i \(-0.751448\pi\)
0.964739 + 0.263209i \(0.0847810\pi\)
\(434\) 2.39668 4.15117i 0.115044 0.199262i
\(435\) −8.24678 + 33.5993i −0.395403 + 1.61096i
\(436\) 2.53982 0.121635
\(437\) 13.9351 + 24.1362i 0.666604 + 1.15459i
\(438\) −13.3043 12.7541i −0.635705 0.609414i
\(439\) −0.183907 −0.00877739 −0.00438869 0.999990i \(-0.501397\pi\)
−0.00438869 + 0.999990i \(0.501397\pi\)
\(440\) −5.44306 9.42766i −0.259488 0.449446i
\(441\) −42.1459 22.0153i −2.00695 1.04835i
\(442\) −7.41928 4.16092i −0.352899 0.197915i
\(443\) 5.46285 9.46193i 0.259548 0.449550i −0.706573 0.707640i \(-0.749760\pi\)
0.966121 + 0.258090i \(0.0830932\pi\)
\(444\) −0.487813 + 1.98746i −0.0231506 + 0.0943208i
\(445\) −6.42798 + 11.1336i −0.304716 + 0.527783i
\(446\) 13.4250 0.635692
\(447\) −3.66623 3.51460i −0.173407 0.166235i
\(448\) −2.39007 4.13973i −0.112920 0.195584i
\(449\) −13.8839 + 24.0476i −0.655222 + 1.13488i 0.326617 + 0.945157i \(0.394091\pi\)
−0.981838 + 0.189720i \(0.939242\pi\)
\(450\) −8.78076 4.58671i −0.413929 0.216220i
\(451\) 2.62194 4.54133i 0.123462 0.213843i
\(452\) 3.00622 0.141401
\(453\) 10.3053 2.99584i 0.484184 0.140757i
\(454\) −1.09211 1.89158i −0.0512551 0.0887764i
\(455\) −43.3136 24.2914i −2.03057 1.13880i
\(456\) −9.66575 + 2.80992i −0.452640 + 0.131587i
\(457\) −20.8576 −0.975675 −0.487838 0.872934i \(-0.662214\pi\)
−0.487838 + 0.872934i \(0.662214\pi\)
\(458\) −9.58555 16.6027i −0.447903 0.775792i
\(459\) 3.91599 + 11.6167i 0.182783 + 0.542223i
\(460\) 13.8179 0.644264
\(461\) 2.03096 + 3.51772i 0.0945911 + 0.163837i 0.909438 0.415840i \(-0.136512\pi\)
−0.814847 + 0.579676i \(0.803179\pi\)
\(462\) −7.45643 + 30.3792i −0.346905 + 1.41337i
\(463\) −6.80110 11.7799i −0.316074 0.547456i 0.663591 0.748095i \(-0.269032\pi\)
−0.979665 + 0.200639i \(0.935698\pi\)
\(464\) 6.93228 0.321823
\(465\) −4.80549 + 1.39700i −0.222849 + 0.0647844i
\(466\) −3.59859 −0.166701
\(467\) −24.3640 −1.12743 −0.563716 0.825968i \(-0.690629\pi\)
−0.563716 + 0.825968i \(0.690629\pi\)
\(468\) 10.8005 0.591447i 0.499252 0.0273396i
\(469\) −37.6099 −1.73666
\(470\) −30.2491 −1.39529
\(471\) 7.64357 31.1416i 0.352197 1.43493i
\(472\) 1.10523 0.0508724
\(473\) 15.0651 + 26.0935i 0.692693 + 1.19978i
\(474\) −12.1484 + 3.53166i −0.557995 + 0.162214i
\(475\) −9.59541 16.6197i −0.440267 0.762566i
\(476\) −11.2776 −0.516907
\(477\) −0.480118 11.3639i −0.0219831 0.520317i
\(478\) −1.63290 2.82827i −0.0746872 0.129362i
\(479\) −14.1172 −0.645030 −0.322515 0.946564i \(-0.604528\pi\)
−0.322515 + 0.946564i \(0.604528\pi\)
\(480\) −1.18962 + 4.84679i −0.0542985 + 0.221225i
\(481\) 3.66242 2.17590i 0.166992 0.0992125i
\(482\) −10.8271 18.7531i −0.493161 0.854180i
\(483\) −28.6623 27.4769i −1.30418 1.25024i
\(484\) 3.27429 0.148831
\(485\) 5.27096 9.12957i 0.239342 0.414552i
\(486\) −12.1228 9.79994i −0.549899 0.444534i
\(487\) −5.30269 + 9.18453i −0.240288 + 0.416191i −0.960796 0.277256i \(-0.910575\pi\)
0.720508 + 0.693446i \(0.243908\pi\)
\(488\) 1.37333 + 2.37868i 0.0621679 + 0.107678i
\(489\) 14.4759 4.20829i 0.654625 0.190306i
\(490\) −45.6689 −2.06311
\(491\) −1.19842 + 2.07572i −0.0540838 + 0.0936759i −0.891800 0.452430i \(-0.850557\pi\)
0.837716 + 0.546106i \(0.183890\pi\)
\(492\) −2.30844 + 0.671086i −0.104073 + 0.0302549i
\(493\) 8.17749 14.1638i 0.368296 0.637907i
\(494\) 18.2759 + 10.2496i 0.822273 + 0.461151i
\(495\) 27.5685 17.5085i 1.23911 0.786949i
\(496\) 0.501382 + 0.868419i 0.0225127 + 0.0389931i
\(497\) 22.4099 1.00522
\(498\) 19.9895 5.81114i 0.895752 0.260403i
\(499\) −8.30677 14.3877i −0.371862 0.644084i 0.617990 0.786186i \(-0.287947\pi\)
−0.989852 + 0.142102i \(0.954614\pi\)
\(500\) 4.89200 0.218777
\(501\) −29.7522 + 8.64923i −1.32923 + 0.386419i
\(502\) −12.8310 + 22.2240i −0.572677 + 0.991905i
\(503\) 15.1027 26.1586i 0.673396 1.16636i −0.303539 0.952819i \(-0.598168\pi\)
0.976935 0.213537i \(-0.0684983\pi\)
\(504\) 12.1055 7.68807i 0.539220 0.342454i
\(505\) 11.6714 + 20.2155i 0.519370 + 0.899576i
\(506\) −9.05929 + 15.6911i −0.402734 + 0.697557i
\(507\) −16.6381 15.1714i −0.738926 0.673787i
\(508\) 0.626292 + 1.08477i 0.0277872 + 0.0481289i
\(509\) 19.9507 34.5556i 0.884299 1.53165i 0.0377833 0.999286i \(-0.487970\pi\)
0.846515 0.532364i \(-0.178696\pi\)
\(510\) 8.49951 + 8.14800i 0.376365 + 0.360799i
\(511\) 25.4320 + 44.0495i 1.12505 + 1.94864i
\(512\) 1.00000 0.0441942
\(513\) −9.64628 28.6156i −0.425894 1.26341i
\(514\) −0.566168 + 0.980632i −0.0249726 + 0.0432538i
\(515\) −19.0875 + 33.0604i −0.841094 + 1.45682i
\(516\) 3.29258 13.4147i 0.144948 0.590550i
\(517\) 19.8319 34.3498i 0.872205 1.51070i
\(518\) 2.82392 4.89117i 0.124076 0.214906i
\(519\) −7.58553 + 30.9052i −0.332968 + 1.35659i
\(520\) 8.93148 5.30632i 0.391671 0.232698i
\(521\) −19.8064 −0.867735 −0.433867 0.900977i \(-0.642851\pi\)
−0.433867 + 0.900977i \(0.642851\pi\)
\(522\) 0.877872 + 20.7783i 0.0384234 + 0.909441i
\(523\) −0.0254495 0.0440799i −0.00111283 0.00192748i 0.865468 0.500963i \(-0.167021\pi\)
−0.866581 + 0.499036i \(0.833688\pi\)
\(524\) 4.54154 + 7.86618i 0.198398 + 0.343636i
\(525\) 19.7363 + 18.9201i 0.861364 + 0.825740i
\(526\) 11.3194 0.493551
\(527\) 2.36577 0.103055
\(528\) −4.72390 4.52853i −0.205581 0.197079i
\(529\) 0.000907866 0.00157247i 3.94724e−5 6.83682e-5i
\(530\) −5.46209 9.46063i −0.237258 0.410943i
\(531\) 0.139961 + 3.31274i 0.00607381 + 0.143761i
\(532\) 27.7801 1.20442
\(533\) 4.36478 + 2.44788i 0.189060 + 0.106030i
\(534\) −1.84213 + 7.50527i −0.0797169 + 0.324785i
\(535\) 3.83037 6.63440i 0.165602 0.286830i
\(536\) 3.93397 6.81383i 0.169921 0.294313i
\(537\) 2.71109 11.0456i 0.116992 0.476654i
\(538\) −1.92322 + 3.33111i −0.0829158 + 0.143614i
\(539\) 29.9413 51.8599i 1.28967 2.23377i
\(540\) −14.6781 2.95191i −0.631643 0.127030i
\(541\) 27.5053 1.18255 0.591273 0.806472i \(-0.298626\pi\)
0.591273 + 0.806472i \(0.298626\pi\)
\(542\) −12.0427 20.8585i −0.517278 0.895951i
\(543\) −0.760896 0.729427i −0.0326532 0.0313027i
\(544\) 1.17963 2.04317i 0.0505760 0.0876003i
\(545\) 3.65905 + 6.33766i 0.156737 + 0.271476i
\(546\) −29.0781 6.75340i −1.24443 0.289019i
\(547\) −14.2255 + 24.6393i −0.608238 + 1.05350i 0.383293 + 0.923627i \(0.374790\pi\)
−0.991531 + 0.129872i \(0.958543\pi\)
\(548\) 5.92225 + 10.2576i 0.252986 + 0.438184i
\(549\) −6.95577 + 4.41755i −0.296865 + 0.188537i
\(550\) 6.23805 10.8046i 0.265991 0.460710i
\(551\) −20.1436 + 34.8898i −0.858148 + 1.48636i
\(552\) 7.97609 2.31872i 0.339485 0.0986915i
\(553\) 34.9154 1.48476
\(554\) −4.45259 7.71211i −0.189172 0.327656i
\(555\) −5.66214 + 1.64604i −0.240345 + 0.0698704i
\(556\) 14.6543 0.621481
\(557\) −5.98629 10.3686i −0.253647 0.439330i 0.710880 0.703313i \(-0.248297\pi\)
−0.964527 + 0.263983i \(0.914964\pi\)
\(558\) −2.53944 + 1.61278i −0.107503 + 0.0682743i
\(559\) −24.7202 + 14.6866i −1.04555 + 0.621178i
\(560\) 6.88664 11.9280i 0.291014 0.504051i
\(561\) −14.8250 + 4.30977i −0.625912 + 0.181959i
\(562\) 6.95175 12.0408i 0.293242 0.507910i
\(563\) −8.94023 −0.376786 −0.188393 0.982094i \(-0.560328\pi\)
−0.188393 + 0.982094i \(0.560328\pi\)
\(564\) −17.4606 + 5.07597i −0.735225 + 0.213737i
\(565\) 4.33099 + 7.50149i 0.182206 + 0.315590i
\(566\) 8.84688 15.3232i 0.371862 0.644084i
\(567\) 24.5766 + 35.3104i 1.03212 + 1.48290i
\(568\) −2.34406 + 4.06004i −0.0983547 + 0.170355i
\(569\) −22.0591 −0.924768 −0.462384 0.886680i \(-0.653006\pi\)
−0.462384 + 0.886680i \(0.653006\pi\)
\(570\) −20.9369 20.0710i −0.876949 0.840681i
\(571\) 0.326310 + 0.565185i 0.0136556 + 0.0236523i 0.872772 0.488127i \(-0.162320\pi\)
−0.859117 + 0.511780i \(0.828986\pi\)
\(572\) 0.170032 + 13.6212i 0.00710938 + 0.569531i
\(573\) 4.75689 19.3807i 0.198722 0.809639i
\(574\) 6.63463 0.276924
\(575\) 7.91805 + 13.7145i 0.330205 + 0.571932i
\(576\) 0.126635 + 2.99733i 0.00527647 + 0.124889i
\(577\) −18.8841 −0.786156 −0.393078 0.919505i \(-0.628590\pi\)
−0.393078 + 0.919505i \(0.628590\pi\)
\(578\) 5.71697 + 9.90208i 0.237794 + 0.411872i
\(579\) −29.1437 + 8.47235i −1.21117 + 0.352099i
\(580\) 9.98716 + 17.2983i 0.414694 + 0.718272i
\(581\) −57.4513 −2.38348
\(582\) 1.51055 6.15434i 0.0626144 0.255106i
\(583\) 14.3242 0.593248
\(584\) −10.6407 −0.440314
\(585\) 17.0358 + 26.0986i 0.704345 + 1.07904i
\(586\) 8.48551 0.350533
\(587\) 26.1046 1.07745 0.538726 0.842481i \(-0.318906\pi\)
0.538726 + 0.842481i \(0.318906\pi\)
\(588\) −26.3613 + 7.66349i −1.08712 + 0.316037i
\(589\) −5.82761 −0.240123
\(590\) 1.59228 + 2.75791i 0.0655531 + 0.113541i
\(591\) 3.71062 15.1179i 0.152634 0.621868i
\(592\) 0.590760 + 1.02323i 0.0242801 + 0.0420544i
\(593\) 25.3817 1.04230 0.521150 0.853465i \(-0.325503\pi\)
0.521150 + 0.853465i \(0.325503\pi\)
\(594\) 12.9753 14.7325i 0.532382 0.604484i
\(595\) −16.2473 28.1412i −0.666075 1.15368i
\(596\) −2.93221 −0.120108
\(597\) 44.5494 12.9509i 1.82328 0.530046i
\(598\) −15.0811 8.45788i −0.616713 0.345869i
\(599\) 2.74141 + 4.74826i 0.112011 + 0.194009i 0.916581 0.399849i \(-0.130938\pi\)
−0.804570 + 0.593858i \(0.797604\pi\)
\(600\) −5.49218 + 1.59663i −0.224217 + 0.0651820i
\(601\) 18.8262 0.767935 0.383967 0.923347i \(-0.374557\pi\)
0.383967 + 0.923347i \(0.374557\pi\)
\(602\) −19.0605 + 33.0138i −0.776850 + 1.34554i
\(603\) 20.9215 + 10.9285i 0.851987 + 0.445043i
\(604\) 3.09803 5.36595i 0.126057 0.218337i
\(605\) 4.71719 + 8.17042i 0.191781 + 0.332175i
\(606\) 10.1293 + 9.71040i 0.411476 + 0.394458i
\(607\) −37.1042 −1.50601 −0.753007 0.658012i \(-0.771398\pi\)
−0.753007 + 0.658012i \(0.771398\pi\)
\(608\) −2.90578 + 5.03295i −0.117845 + 0.204113i
\(609\) 13.6814 55.7410i 0.554397 2.25874i
\(610\) −3.95705 + 6.85382i −0.160216 + 0.277503i
\(611\) 33.0144 + 18.5153i 1.33562 + 0.749050i
\(612\) 6.27343 + 3.27699i 0.253589 + 0.132464i
\(613\) −17.9074 31.0165i −0.723272 1.25274i −0.959681 0.281090i \(-0.909304\pi\)
0.236409 0.971654i \(-0.424029\pi\)
\(614\) 27.3530 1.10388
\(615\) −5.00029 4.79349i −0.201631 0.193292i
\(616\) 9.03002 + 15.6404i 0.363830 + 0.630172i
\(617\) −41.7347 −1.68018 −0.840089 0.542449i \(-0.817497\pi\)
−0.840089 + 0.542449i \(0.817497\pi\)
\(618\) −5.47009 + 22.2864i −0.220039 + 0.896490i
\(619\) 1.82631 3.16326i 0.0734055 0.127142i −0.826986 0.562222i \(-0.809947\pi\)
0.900392 + 0.435080i \(0.143280\pi\)
\(620\) −1.44466 + 2.50222i −0.0580188 + 0.100492i
\(621\) 7.96003 + 23.6133i 0.319425 + 0.947570i
\(622\) 12.2548 + 21.2259i 0.491371 + 0.851079i
\(623\) 10.6640 18.4706i 0.427244 0.740008i
\(624\) 4.26507 4.56171i 0.170739 0.182615i
\(625\) 15.3033 + 26.5060i 0.612130 + 1.06024i
\(626\) −6.63578 + 11.4935i −0.265219 + 0.459373i
\(627\) 36.5185 10.6163i 1.45841 0.423973i
\(628\) −9.25665 16.0330i −0.369380 0.639786i
\(629\) 2.78750 0.111145
\(630\) 36.6242 + 19.1310i 1.45914 + 0.762197i
\(631\) −19.6832 + 34.0922i −0.783574 + 1.35719i 0.146273 + 0.989244i \(0.453272\pi\)
−0.929847 + 0.367946i \(0.880061\pi\)
\(632\) −3.65213 + 6.32568i −0.145274 + 0.251622i
\(633\) −19.3396 + 5.62219i −0.768679 + 0.223462i
\(634\) −0.149603 + 0.259121i −0.00594151 + 0.0102910i
\(635\) −1.80457 + 3.12560i −0.0716121 + 0.124036i
\(636\) −4.74042 4.54437i −0.187970 0.180196i
\(637\) 49.8438 + 27.9537i 1.97488 + 1.10757i
\(638\) −26.1911 −1.03691
\(639\) −12.4661 6.51178i −0.493151 0.257602i
\(640\) 1.44068 + 2.49532i 0.0569477 + 0.0986363i
\(641\) −20.2048 34.9958i −0.798043 1.38225i −0.920889 0.389825i \(-0.872536\pi\)
0.122847 0.992426i \(-0.460798\pi\)
\(642\) 1.09771 4.47232i 0.0433231 0.176508i
\(643\) 27.5359 1.08591 0.542955 0.839762i \(-0.317306\pi\)
0.542955 + 0.839762i \(0.317306\pi\)
\(644\) −22.9239 −0.903327
\(645\) 38.2176 11.1102i 1.50482 0.437464i
\(646\) 6.85546 + 11.8740i 0.269724 + 0.467176i
\(647\) −4.10212 7.10508i −0.161271 0.279330i 0.774054 0.633120i \(-0.218226\pi\)
−0.935325 + 0.353790i \(0.884893\pi\)
\(648\) −8.96793 + 0.759135i −0.352293 + 0.0298216i
\(649\) −4.17571 −0.163911
\(650\) 10.3846 + 5.82393i 0.407316 + 0.228433i
\(651\) 7.97229 2.31762i 0.312459 0.0908347i
\(652\) 4.35185 7.53762i 0.170431 0.295196i
\(653\) 6.96356 12.0612i 0.272505 0.471993i −0.696997 0.717074i \(-0.745481\pi\)
0.969503 + 0.245081i \(0.0788144\pi\)
\(654\) 3.17560 + 3.04427i 0.124176 + 0.119040i
\(655\) −13.0858 + 22.6652i −0.511303 + 0.885603i
\(656\) −0.693978 + 1.20200i −0.0270953 + 0.0469304i
\(657\) −1.34749 31.8936i −0.0525704 1.24429i
\(658\) 50.1831 1.95634
\(659\) −19.3822 33.5710i −0.755025 1.30774i −0.945362 0.326023i \(-0.894291\pi\)
0.190337 0.981719i \(-0.439042\pi\)
\(660\) 4.49455 18.3118i 0.174950 0.712786i
\(661\) 2.44512 4.23507i 0.0951040 0.164725i −0.814548 0.580096i \(-0.803015\pi\)
0.909652 + 0.415371i \(0.136348\pi\)
\(662\) −10.5581 18.2872i −0.410354 0.710754i
\(663\) −4.28917 14.0954i −0.166578 0.547419i
\(664\) 6.00937 10.4085i 0.233209 0.403929i
\(665\) 40.0221 + 69.3203i 1.55199 + 2.68812i
\(666\) −2.99213 + 1.90028i −0.115943 + 0.0736343i
\(667\) 16.6224 28.7908i 0.643620 1.11478i
\(668\) −8.94428 + 15.4919i −0.346064 + 0.599401i
\(669\) 16.7856 + 16.0914i 0.648970 + 0.622130i
\(670\) 22.6703 0.875829
\(671\) −5.18864 8.98698i −0.200305 0.346939i
\(672\) 1.97358 8.04080i 0.0761323 0.310181i
\(673\) −26.5143 −1.02205 −0.511026 0.859565i \(-0.670735\pi\)
−0.511026 + 0.859565i \(0.670735\pi\)
\(674\) −10.2316 17.7217i −0.394107 0.682613i
\(675\) −5.48112 16.2597i −0.210968 0.625835i
\(676\) −12.9959 + 0.324504i −0.499844 + 0.0124809i
\(677\) −19.5453 + 33.8535i −0.751187 + 1.30109i 0.196060 + 0.980592i \(0.437185\pi\)
−0.947248 + 0.320503i \(0.896148\pi\)
\(678\) 3.75876 + 3.60330i 0.144354 + 0.138384i
\(679\) −8.74450 + 15.1459i −0.335583 + 0.581247i
\(680\) 6.79783 0.260685
\(681\) 0.901794 3.67411i 0.0345568 0.140792i
\(682\) −1.89429 3.28100i −0.0725360 0.125636i
\(683\) −18.5335 + 32.1009i −0.709163 + 1.22831i 0.256005 + 0.966676i \(0.417594\pi\)
−0.965168 + 0.261631i \(0.915740\pi\)
\(684\) −15.4534 8.07221i −0.590874 0.308649i
\(685\) −17.0641 + 29.5558i −0.651985 + 1.12927i
\(686\) 42.3034 1.61515
\(687\) 7.91516 32.2482i 0.301982 1.23034i
\(688\) −3.98744 6.90645i −0.152020 0.263306i
\(689\) 0.170626 + 13.6688i 0.00650033 + 0.520740i
\(690\) 17.2769 + 16.5624i 0.657721 + 0.630520i
\(691\) 29.6106 1.12644 0.563220 0.826307i \(-0.309562\pi\)
0.563220 + 0.826307i \(0.309562\pi\)
\(692\) 9.18636 + 15.9112i 0.349213 + 0.604855i
\(693\) −45.7360 + 29.0465i −1.73737 + 1.10339i
\(694\) −23.5164 −0.892669
\(695\) 21.1121 + 36.5672i 0.800827 + 1.38707i
\(696\) 8.66761 + 8.30915i 0.328545 + 0.314957i
\(697\) 1.63727 + 2.83583i 0.0620160 + 0.107415i
\(698\) 9.29392 0.351780
\(699\) −4.49941 4.31333i −0.170183 0.163145i
\(700\) 15.7849 0.596614
\(701\) 6.38011 0.240973 0.120487 0.992715i \(-0.461555\pi\)
0.120487 + 0.992715i \(0.461555\pi\)
\(702\) 14.2130 + 12.2061i 0.536437 + 0.460691i
\(703\) −6.86647 −0.258974
\(704\) −3.77813 −0.142394
\(705\) −37.8213 36.2571i −1.42443 1.36552i
\(706\) 15.1687 0.570883
\(707\) −19.3628 33.5373i −0.728213 1.26130i
\(708\) 1.38190 + 1.32475i 0.0519350 + 0.0497871i
\(709\) −25.0857 43.4497i −0.942114 1.63179i −0.761430 0.648247i \(-0.775502\pi\)
−0.180684 0.983541i \(-0.557831\pi\)
\(710\) −13.5081 −0.506951
\(711\) −19.4226 10.1456i −0.728404 0.380489i
\(712\) 2.23089 + 3.86402i 0.0836062 + 0.144810i
\(713\) 4.80889 0.180095
\(714\) −14.1007 13.5175i −0.527704 0.505879i
\(715\) −33.7443 + 20.0480i −1.26197 + 0.749753i
\(716\) −3.28324 5.68673i −0.122700 0.212523i
\(717\) 1.34835 5.49348i 0.0503550 0.205158i
\(718\) 15.1803 0.566523
\(719\) 17.6035 30.4902i 0.656501 1.13709i −0.325015 0.945709i \(-0.605369\pi\)
0.981515 0.191384i \(-0.0612975\pi\)
\(720\) −7.29686 + 4.63417i −0.271938 + 0.172705i
\(721\) 31.6660 54.8471i 1.17930 2.04261i
\(722\) −7.38707 12.7948i −0.274918 0.476172i
\(723\) 8.94036 36.4251i 0.332496 1.35466i
\(724\) −0.608557 −0.0226169
\(725\) −11.4458 + 19.8248i −0.425087 + 0.736273i
\(726\) 4.09394 + 3.92462i 0.151940 + 0.145656i
\(727\) −17.1921 + 29.7775i −0.637618 + 1.10439i 0.348335 + 0.937370i \(0.386747\pi\)
−0.985954 + 0.167018i \(0.946586\pi\)
\(728\) −14.8173 + 8.80317i −0.549165 + 0.326267i
\(729\) −3.41103 26.7837i −0.126334 0.991988i
\(730\) −15.3298 26.5519i −0.567380 0.982731i
\(731\) −18.8147 −0.695888
\(732\) −1.13401 + 4.62023i −0.0419143 + 0.170769i
\(733\) 9.96336 + 17.2570i 0.368005 + 0.637404i 0.989254 0.146210i \(-0.0467076\pi\)
−0.621248 + 0.783614i \(0.713374\pi\)
\(734\) −12.3318 −0.455176
\(735\) −57.1010 54.7395i −2.10620 2.01910i
\(736\) 2.39782 4.15315i 0.0883849 0.153087i
\(737\) −14.8631 + 25.7436i −0.547488 + 0.948276i
\(738\) −3.69068 1.92786i −0.135856 0.0709656i
\(739\) 21.3790 + 37.0295i 0.786439 + 1.36215i 0.928135 + 0.372243i \(0.121411\pi\)
−0.141696 + 0.989910i \(0.545256\pi\)
\(740\) −1.70219 + 2.94828i −0.0625737 + 0.108381i
\(741\) 10.5655 + 34.7212i 0.388135 + 1.27551i
\(742\) 9.06159 + 15.6951i 0.332661 + 0.576186i
\(743\) −20.0243 + 34.6831i −0.734621 + 1.27240i 0.220269 + 0.975439i \(0.429307\pi\)
−0.954890 + 0.296961i \(0.904027\pi\)
\(744\) −0.414010 + 1.68677i −0.0151783 + 0.0618401i
\(745\) −4.22437 7.31682i −0.154769 0.268068i
\(746\) 23.2521 0.851320
\(747\) 31.9588 + 16.6939i 1.16931 + 0.610800i
\(748\) −4.45678 + 7.71938i −0.162956 + 0.282248i
\(749\) −6.35457 + 11.0064i −0.232191 + 0.402167i
\(750\) 6.11661 + 5.86364i 0.223347 + 0.214110i
\(751\) −5.85785 + 10.1461i −0.213756 + 0.370236i −0.952887 0.303326i \(-0.901903\pi\)
0.739131 + 0.673562i \(0.235236\pi\)
\(752\) −5.24912 + 9.09174i −0.191416 + 0.331542i
\(753\) −42.6810 + 12.4078i −1.55538 + 0.452164i
\(754\) −0.311981 24.9927i −0.0113617 0.910182i
\(755\) 17.8530 0.649739
\(756\) 24.3508 + 4.89720i 0.885631 + 0.178109i
\(757\) −0.283616 0.491238i −0.0103082 0.0178543i 0.860825 0.508901i \(-0.169948\pi\)
−0.871133 + 0.491046i \(0.836615\pi\)
\(758\) 13.8465 + 23.9829i 0.502928 + 0.871097i
\(759\) −30.1347 + 8.76045i −1.09382 + 0.317984i
\(760\) −16.7451 −0.607409
\(761\) 42.4202 1.53773 0.768866 0.639409i \(-0.220821\pi\)
0.768866 + 0.639409i \(0.220821\pi\)
\(762\) −0.517154 + 2.10700i −0.0187345 + 0.0763286i
\(763\) −6.07035 10.5142i −0.219761 0.380638i
\(764\) −5.76077 9.97795i −0.208417 0.360990i
\(765\) 0.860846 + 20.3753i 0.0311239 + 0.736671i
\(766\) 29.5563 1.06791
\(767\) −0.0497400 3.98466i −0.00179601 0.143878i
\(768\) 1.25033 + 1.19862i 0.0451173 + 0.0432514i
\(769\) −6.78331 + 11.7490i −0.244612 + 0.423681i −0.962023 0.272970i \(-0.911994\pi\)
0.717410 + 0.696651i \(0.245327\pi\)
\(770\) −26.0187 + 45.0656i −0.937647 + 1.62405i
\(771\) −1.88330 + 0.547492i −0.0678253 + 0.0197174i
\(772\) −8.76136 + 15.1751i −0.315328 + 0.546164i
\(773\) −26.4595 + 45.8292i −0.951682 + 1.64836i −0.209898 + 0.977723i \(0.567313\pi\)
−0.741784 + 0.670638i \(0.766020\pi\)
\(774\) 20.1959 12.8263i 0.725927 0.461030i
\(775\) −3.31131 −0.118946
\(776\) −1.82934 3.16850i −0.0656693 0.113743i
\(777\) 9.39347 2.73077i 0.336989 0.0979658i
\(778\) 4.56147 7.90070i 0.163537 0.283254i
\(779\) −4.03309 6.98551i −0.144500 0.250282i
\(780\) 17.5275 + 4.07078i 0.627586 + 0.145757i
\(781\) 8.85618 15.3394i 0.316899 0.548885i
\(782\) −5.65706 9.79832i −0.202296 0.350387i
\(783\) −23.8076 + 27.0319i −0.850814 + 0.966041i
\(784\) −7.92491 + 13.7263i −0.283032 + 0.490226i
\(785\) 26.6716 46.1966i 0.951952 1.64883i
\(786\) −3.75012 + 15.2789i −0.133762 + 0.544979i
\(787\) 32.9136 1.17324 0.586622 0.809861i \(-0.300458\pi\)
0.586622 + 0.809861i \(0.300458\pi\)
\(788\) −4.49370 7.78331i −0.160081 0.277269i
\(789\) 14.1530 + 13.5677i 0.503861 + 0.483022i
\(790\) −21.0461 −0.748788
\(791\) −7.18508 12.4449i −0.255472 0.442491i
\(792\) −0.478445 11.3243i −0.0170008 0.402391i
\(793\) 8.51399 5.05829i 0.302341 0.179625i
\(794\) 10.4876 18.1651i 0.372191 0.644654i
\(795\) 4.51026 18.3758i 0.159962 0.651724i
\(796\) 13.3927 23.1968i 0.474692 0.822190i
\(797\) 35.2580 1.24890 0.624451 0.781064i \(-0.285323\pi\)
0.624451 + 0.781064i \(0.285323\pi\)
\(798\) 34.7342 + 33.2977i 1.22958 + 1.17872i
\(799\) 12.3840 + 21.4497i 0.438114 + 0.758836i
\(800\) −1.65109 + 2.85977i −0.0583749 + 0.101108i
\(801\) −11.2992 + 7.17603i −0.399238 + 0.253553i
\(802\) 4.09832 7.09850i 0.144717 0.250657i
\(803\) 40.2019 1.41869
\(804\) 13.0859 3.80420i 0.461505 0.134164i
\(805\) −33.0259 57.2025i −1.16401 2.01612i
\(806\) 3.10832 1.84670i 0.109486 0.0650472i
\(807\) −6.39737 + 1.85978i −0.225198 + 0.0654672i
\(808\) 8.10134 0.285004
\(809\) −6.67685 11.5646i −0.234746 0.406591i 0.724453 0.689324i \(-0.242092\pi\)
−0.959199 + 0.282733i \(0.908759\pi\)
\(810\) −14.8142 21.2842i −0.520517 0.747851i
\(811\) −18.2295 −0.640124 −0.320062 0.947397i \(-0.603704\pi\)
−0.320062 + 0.947397i \(0.603704\pi\)
\(812\) −16.5687 28.6978i −0.581446 1.00709i
\(813\) 9.94410 40.5146i 0.348755 1.42091i
\(814\) −2.23197 3.86589i −0.0782305 0.135499i
\(815\) 25.0784 0.878458
\(816\) 3.92390 1.14071i 0.137364 0.0399330i
\(817\) 46.3464 1.62146
\(818\) −22.2821 −0.779075
\(819\) −28.2624 43.2974i −0.987567 1.51293i
\(820\) −3.99919 −0.139658
\(821\) −34.7480 −1.21271 −0.606357 0.795192i \(-0.707370\pi\)
−0.606357 + 0.795192i \(0.707370\pi\)
\(822\) −4.89022 + 19.9239i −0.170566 + 0.694926i
\(823\) 16.1729 0.563753 0.281877 0.959451i \(-0.409043\pi\)
0.281877 + 0.959451i \(0.409043\pi\)
\(824\) 6.62448 + 11.4739i 0.230775 + 0.399714i
\(825\) 20.7502 6.03227i 0.722429 0.210017i
\(826\) −2.64159 4.57536i −0.0919125 0.159197i
\(827\) 16.8548 0.586099 0.293049 0.956097i \(-0.405330\pi\)
0.293049 + 0.956097i \(0.405330\pi\)
\(828\) 12.7520 + 6.66112i 0.443162 + 0.231490i
\(829\) 19.5455 + 33.8538i 0.678843 + 1.17579i 0.975330 + 0.220753i \(0.0708516\pi\)
−0.296487 + 0.955037i \(0.595815\pi\)
\(830\) 34.6302 1.20203
\(831\) 3.67667 14.9796i 0.127542 0.519637i
\(832\) −0.0450041 3.60527i −0.00156024 0.124990i
\(833\) 18.6968 + 32.3839i 0.647807 + 1.12204i
\(834\) 18.3227 + 17.5649i 0.634462 + 0.608222i
\(835\) −51.5432 −1.78373
\(836\) 10.9784 19.0152i 0.379696 0.657653i
\(837\) −5.10823 1.02732i −0.176566 0.0355093i
\(838\) −14.2408 + 24.6658i −0.491940 + 0.852065i
\(839\) 16.2196 + 28.0931i 0.559962 + 0.969882i 0.997499 + 0.0706819i \(0.0225175\pi\)
−0.437537 + 0.899200i \(0.644149\pi\)
\(840\) 22.9077 6.65947i 0.790390 0.229774i
\(841\) 19.0565 0.657120
\(842\) 5.96859 10.3379i 0.205691 0.356268i
\(843\) 23.1242 6.72243i 0.796441 0.231533i
\(844\) −5.81398 + 10.0701i −0.200125 + 0.346627i
\(845\) −19.5327 31.9616i −0.671945 1.09951i
\(846\) −27.9156 14.5820i −0.959759 0.501339i
\(847\) −7.82580 13.5547i −0.268898 0.465744i
\(848\) −3.79134 −0.130195
\(849\) 29.4282 8.55505i 1.00997 0.293609i
\(850\) 3.89534 + 6.74693i 0.133609 + 0.231418i
\(851\) 5.66615 0.194233
\(852\) −7.79727 + 2.26674i −0.267130 + 0.0776572i
\(853\) −20.6426 + 35.7540i −0.706789 + 1.22419i 0.259254 + 0.965809i \(0.416523\pi\)
−0.966042 + 0.258384i \(0.916810\pi\)
\(854\) 6.56473 11.3705i 0.224641 0.389089i
\(855\) −2.12052 50.1906i −0.0725204 1.71648i
\(856\) −1.32937 2.30253i −0.0454368 0.0786989i
\(857\) −14.5384 + 25.1813i −0.496624 + 0.860178i −0.999992 0.00389422i \(-0.998760\pi\)
0.503369 + 0.864072i \(0.332094\pi\)
\(858\) −16.1140 + 17.2347i −0.550123 + 0.588385i
\(859\) 22.3386 + 38.6915i 0.762181 + 1.32014i 0.941724 + 0.336387i \(0.109205\pi\)
−0.179542 + 0.983750i \(0.557462\pi\)
\(860\) 11.4892 19.8999i 0.391779 0.678581i
\(861\) 8.29546 + 7.95238i 0.282709 + 0.271016i
\(862\) −2.23690 3.87443i −0.0761892 0.131964i
\(863\) 47.5211 1.61764 0.808819 0.588057i \(-0.200107\pi\)
0.808819 + 0.588057i \(0.200107\pi\)
\(864\) −3.43431 + 3.89943i −0.116838 + 0.132661i
\(865\) −26.4691 + 45.8459i −0.899977 + 1.55881i
\(866\) 5.29421 9.16984i 0.179905 0.311604i
\(867\) −4.72072 + 19.2333i −0.160324 + 0.653197i
\(868\) 2.39668 4.15117i 0.0813486 0.140900i
\(869\) 13.7982 23.8992i 0.468073 0.810726i
\(870\) −8.24678 + 33.5993i −0.279592 + 1.13912i
\(871\) −24.7427 13.8764i −0.838376 0.470183i
\(872\) 2.53982 0.0860090
\(873\) 9.26538 5.88436i 0.313586 0.199155i
\(874\) 13.9351 + 24.1362i 0.471360 + 0.816420i
\(875\) −11.6923 20.2516i −0.395270 0.684628i
\(876\) −13.3043 12.7541i −0.449511 0.430921i
\(877\) 3.79752 0.128233 0.0641165 0.997942i \(-0.479577\pi\)
0.0641165 + 0.997942i \(0.479577\pi\)
\(878\) −0.183907 −0.00620655
\(879\) 10.6097 + 10.1709i 0.357855 + 0.343055i
\(880\) −5.44306 9.42766i −0.183486 0.317806i
\(881\) 2.67642 + 4.63569i 0.0901708 + 0.156180i 0.907583 0.419873i \(-0.137925\pi\)
−0.817412 + 0.576053i \(0.804592\pi\)
\(882\) −42.1459 22.0153i −1.41913 0.741293i
\(883\) −31.8747 −1.07267 −0.536335 0.844005i \(-0.680192\pi\)
−0.536335 + 0.844005i \(0.680192\pi\)
\(884\) −7.41928 4.16092i −0.249537 0.139947i
\(885\) −1.31481 + 5.35682i −0.0441967 + 0.180068i
\(886\) 5.46285 9.46193i 0.183528 0.317880i
\(887\) 21.4331 37.1232i 0.719653 1.24648i −0.241484 0.970405i \(-0.577634\pi\)
0.961137 0.276071i \(-0.0890326\pi\)
\(888\) −0.487813 + 1.98746i −0.0163699 + 0.0666949i
\(889\) 2.99377 5.18536i 0.100408 0.173911i
\(890\) −6.42798 + 11.1336i −0.215466 + 0.373199i
\(891\) 33.8820 2.86811i 1.13509 0.0960854i
\(892\) 13.4250 0.449502
\(893\) −30.5055 52.8371i −1.02083 1.76813i
\(894\) −3.66623 3.51460i −0.122617 0.117546i
\(895\) 9.46016 16.3855i 0.316218 0.547706i
\(896\) −2.39007 4.13973i −0.0798468 0.138299i
\(897\) −8.71859 28.6516i −0.291105 0.956650i
\(898\) −13.8839 + 24.0476i −0.463312 + 0.802479i
\(899\) 3.47572 + 6.02012i 0.115922 + 0.200782i
\(900\) −8.78076 4.58671i −0.292692 0.152890i
\(901\) −4.47237 + 7.74636i −0.148996 + 0.258069i
\(902\) 2.62194 4.54133i 0.0873011 0.151210i
\(903\) −63.4029 + 18.4318i −2.10991 + 0.613372i
\(904\) 3.00622 0.0999853
\(905\) −0.876734 1.51855i −0.0291436 0.0504782i
\(906\) 10.3053 2.99584i 0.342370 0.0995301i
\(907\) −2.16512 −0.0718915 −0.0359457 0.999354i \(-0.511444\pi\)
−0.0359457 + 0.999354i \(0.511444\pi\)
\(908\) −1.09211 1.89158i −0.0362428 0.0627744i
\(909\) 1.02592 + 24.2824i 0.0340275 + 0.805395i
\(910\) −43.3136 24.2914i −1.43583 0.805252i
\(911\) 9.48786 16.4335i 0.314347 0.544465i −0.664952 0.746887i \(-0.731548\pi\)
0.979298 + 0.202422i \(0.0648811\pi\)
\(912\) −9.66575 + 2.80992i −0.320065 + 0.0930459i
\(913\) −22.7042 + 39.3248i −0.751399 + 1.30146i
\(914\) −20.8576 −0.689907
\(915\) −13.1627 + 3.82652i −0.435146 + 0.126501i
\(916\) −9.58555 16.6027i −0.316716 0.548567i
\(917\) 21.7092 37.6015i 0.716902 1.24171i
\(918\) 3.91599 + 11.6167i 0.129247 + 0.383410i
\(919\) 1.08251 1.87496i 0.0357087 0.0618493i −0.847619 0.530606i \(-0.821964\pi\)
0.883327 + 0.468756i \(0.155298\pi\)
\(920\) 13.8179 0.455564
\(921\) 34.2002 + 32.7858i 1.12693 + 1.08033i
\(922\) 2.03096 + 3.51772i 0.0668860 + 0.115850i
\(923\) 14.7430 + 8.26826i 0.485272 + 0.272153i
\(924\) −7.45643 + 30.3792i −0.245299 + 0.999403i
\(925\) −3.90160 −0.128284
\(926\) −6.80110 11.7799i −0.223498 0.387110i
\(927\) −33.5522 + 21.3087i −1.10200 + 0.699871i
\(928\) 6.93228 0.227563
\(929\) −3.21922 5.57585i −0.105619 0.182938i 0.808372 0.588672i \(-0.200349\pi\)
−0.913991 + 0.405734i \(0.867016\pi\)
\(930\) −4.80549 + 1.39700i −0.157578 + 0.0458095i
\(931\) −46.0560 79.7713i −1.50942 2.61440i
\(932\) −3.59859 −0.117876
\(933\) −10.1192 + 41.2280i −0.331288 + 1.34974i
\(934\) −24.3640 −0.797215
\(935\) −25.6831 −0.839928
\(936\) 10.8005 0.591447i 0.353024 0.0193320i
\(937\) −30.2446 −0.988048 −0.494024 0.869448i \(-0.664474\pi\)
−0.494024 + 0.869448i \(0.664474\pi\)
\(938\) −37.6099 −1.22801
\(939\) −22.0732 + 6.41688i −0.720332 + 0.209407i
\(940\) −30.2491 −0.986617
\(941\) 22.9105 + 39.6821i 0.746860 + 1.29360i 0.949321 + 0.314310i \(0.101773\pi\)
−0.202460 + 0.979291i \(0.564894\pi\)
\(942\) 7.64357 31.1416i 0.249041 1.01465i
\(943\) 3.32807 + 5.76439i 0.108377 + 0.187714i
\(944\) 1.10523 0.0359722
\(945\) 22.8615 + 67.8184i 0.743686 + 2.20613i
\(946\) 15.0651 + 26.0935i 0.489808 + 0.848372i
\(947\) −34.6037 −1.12447 −0.562234 0.826978i \(-0.690058\pi\)
−0.562234 + 0.826978i \(0.690058\pi\)
\(948\) −12.1484 + 3.53166i −0.394562 + 0.114703i
\(949\) 0.478874 + 38.3625i 0.0155449 + 1.24530i
\(950\) −9.59541 16.6197i −0.311316 0.539215i
\(951\) −0.497640 + 0.144668i −0.0161371 + 0.00469120i
\(952\) −11.2776 −0.365508
\(953\) −20.2595 + 35.0905i −0.656270 + 1.13669i 0.325303 + 0.945610i \(0.394534\pi\)
−0.981574 + 0.191084i \(0.938800\pi\)
\(954\) −0.480118 11.3639i −0.0155444 0.367920i
\(955\) 16.5988 28.7500i 0.537125 0.930328i
\(956\) −1.63290 2.82827i −0.0528118 0.0914727i
\(957\) −32.7474 31.3931i −1.05857 1.01479i
\(958\) −14.1172 −0.456105
\(959\) 28.3092 49.0330i 0.914152 1.58336i
\(960\) −1.18962 + 4.84679i −0.0383948 + 0.156429i
\(961\) 14.9972 25.9760i 0.483782 0.837934i
\(962\) 3.66242 2.17590i 0.118081 0.0701538i
\(963\) 6.73309 4.27613i 0.216971 0.137796i
\(964\) −10.8271 18.7531i −0.348718 0.603997i
\(965\) −50.4891 −1.62530
\(966\) −28.6623 27.4769i −0.922196 0.884056i
\(967\) −0.985525 1.70698i −0.0316924 0.0548928i 0.849744 0.527195i \(-0.176756\pi\)
−0.881437 + 0.472302i \(0.843423\pi\)
\(968\) 3.27429 0.105240
\(969\) −5.66081 + 23.0634i −0.181851 + 0.740905i
\(970\) 5.27096 9.12957i 0.169240 0.293133i
\(971\) −28.1892 + 48.8252i −0.904635 + 1.56687i −0.0832293 + 0.996530i \(0.526523\pi\)
−0.821406 + 0.570344i \(0.806810\pi\)
\(972\) −12.1228 9.79994i −0.388837 0.314333i
\(973\) −35.0249 60.6648i −1.12285 1.94483i
\(974\) −5.30269 + 9.18453i −0.169909 + 0.294291i
\(975\) 6.00344 + 19.7289i 0.192264 + 0.631832i
\(976\) 1.37333 + 2.37868i 0.0439593 + 0.0761398i
\(977\) 0.714119 1.23689i 0.0228467 0.0395716i −0.854376 0.519655i \(-0.826060\pi\)
0.877223 + 0.480084i \(0.159394\pi\)
\(978\) 14.4759 4.20829i 0.462890 0.134566i
\(979\) −8.42861 14.5988i −0.269379 0.466579i
\(980\) −45.6689 −1.45884
\(981\) 0.321631 + 7.61266i 0.0102689 + 0.243053i
\(982\) −1.19842 + 2.07572i −0.0382430 + 0.0662389i
\(983\) −24.8037 + 42.9613i −0.791115 + 1.37025i 0.134162 + 0.990959i \(0.457166\pi\)
−0.925277 + 0.379292i \(0.876168\pi\)
\(984\) −2.30844 + 0.671086i −0.0735905 + 0.0213934i
\(985\) 12.9479 22.4265i 0.412555 0.714566i
\(986\) 8.17749 14.1638i 0.260424 0.451068i
\(987\) 62.7453 + 60.1503i 1.99721 + 1.91461i
\(988\) 18.2759 + 10.2496i 0.581435 + 0.326083i
\(989\) −38.2447 −1.21611
\(990\) 27.5685 17.5085i 0.876184 0.556457i
\(991\) 1.00008 + 1.73218i 0.0317685 + 0.0550246i 0.881473 0.472235i \(-0.156553\pi\)
−0.849704 + 0.527260i \(0.823219\pi\)
\(992\) 0.501382 + 0.868419i 0.0159189 + 0.0275723i
\(993\) 8.71826 35.5202i 0.276666 1.12720i
\(994\) 22.4099 0.710800
\(995\) 77.1781 2.44671
\(996\) 19.9895 5.81114i 0.633392 0.184133i
\(997\) −10.8344 18.7657i −0.343127 0.594314i 0.641884 0.766802i \(-0.278153\pi\)
−0.985012 + 0.172487i \(0.944820\pi\)
\(998\) −8.30677 14.3877i −0.262946 0.455436i
\(999\) −6.01885 1.21045i −0.190428 0.0382970i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.f.d.133.5 12
3.2 odd 2 702.2.f.c.289.1 12
9.4 even 3 234.2.g.c.211.3 yes 12
9.5 odd 6 702.2.g.d.523.1 12
13.9 even 3 234.2.g.c.61.3 yes 12
39.35 odd 6 702.2.g.d.451.1 12
117.22 even 3 inner 234.2.f.d.139.5 yes 12
117.113 odd 6 702.2.f.c.685.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.f.d.133.5 12 1.1 even 1 trivial
234.2.f.d.139.5 yes 12 117.22 even 3 inner
234.2.g.c.61.3 yes 12 13.9 even 3
234.2.g.c.211.3 yes 12 9.4 even 3
702.2.f.c.289.1 12 3.2 odd 2
702.2.f.c.685.1 12 117.113 odd 6
702.2.g.d.451.1 12 39.35 odd 6
702.2.g.d.523.1 12 9.5 odd 6