Properties

Label 234.2.f.d
Level $234$
Weight $2$
Character orbit 234.f
Analytic conductor $1.868$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,2,Mod(133,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.133"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: 12.0.157365759791601.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{10} + 11x^{8} - 6x^{7} - 17x^{6} - 12x^{5} + 44x^{4} + 16x^{2} - 96x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\beta_{10} + \beta_{9}) q^{3} + q^{4} + ( - \beta_{7} - \beta_{6} + \beta_{5} + \cdots - 1) q^{5} + (\beta_{10} + \beta_{9}) q^{6} + ( - \beta_{10} - \beta_{9} - \beta_{8} + \cdots - 1) q^{7}+ \cdots + ( - 3 \beta_{10} - 3 \beta_{9} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{2} + 12 q^{4} + q^{5} - 5 q^{7} + 12 q^{8} + 12 q^{9} + q^{10} - 16 q^{11} - q^{13} - 5 q^{14} - 3 q^{15} + 12 q^{16} + 3 q^{17} + 12 q^{18} - 7 q^{19} + q^{20} + 18 q^{21} - 16 q^{22}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 3x^{11} + x^{10} + 11x^{8} - 6x^{7} - 17x^{6} - 12x^{5} + 44x^{4} + 16x^{2} - 96x + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 5 \nu^{11} - 3 \nu^{10} - 7 \nu^{9} - 20 \nu^{8} + 23 \nu^{7} + 46 \nu^{6} + 11 \nu^{5} - 96 \nu^{4} + \cdots - 128 ) / 32 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3 \nu^{11} - 9 \nu^{10} - 9 \nu^{9} + 4 \nu^{8} + 53 \nu^{7} + 14 \nu^{6} - 87 \nu^{5} - 124 \nu^{4} + \cdots - 256 ) / 32 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 5 \nu^{11} + 5 \nu^{10} + 7 \nu^{9} + 12 \nu^{8} - 25 \nu^{7} - 32 \nu^{6} + 11 \nu^{5} + 82 \nu^{4} + \cdots + 128 ) / 16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 5 \nu^{11} + 11 \nu^{10} + 3 \nu^{9} - 51 \nu^{7} - 6 \nu^{6} + 81 \nu^{5} + 128 \nu^{4} + \cdots + 352 ) / 32 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 5 \nu^{11} + 10 \nu^{10} + 6 \nu^{9} + 3 \nu^{8} - 55 \nu^{7} - 21 \nu^{6} + 79 \nu^{5} + 141 \nu^{4} + \cdots + 320 ) / 16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 7 \nu^{11} + 21 \nu^{10} + \nu^{9} - 8 \nu^{8} - 101 \nu^{7} + 10 \nu^{6} + 191 \nu^{5} + 212 \nu^{4} + \cdots + 736 ) / 32 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 5 \nu^{11} - 12 \nu^{10} - 6 \nu^{9} + \nu^{8} + 61 \nu^{7} + 11 \nu^{6} - 93 \nu^{5} - 139 \nu^{4} + \cdots - 352 ) / 16 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 19 \nu^{11} + 25 \nu^{10} + 29 \nu^{9} + 40 \nu^{8} - 153 \nu^{7} - 134 \nu^{6} + 131 \nu^{5} + \cdots + 736 ) / 32 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 4 \nu^{11} + 7 \nu^{10} + 5 \nu^{9} + 7 \nu^{8} - 36 \nu^{7} - 25 \nu^{6} + 36 \nu^{5} + 103 \nu^{4} + \cdots + 184 ) / 8 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 17 \nu^{11} + 29 \nu^{10} + 21 \nu^{9} + 30 \nu^{8} - 151 \nu^{7} - 108 \nu^{6} + 145 \nu^{5} + \cdots + 768 ) / 32 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 7 \nu^{11} - 10 \nu^{10} - 10 \nu^{9} - 15 \nu^{8} + 55 \nu^{7} + 49 \nu^{6} - 45 \nu^{5} - 165 \nu^{4} + \cdots - 256 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{11} - 2\beta_{9} - \beta_{8} + \beta_{4} - \beta_{3} + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 2 \beta_{11} - \beta_{10} - \beta_{9} - 2 \beta_{8} - \beta_{7} - \beta_{6} + 2 \beta_{5} - \beta_{3} + \cdots + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{11} - 2\beta_{10} + \beta_{8} + \beta_{6} - 2\beta_{5} - \beta_{3} + \beta_{2} + 3\beta _1 + 6 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - \beta_{11} - 2 \beta_{10} + \beta_{9} - \beta_{8} + \beta_{7} - 2 \beta_{6} + \beta_{5} + 6 \beta_{4} + \cdots - 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 6 \beta_{11} - 5 \beta_{10} - \beta_{9} - 2 \beta_{8} + 4 \beta_{7} + 4 \beta_{6} + \beta_{5} + \cdots + 3 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -3\beta_{10} + 2\beta_{9} + \beta_{8} - 2\beta_{7} - 3\beta_{5} + 2\beta_{4} - \beta_{3} - 2\beta _1 - 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 6 \beta_{11} - 4 \beta_{10} + 13 \beta_{9} + 3 \beta_{8} + 16 \beta_{7} + 5 \beta_{6} - 4 \beta_{5} + \cdots - 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 17 \beta_{11} - 10 \beta_{10} - 7 \beta_{9} - 11 \beta_{8} + 2 \beta_{7} + 14 \beta_{6} - 16 \beta_{5} + \cdots - 25 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 17 \beta_{11} - 13 \beta_{10} + 27 \beta_{9} + 9 \beta_{8} - 4 \beta_{7} + 2 \beta_{6} - 19 \beta_{5} + \cdots - 8 ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - \beta_{11} + 10 \beta_{10} + 13 \beta_{9} - 4 \beta_{8} + 25 \beta_{7} + 22 \beta_{6} - 47 \beta_{5} + \cdots + 4 ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 16 \beta_{11} + 12 \beta_{10} - 4 \beta_{9} - 46 \beta_{8} + 11 \beta_{7} + 9 \beta_{6} - 15 \beta_{5} + \cdots - 25 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1 - \beta_{1}\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
133.1
1.34059 + 0.450356i
−0.681625 1.23911i
−1.29709 0.563529i
1.25202 0.657613i
1.40369 0.172227i
−0.517581 + 1.31610i
1.34059 0.450356i
−0.681625 + 1.23911i
−1.29709 + 0.563529i
1.25202 + 0.657613i
1.40369 + 0.172227i
−0.517581 1.31610i
1.00000 −1.66659 0.471659i 1.00000 1.09436 + 1.89549i −1.66659 0.471659i 0.790433 + 1.36907i 1.00000 2.55508 + 1.57213i 1.09436 + 1.89549i
133.2 1.00000 −1.65432 + 0.513065i 1.00000 −1.57078 2.72066i −1.65432 + 0.513065i −2.01009 3.48158i 1.00000 2.47353 1.69754i −1.57078 2.72066i
133.3 1.00000 −0.801583 + 1.53540i 1.00000 0.864869 + 1.49800i −0.801583 + 1.53540i 0.163072 + 0.282449i 1.00000 −1.71493 2.46151i 0.864869 + 1.49800i
133.4 1.00000 1.15754 1.28845i 1.00000 0.635090 + 1.10001i 1.15754 1.28845i 0.919212 + 1.59212i 1.00000 −0.320191 2.98286i 0.635090 + 1.10001i
133.5 1.00000 1.25033 + 1.19862i 1.00000 1.44068 + 2.49532i 1.25033 + 1.19862i −2.39007 4.13973i 1.00000 0.126635 + 2.99733i 1.44068 + 2.49532i
133.6 1.00000 1.71463 + 0.245071i 1.00000 −1.96422 3.40213i 1.71463 + 0.245071i 0.0274495 + 0.0475438i 1.00000 2.87988 + 0.840411i −1.96422 3.40213i
139.1 1.00000 −1.66659 + 0.471659i 1.00000 1.09436 1.89549i −1.66659 + 0.471659i 0.790433 1.36907i 1.00000 2.55508 1.57213i 1.09436 1.89549i
139.2 1.00000 −1.65432 0.513065i 1.00000 −1.57078 + 2.72066i −1.65432 0.513065i −2.01009 + 3.48158i 1.00000 2.47353 + 1.69754i −1.57078 + 2.72066i
139.3 1.00000 −0.801583 1.53540i 1.00000 0.864869 1.49800i −0.801583 1.53540i 0.163072 0.282449i 1.00000 −1.71493 + 2.46151i 0.864869 1.49800i
139.4 1.00000 1.15754 + 1.28845i 1.00000 0.635090 1.10001i 1.15754 + 1.28845i 0.919212 1.59212i 1.00000 −0.320191 + 2.98286i 0.635090 1.10001i
139.5 1.00000 1.25033 1.19862i 1.00000 1.44068 2.49532i 1.25033 1.19862i −2.39007 + 4.13973i 1.00000 0.126635 2.99733i 1.44068 2.49532i
139.6 1.00000 1.71463 0.245071i 1.00000 −1.96422 + 3.40213i 1.71463 0.245071i 0.0274495 0.0475438i 1.00000 2.87988 0.840411i −1.96422 + 3.40213i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 133.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
117.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.2.f.d 12
3.b odd 2 1 702.2.f.c 12
9.c even 3 1 234.2.g.c yes 12
9.d odd 6 1 702.2.g.d 12
13.c even 3 1 234.2.g.c yes 12
39.i odd 6 1 702.2.g.d 12
117.h even 3 1 inner 234.2.f.d 12
117.k odd 6 1 702.2.f.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
234.2.f.d 12 1.a even 1 1 trivial
234.2.f.d 12 117.h even 3 1 inner
234.2.g.c yes 12 9.c even 3 1
234.2.g.c yes 12 13.c even 3 1
702.2.f.c 12 3.b odd 2 1
702.2.f.c 12 117.k odd 6 1
702.2.g.d 12 9.d odd 6 1
702.2.g.d 12 39.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} - T_{5}^{11} + 22 T_{5}^{10} - 55 T_{5}^{9} + 385 T_{5}^{8} - 883 T_{5}^{7} + 3487 T_{5}^{6} + \cdots + 29241 \) acting on \(S_{2}^{\mathrm{new}}(234, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{12} \) Copy content Toggle raw display
$3$ \( T^{12} - 6 T^{10} + \cdots + 729 \) Copy content Toggle raw display
$5$ \( T^{12} - T^{11} + \cdots + 29241 \) Copy content Toggle raw display
$7$ \( T^{12} + 5 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T^{6} + 8 T^{5} + 6 T^{4} + \cdots + 9)^{2} \) Copy content Toggle raw display
$13$ \( T^{12} + T^{11} + \cdots + 4826809 \) Copy content Toggle raw display
$17$ \( T^{12} - 3 T^{11} + \cdots + 69605649 \) Copy content Toggle raw display
$19$ \( T^{12} + 7 T^{11} + \cdots + 77841 \) Copy content Toggle raw display
$23$ \( T^{12} - T^{11} + \cdots + 6561 \) Copy content Toggle raw display
$29$ \( (T^{6} + T^{5} - 84 T^{4} + \cdots - 4113)^{2} \) Copy content Toggle raw display
$31$ \( T^{12} + 14 T^{11} + \cdots + 657721 \) Copy content Toggle raw display
$37$ \( T^{12} + 7 T^{11} + \cdots + 81 \) Copy content Toggle raw display
$41$ \( T^{12} - 9 T^{11} + \cdots + 5517801 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 324684361 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 189692478369 \) Copy content Toggle raw display
$53$ \( (T^{6} + 6 T^{5} + \cdots + 8667)^{2} \) Copy content Toggle raw display
$59$ \( (T^{6} + 4 T^{5} + \cdots + 927)^{2} \) Copy content Toggle raw display
$61$ \( T^{12} - 28 T^{11} + \cdots + 97871449 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 5143614961 \) Copy content Toggle raw display
$71$ \( T^{12} + 13 T^{11} + \cdots + 431649 \) Copy content Toggle raw display
$73$ \( (T^{6} - 27 T^{5} + \cdots - 1403)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} + 6 T^{11} + \cdots + 28270489 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 3799612881 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 89771545161 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 3329636209 \) Copy content Toggle raw display
show more
show less