Defining parameters
Level: | \( N \) | \(=\) | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 234.f (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 117 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(84\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(234, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 92 | 28 | 64 |
Cusp forms | 76 | 28 | 48 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(234, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
234.2.f.a | $2$ | $1.868$ | \(\Q(\sqrt{-3}) \) | None | \(-2\) | \(0\) | \(3\) | \(1\) | \(q-q^{2}+(1-2\zeta_{6})q^{3}+q^{4}+(3-3\zeta_{6})q^{5}+\cdots\) |
234.2.f.b | $2$ | $1.868$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(0\) | \(-1\) | \(-1\) | \(q+q^{2}+(-1+2\zeta_{6})q^{3}+q^{4}+(-1+\cdots)q^{5}+\cdots\) |
234.2.f.c | $12$ | $1.868$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(-3\) | \(1\) | \(q-q^{2}+(-\beta _{3}-\beta _{6})q^{3}+q^{4}+(\beta _{1}+\beta _{3}+\cdots)q^{5}+\cdots\) |
234.2.f.d | $12$ | $1.868$ | 12.0.\(\cdots\).1 | None | \(12\) | \(0\) | \(1\) | \(-5\) | \(q+q^{2}+(\beta _{9}+\beta _{10})q^{3}+q^{4}+(-1+\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(234, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)