Defining parameters
| Level: | \( N \) | = | \( 234 = 2 \cdot 3^{2} \cdot 13 \) | 
| Weight: | \( k \) | = | \( 2 \) | 
| Nonzero newspaces: | \( 15 \) | ||
| Newform subspaces: | \( 37 \) | ||
| Sturm bound: | \(6048\) | ||
| Trace bound: | \(11\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(234))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1704 | 395 | 1309 | 
| Cusp forms | 1321 | 395 | 926 | 
| Eisenstein series | 383 | 0 | 383 | 
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(234))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(234))\) into lower level spaces
  \( S_{2}^{\mathrm{old}}(\Gamma_1(234)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(117))\)\(^{\oplus 2}\)