Properties

Label 234.2.f
Level $234$
Weight $2$
Character orbit 234.f
Rep. character $\chi_{234}(133,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $28$
Newform subspaces $4$
Sturm bound $84$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.f (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(84\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(234, [\chi])\).

Total New Old
Modular forms 92 28 64
Cusp forms 76 28 48
Eisenstein series 16 0 16

Trace form

\( 28 q + 28 q^{4} - 4 q^{7} + 4 q^{9} - 16 q^{11} - 2 q^{13} - 8 q^{14} - 4 q^{15} + 28 q^{16} - 8 q^{17} + 8 q^{18} + 2 q^{19} + 20 q^{21} - 4 q^{23} - 14 q^{25} + 4 q^{26} - 18 q^{27} - 4 q^{28} + 20 q^{29}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(234, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
234.2.f.a 234.f 117.h $2$ $1.868$ \(\Q(\sqrt{-3}) \) None 234.2.f.a \(-2\) \(0\) \(3\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(1-2\zeta_{6})q^{3}+q^{4}+(3-3\zeta_{6})q^{5}+\cdots\)
234.2.f.b 234.f 117.h $2$ $1.868$ \(\Q(\sqrt{-3}) \) None 234.2.f.b \(2\) \(0\) \(-1\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(-1+2\zeta_{6})q^{3}+q^{4}+(-1+\cdots)q^{5}+\cdots\)
234.2.f.c 234.f 117.h $12$ $1.868$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 234.2.f.c \(-12\) \(0\) \(-3\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(-\beta _{3}-\beta _{6})q^{3}+q^{4}+(\beta _{1}+\beta _{3}+\cdots)q^{5}+\cdots\)
234.2.f.d 234.f 117.h $12$ $1.868$ 12.0.\(\cdots\).1 None 234.2.f.d \(12\) \(0\) \(1\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(\beta _{9}+\beta _{10})q^{3}+q^{4}+(-1+\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(234, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)