Properties

Label 234.2.f.d.133.1
Level $234$
Weight $2$
Character 234.133
Analytic conductor $1.868$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,2,Mod(133,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.133"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: 12.0.157365759791601.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{10} + 11x^{8} - 6x^{7} - 17x^{6} - 12x^{5} + 44x^{4} + 16x^{2} - 96x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 133.1
Root \(1.34059 + 0.450356i\) of defining polynomial
Character \(\chi\) \(=\) 234.133
Dual form 234.2.f.d.139.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-1.66659 - 0.471659i) q^{3} +1.00000 q^{4} +(1.09436 + 1.89549i) q^{5} +(-1.66659 - 0.471659i) q^{6} +(0.790433 + 1.36907i) q^{7} +1.00000 q^{8} +(2.55508 + 1.57213i) q^{9} +(1.09436 + 1.89549i) q^{10} -0.502937 q^{11} +(-1.66659 - 0.471659i) q^{12} +(3.40297 - 1.19155i) q^{13} +(0.790433 + 1.36907i) q^{14} +(-0.929831 - 3.67517i) q^{15} +1.00000 q^{16} +(1.89590 - 3.28380i) q^{17} +(2.55508 + 1.57213i) q^{18} +(-0.516111 + 0.893931i) q^{19} +(1.09436 + 1.89549i) q^{20} +(-0.671597 - 2.65450i) q^{21} -0.502937 q^{22} +(-4.21490 + 7.30043i) q^{23} +(-1.66659 - 0.471659i) q^{24} +(0.104754 - 0.181438i) q^{25} +(3.40297 - 1.19155i) q^{26} +(-3.51677 - 3.82523i) q^{27} +(0.790433 + 1.36907i) q^{28} -5.21474 q^{29} +(-0.929831 - 3.67517i) q^{30} +(-2.50207 - 4.33370i) q^{31} +1.00000 q^{32} +(0.838191 + 0.237215i) q^{33} +(1.89590 - 3.28380i) q^{34} +(-1.73004 + 2.99651i) q^{35} +(2.55508 + 1.57213i) q^{36} +(0.0315070 + 0.0545717i) q^{37} +(-0.516111 + 0.893931i) q^{38} +(-6.23338 + 0.380797i) q^{39} +(1.09436 + 1.89549i) q^{40} +(-2.71729 + 4.70648i) q^{41} +(-0.671597 - 2.65450i) q^{42} +(-4.98693 - 8.63762i) q^{43} -0.502937 q^{44} +(-0.183778 + 6.56359i) q^{45} +(-4.21490 + 7.30043i) q^{46} +(4.15412 - 7.19514i) q^{47} +(-1.66659 - 0.471659i) q^{48} +(2.25043 - 3.89786i) q^{49} +(0.104754 - 0.181438i) q^{50} +(-4.70853 + 4.57854i) q^{51} +(3.40297 - 1.19155i) q^{52} -9.99466 q^{53} +(-3.51677 - 3.82523i) q^{54} +(-0.550393 - 0.953309i) q^{55} +(0.790433 + 1.36907i) q^{56} +(1.28178 - 1.24639i) q^{57} -5.21474 q^{58} +0.601981 q^{59} +(-0.929831 - 3.67517i) q^{60} +(1.43215 + 2.48055i) q^{61} +(-2.50207 - 4.33370i) q^{62} +(-0.132739 + 4.74074i) q^{63} +1.00000 q^{64} +(5.98265 + 5.14629i) q^{65} +(0.838191 + 0.237215i) q^{66} +(2.98971 - 5.17833i) q^{67} +(1.89590 - 3.28380i) q^{68} +(10.4679 - 10.1789i) q^{69} +(-1.73004 + 2.99651i) q^{70} +(-4.15444 + 7.19570i) q^{71} +(2.55508 + 1.57213i) q^{72} +13.8427 q^{73} +(0.0315070 + 0.0545717i) q^{74} +(-0.260159 + 0.252976i) q^{75} +(-0.516111 + 0.893931i) q^{76} +(-0.397537 - 0.688555i) q^{77} +(-6.23338 + 0.380797i) q^{78} +(2.13387 - 3.69598i) q^{79} +(1.09436 + 1.89549i) q^{80} +(4.05682 + 8.03382i) q^{81} +(-2.71729 + 4.70648i) q^{82} +(4.74173 - 8.21292i) q^{83} +(-0.671597 - 2.65450i) q^{84} +8.29919 q^{85} +(-4.98693 - 8.63762i) q^{86} +(8.69086 + 2.45958i) q^{87} -0.502937 q^{88} +(3.21174 + 5.56289i) q^{89} +(-0.183778 + 6.56359i) q^{90} +(4.32114 + 3.71706i) q^{91} +(-4.21490 + 7.30043i) q^{92} +(2.12590 + 8.40265i) q^{93} +(4.15412 - 7.19514i) q^{94} -2.25925 q^{95} +(-1.66659 - 0.471659i) q^{96} +(-3.79321 - 6.57004i) q^{97} +(2.25043 - 3.89786i) q^{98} +(-1.28504 - 0.790681i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{2} + 12 q^{4} + q^{5} - 5 q^{7} + 12 q^{8} + 12 q^{9} + q^{10} - 16 q^{11} - q^{13} - 5 q^{14} - 3 q^{15} + 12 q^{16} + 3 q^{17} + 12 q^{18} - 7 q^{19} + q^{20} + 18 q^{21} - 16 q^{22}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.66659 0.471659i −0.962209 0.272312i
\(4\) 1.00000 0.500000
\(5\) 1.09436 + 1.89549i 0.489413 + 0.847687i 0.999926 0.0121825i \(-0.00387790\pi\)
−0.510513 + 0.859870i \(0.670545\pi\)
\(6\) −1.66659 0.471659i −0.680384 0.192554i
\(7\) 0.790433 + 1.36907i 0.298755 + 0.517460i 0.975851 0.218435i \(-0.0700952\pi\)
−0.677096 + 0.735895i \(0.736762\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.55508 + 1.57213i 0.851692 + 0.524043i
\(10\) 1.09436 + 1.89549i 0.346067 + 0.599406i
\(11\) −0.502937 −0.151641 −0.0758205 0.997121i \(-0.524158\pi\)
−0.0758205 + 0.997121i \(0.524158\pi\)
\(12\) −1.66659 0.471659i −0.481104 0.136156i
\(13\) 3.40297 1.19155i 0.943814 0.330478i
\(14\) 0.790433 + 1.36907i 0.211252 + 0.365899i
\(15\) −0.929831 3.67517i −0.240081 0.948925i
\(16\) 1.00000 0.250000
\(17\) 1.89590 3.28380i 0.459824 0.796438i −0.539128 0.842224i \(-0.681246\pi\)
0.998951 + 0.0457862i \(0.0145793\pi\)
\(18\) 2.55508 + 1.57213i 0.602237 + 0.370554i
\(19\) −0.516111 + 0.893931i −0.118404 + 0.205082i −0.919135 0.393942i \(-0.871111\pi\)
0.800731 + 0.599024i \(0.204444\pi\)
\(20\) 1.09436 + 1.89549i 0.244706 + 0.423844i
\(21\) −0.671597 2.65450i −0.146554 0.579259i
\(22\) −0.502937 −0.107226
\(23\) −4.21490 + 7.30043i −0.878868 + 1.52224i −0.0262842 + 0.999655i \(0.508367\pi\)
−0.852584 + 0.522590i \(0.824966\pi\)
\(24\) −1.66659 0.471659i −0.340192 0.0962770i
\(25\) 0.104754 0.181438i 0.0209507 0.0362877i
\(26\) 3.40297 1.19155i 0.667377 0.233683i
\(27\) −3.51677 3.82523i −0.676802 0.736165i
\(28\) 0.790433 + 1.36907i 0.149378 + 0.258730i
\(29\) −5.21474 −0.968353 −0.484176 0.874970i \(-0.660881\pi\)
−0.484176 + 0.874970i \(0.660881\pi\)
\(30\) −0.929831 3.67517i −0.169763 0.670992i
\(31\) −2.50207 4.33370i −0.449384 0.778356i 0.548962 0.835847i \(-0.315023\pi\)
−0.998346 + 0.0574911i \(0.981690\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.838191 + 0.237215i 0.145910 + 0.0412938i
\(34\) 1.89590 3.28380i 0.325144 0.563167i
\(35\) −1.73004 + 2.99651i −0.292429 + 0.506502i
\(36\) 2.55508 + 1.57213i 0.425846 + 0.262021i
\(37\) 0.0315070 + 0.0545717i 0.00517971 + 0.00897153i 0.868604 0.495508i \(-0.165018\pi\)
−0.863424 + 0.504479i \(0.831685\pi\)
\(38\) −0.516111 + 0.893931i −0.0837243 + 0.145015i
\(39\) −6.23338 + 0.380797i −0.998139 + 0.0609764i
\(40\) 1.09436 + 1.89549i 0.173033 + 0.299703i
\(41\) −2.71729 + 4.70648i −0.424369 + 0.735029i −0.996361 0.0852299i \(-0.972838\pi\)
0.571992 + 0.820259i \(0.306171\pi\)
\(42\) −0.671597 2.65450i −0.103630 0.409598i
\(43\) −4.98693 8.63762i −0.760500 1.31723i −0.942593 0.333944i \(-0.891620\pi\)
0.182092 0.983281i \(-0.441713\pi\)
\(44\) −0.502937 −0.0758205
\(45\) −0.183778 + 6.56359i −0.0273960 + 0.978442i
\(46\) −4.21490 + 7.30043i −0.621454 + 1.07639i
\(47\) 4.15412 7.19514i 0.605940 1.04952i −0.385962 0.922515i \(-0.626130\pi\)
0.991902 0.127005i \(-0.0405363\pi\)
\(48\) −1.66659 0.471659i −0.240552 0.0680781i
\(49\) 2.25043 3.89786i 0.321490 0.556838i
\(50\) 0.104754 0.181438i 0.0148144 0.0256593i
\(51\) −4.70853 + 4.57854i −0.659326 + 0.641124i
\(52\) 3.40297 1.19155i 0.471907 0.165239i
\(53\) −9.99466 −1.37287 −0.686436 0.727190i \(-0.740826\pi\)
−0.686436 + 0.727190i \(0.740826\pi\)
\(54\) −3.51677 3.82523i −0.478571 0.520547i
\(55\) −0.550393 0.953309i −0.0742150 0.128544i
\(56\) 0.790433 + 1.36907i 0.105626 + 0.182950i
\(57\) 1.28178 1.24639i 0.169776 0.165089i
\(58\) −5.21474 −0.684729
\(59\) 0.601981 0.0783713 0.0391857 0.999232i \(-0.487524\pi\)
0.0391857 + 0.999232i \(0.487524\pi\)
\(60\) −0.929831 3.67517i −0.120041 0.474463i
\(61\) 1.43215 + 2.48055i 0.183367 + 0.317602i 0.943025 0.332721i \(-0.107967\pi\)
−0.759658 + 0.650323i \(0.774634\pi\)
\(62\) −2.50207 4.33370i −0.317763 0.550381i
\(63\) −0.132739 + 4.74074i −0.0167235 + 0.597277i
\(64\) 1.00000 0.125000
\(65\) 5.98265 + 5.14629i 0.742056 + 0.638319i
\(66\) 0.838191 + 0.237215i 0.103174 + 0.0291991i
\(67\) 2.98971 5.17833i 0.365251 0.632634i −0.623565 0.781771i \(-0.714316\pi\)
0.988816 + 0.149138i \(0.0476498\pi\)
\(68\) 1.89590 3.28380i 0.229912 0.398219i
\(69\) 10.4679 10.1789i 1.26018 1.22539i
\(70\) −1.73004 + 2.99651i −0.206779 + 0.358151i
\(71\) −4.15444 + 7.19570i −0.493041 + 0.853972i −0.999968 0.00801703i \(-0.997448\pi\)
0.506927 + 0.861989i \(0.330781\pi\)
\(72\) 2.55508 + 1.57213i 0.301119 + 0.185277i
\(73\) 13.8427 1.62017 0.810085 0.586312i \(-0.199421\pi\)
0.810085 + 0.586312i \(0.199421\pi\)
\(74\) 0.0315070 + 0.0545717i 0.00366261 + 0.00634383i
\(75\) −0.260159 + 0.252976i −0.0300405 + 0.0292112i
\(76\) −0.516111 + 0.893931i −0.0592020 + 0.102541i
\(77\) −0.397537 0.688555i −0.0453036 0.0784681i
\(78\) −6.23338 + 0.380797i −0.705791 + 0.0431168i
\(79\) 2.13387 3.69598i 0.240080 0.415830i −0.720657 0.693292i \(-0.756160\pi\)
0.960737 + 0.277461i \(0.0894931\pi\)
\(80\) 1.09436 + 1.89549i 0.122353 + 0.211922i
\(81\) 4.05682 + 8.03382i 0.450758 + 0.892646i
\(82\) −2.71729 + 4.70648i −0.300074 + 0.519744i
\(83\) 4.74173 8.21292i 0.520472 0.901485i −0.479244 0.877682i \(-0.659089\pi\)
0.999717 0.0238031i \(-0.00757748\pi\)
\(84\) −0.671597 2.65450i −0.0732772 0.289630i
\(85\) 8.29919 0.900174
\(86\) −4.98693 8.63762i −0.537755 0.931419i
\(87\) 8.69086 + 2.45958i 0.931758 + 0.263695i
\(88\) −0.502937 −0.0536132
\(89\) 3.21174 + 5.56289i 0.340443 + 0.589665i 0.984515 0.175300i \(-0.0560895\pi\)
−0.644072 + 0.764965i \(0.722756\pi\)
\(90\) −0.183778 + 6.56359i −0.0193719 + 0.691863i
\(91\) 4.32114 + 3.71706i 0.452978 + 0.389653i
\(92\) −4.21490 + 7.30043i −0.439434 + 0.761122i
\(93\) 2.12590 + 8.40265i 0.220445 + 0.871314i
\(94\) 4.15412 7.19514i 0.428464 0.742122i
\(95\) −2.25925 −0.231794
\(96\) −1.66659 0.471659i −0.170096 0.0481385i
\(97\) −3.79321 6.57004i −0.385142 0.667086i 0.606646 0.794972i \(-0.292514\pi\)
−0.991789 + 0.127885i \(0.959181\pi\)
\(98\) 2.25043 3.89786i 0.227328 0.393744i
\(99\) −1.28504 0.790681i −0.129151 0.0794664i
\(100\) 0.104754 0.181438i 0.0104754 0.0181438i
\(101\) −17.5638 −1.74766 −0.873831 0.486231i \(-0.838372\pi\)
−0.873831 + 0.486231i \(0.838372\pi\)
\(102\) −4.70853 + 4.57854i −0.466214 + 0.453343i
\(103\) 4.75462 + 8.23524i 0.468486 + 0.811442i 0.999351 0.0360142i \(-0.0114661\pi\)
−0.530865 + 0.847457i \(0.678133\pi\)
\(104\) 3.40297 1.19155i 0.333689 0.116842i
\(105\) 4.29660 4.17798i 0.419305 0.407729i
\(106\) −9.99466 −0.970767
\(107\) −0.805993 1.39602i −0.0779183 0.134958i 0.824433 0.565959i \(-0.191494\pi\)
−0.902352 + 0.431001i \(0.858161\pi\)
\(108\) −3.51677 3.82523i −0.338401 0.368083i
\(109\) −17.8183 −1.70668 −0.853339 0.521356i \(-0.825426\pi\)
−0.853339 + 0.521356i \(0.825426\pi\)
\(110\) −0.550393 0.953309i −0.0524780 0.0908945i
\(111\) −0.0267701 0.105809i −0.00254091 0.0100430i
\(112\) 0.790433 + 1.36907i 0.0746889 + 0.129365i
\(113\) 11.5614 1.08760 0.543802 0.839213i \(-0.316984\pi\)
0.543802 + 0.839213i \(0.316984\pi\)
\(114\) 1.28178 1.24639i 0.120050 0.116735i
\(115\) −18.4505 −1.72052
\(116\) −5.21474 −0.484176
\(117\) 10.5681 + 2.30539i 0.977023 + 0.213134i
\(118\) 0.601981 0.0554169
\(119\) 5.99433 0.549499
\(120\) −0.929831 3.67517i −0.0848815 0.335496i
\(121\) −10.7471 −0.977005
\(122\) 1.43215 + 2.48055i 0.129660 + 0.224578i
\(123\) 6.74848 6.56217i 0.608490 0.591691i
\(124\) −2.50207 4.33370i −0.224692 0.389178i
\(125\) 11.4021 1.01984
\(126\) −0.132739 + 4.74074i −0.0118253 + 0.422338i
\(127\) 2.02802 + 3.51263i 0.179958 + 0.311696i 0.941866 0.335989i \(-0.109071\pi\)
−0.761908 + 0.647685i \(0.775737\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.23718 + 16.7476i 0.373063 + 1.47454i
\(130\) 5.98265 + 5.14629i 0.524713 + 0.451360i
\(131\) −1.85535 3.21356i −0.162103 0.280770i 0.773520 0.633772i \(-0.218494\pi\)
−0.935623 + 0.353002i \(0.885161\pi\)
\(132\) 0.838191 + 0.237215i 0.0729552 + 0.0206469i
\(133\) −1.63180 −0.141495
\(134\) 2.98971 5.17833i 0.258272 0.447340i
\(135\) 3.40206 10.8522i 0.292803 0.934005i
\(136\) 1.89590 3.28380i 0.162572 0.281583i
\(137\) −2.38751 4.13529i −0.203979 0.353302i 0.745828 0.666139i \(-0.232054\pi\)
−0.949807 + 0.312837i \(0.898721\pi\)
\(138\) 10.4679 10.1789i 0.891083 0.866482i
\(139\) 14.9600 1.26889 0.634443 0.772969i \(-0.281229\pi\)
0.634443 + 0.772969i \(0.281229\pi\)
\(140\) −1.73004 + 2.99651i −0.146215 + 0.253251i
\(141\) −10.3169 + 10.0321i −0.868838 + 0.844852i
\(142\) −4.15444 + 7.19570i −0.348633 + 0.603849i
\(143\) −1.71148 + 0.599276i −0.143121 + 0.0501140i
\(144\) 2.55508 + 1.57213i 0.212923 + 0.131011i
\(145\) −5.70680 9.88447i −0.473924 0.820861i
\(146\) 13.8427 1.14563
\(147\) −5.58902 + 5.43472i −0.460975 + 0.448248i
\(148\) 0.0315070 + 0.0545717i 0.00258986 + 0.00448576i
\(149\) 4.24030 0.347379 0.173689 0.984800i \(-0.444431\pi\)
0.173689 + 0.984800i \(0.444431\pi\)
\(150\) −0.260159 + 0.252976i −0.0212419 + 0.0206554i
\(151\) −5.98383 + 10.3643i −0.486957 + 0.843434i −0.999888 0.0149958i \(-0.995227\pi\)
0.512931 + 0.858430i \(0.328560\pi\)
\(152\) −0.516111 + 0.893931i −0.0418621 + 0.0725074i
\(153\) 10.0067 5.40975i 0.808996 0.437352i
\(154\) −0.397537 0.688555i −0.0320345 0.0554853i
\(155\) 5.47632 9.48526i 0.439869 0.761875i
\(156\) −6.23338 + 0.380797i −0.499070 + 0.0304882i
\(157\) 8.87870 + 15.3784i 0.708598 + 1.22733i 0.965377 + 0.260857i \(0.0840052\pi\)
−0.256780 + 0.966470i \(0.582661\pi\)
\(158\) 2.13387 3.69598i 0.169762 0.294036i
\(159\) 16.6570 + 4.71407i 1.32099 + 0.373850i
\(160\) 1.09436 + 1.89549i 0.0865167 + 0.149851i
\(161\) −13.3264 −1.05027
\(162\) 4.05682 + 8.03382i 0.318734 + 0.631196i
\(163\) −10.4495 + 18.0991i −0.818468 + 1.41763i 0.0883435 + 0.996090i \(0.471843\pi\)
−0.906811 + 0.421537i \(0.861491\pi\)
\(164\) −2.71729 + 4.70648i −0.212185 + 0.367515i
\(165\) 0.467646 + 1.84838i 0.0364062 + 0.143896i
\(166\) 4.74173 8.21292i 0.368030 0.637446i
\(167\) 10.5288 18.2365i 0.814746 1.41118i −0.0947633 0.995500i \(-0.530209\pi\)
0.909510 0.415682i \(-0.136457\pi\)
\(168\) −0.671597 2.65450i −0.0518148 0.204799i
\(169\) 10.1604 8.10965i 0.781569 0.623819i
\(170\) 8.29919 0.636519
\(171\) −2.72408 + 1.47267i −0.208315 + 0.112618i
\(172\) −4.98693 8.63762i −0.380250 0.658613i
\(173\) −5.99936 10.3912i −0.456123 0.790028i 0.542629 0.839972i \(-0.317429\pi\)
−0.998752 + 0.0499444i \(0.984096\pi\)
\(174\) 8.69086 + 2.45958i 0.658852 + 0.186460i
\(175\) 0.331202 0.0250365
\(176\) −0.502937 −0.0379103
\(177\) −1.00326 0.283930i −0.0754096 0.0213415i
\(178\) 3.21174 + 5.56289i 0.240730 + 0.416956i
\(179\) −1.33168 2.30654i −0.0995346 0.172399i 0.811958 0.583717i \(-0.198402\pi\)
−0.911492 + 0.411318i \(0.865069\pi\)
\(180\) −0.183778 + 6.56359i −0.0136980 + 0.489221i
\(181\) −8.09512 −0.601705 −0.300853 0.953671i \(-0.597271\pi\)
−0.300853 + 0.953671i \(0.597271\pi\)
\(182\) 4.32114 + 3.71706i 0.320304 + 0.275527i
\(183\) −1.21683 4.80955i −0.0899508 0.355532i
\(184\) −4.21490 + 7.30043i −0.310727 + 0.538195i
\(185\) −0.0689599 + 0.119442i −0.00507003 + 0.00878156i
\(186\) 2.12590 + 8.40265i 0.155878 + 0.616112i
\(187\) −0.953518 + 1.65154i −0.0697281 + 0.120773i
\(188\) 4.15412 7.19514i 0.302970 0.524760i
\(189\) 2.45723 7.83828i 0.178737 0.570151i
\(190\) −2.25925 −0.163903
\(191\) 11.9953 + 20.7764i 0.867948 + 1.50333i 0.864090 + 0.503337i \(0.167895\pi\)
0.00385779 + 0.999993i \(0.498772\pi\)
\(192\) −1.66659 0.471659i −0.120276 0.0340391i
\(193\) 2.79996 4.84966i 0.201545 0.349087i −0.747481 0.664283i \(-0.768737\pi\)
0.949026 + 0.315196i \(0.102070\pi\)
\(194\) −3.79321 6.57004i −0.272337 0.471701i
\(195\) −7.54335 11.3986i −0.540191 0.816267i
\(196\) 2.25043 3.89786i 0.160745 0.278419i
\(197\) 0.0520349 + 0.0901272i 0.00370734 + 0.00642129i 0.867873 0.496786i \(-0.165487\pi\)
−0.864166 + 0.503207i \(0.832153\pi\)
\(198\) −1.28504 0.790681i −0.0913239 0.0561913i
\(199\) −9.85896 + 17.0762i −0.698883 + 1.21050i 0.269971 + 0.962868i \(0.412986\pi\)
−0.968854 + 0.247632i \(0.920347\pi\)
\(200\) 0.104754 0.181438i 0.00740719 0.0128296i
\(201\) −7.42504 + 7.22005i −0.523722 + 0.509263i
\(202\) −17.5638 −1.23578
\(203\) −4.12190 7.13934i −0.289301 0.501083i
\(204\) −4.70853 + 4.57854i −0.329663 + 0.320562i
\(205\) −11.8948 −0.830767
\(206\) 4.75462 + 8.23524i 0.331270 + 0.573776i
\(207\) −22.2466 + 12.0268i −1.54625 + 0.835918i
\(208\) 3.40297 1.19155i 0.235953 0.0826195i
\(209\) 0.259571 0.449590i 0.0179549 0.0310988i
\(210\) 4.29660 4.17798i 0.296493 0.288308i
\(211\) −8.01373 + 13.8802i −0.551688 + 0.955551i 0.446465 + 0.894801i \(0.352683\pi\)
−0.998153 + 0.0607501i \(0.980651\pi\)
\(212\) −9.99466 −0.686436
\(213\) 10.3177 10.0328i 0.706956 0.687438i
\(214\) −0.805993 1.39602i −0.0550965 0.0954300i
\(215\) 10.9150 18.9053i 0.744397 1.28933i
\(216\) −3.51677 3.82523i −0.239286 0.260274i
\(217\) 3.95543 6.85100i 0.268512 0.465076i
\(218\) −17.8183 −1.20680
\(219\) −23.0702 6.52905i −1.55894 0.441193i
\(220\) −0.550393 0.953309i −0.0371075 0.0642721i
\(221\) 2.53887 13.4337i 0.170783 0.903651i
\(222\) −0.0267701 0.105809i −0.00179669 0.00710146i
\(223\) −5.51471 −0.369292 −0.184646 0.982805i \(-0.559114\pi\)
−0.184646 + 0.982805i \(0.559114\pi\)
\(224\) 0.790433 + 1.36907i 0.0528130 + 0.0914748i
\(225\) 0.552898 0.298903i 0.0368599 0.0199269i
\(226\) 11.5614 0.769053
\(227\) −10.7089 18.5484i −0.710775 1.23110i −0.964567 0.263839i \(-0.915011\pi\)
0.253792 0.967259i \(-0.418322\pi\)
\(228\) 1.28178 1.24639i 0.0848879 0.0825443i
\(229\) −11.8440 20.5144i −0.782672 1.35563i −0.930380 0.366596i \(-0.880523\pi\)
0.147708 0.989031i \(-0.452810\pi\)
\(230\) −18.4505 −1.21659
\(231\) 0.337770 + 1.33504i 0.0222237 + 0.0878395i
\(232\) −5.21474 −0.342364
\(233\) −5.93580 −0.388867 −0.194434 0.980916i \(-0.562287\pi\)
−0.194434 + 0.980916i \(0.562287\pi\)
\(234\) 10.5681 + 2.30539i 0.690860 + 0.150708i
\(235\) 18.1844 1.18622
\(236\) 0.601981 0.0391857
\(237\) −5.29955 + 5.15324i −0.344243 + 0.334739i
\(238\) 5.99433 0.388555
\(239\) 2.91836 + 5.05475i 0.188773 + 0.326964i 0.944841 0.327528i \(-0.106216\pi\)
−0.756068 + 0.654493i \(0.772882\pi\)
\(240\) −0.929831 3.67517i −0.0600203 0.237231i
\(241\) 5.79116 + 10.0306i 0.373042 + 0.646127i 0.990032 0.140844i \(-0.0449815\pi\)
−0.616990 + 0.786971i \(0.711648\pi\)
\(242\) −10.7471 −0.690847
\(243\) −2.97185 15.3026i −0.190644 0.981659i
\(244\) 1.43215 + 2.48055i 0.0916837 + 0.158801i
\(245\) 9.85113 0.629366
\(246\) 6.74848 6.56217i 0.430267 0.418388i
\(247\) −0.691143 + 3.65699i −0.0439764 + 0.232689i
\(248\) −2.50207 4.33370i −0.158881 0.275191i
\(249\) −11.7762 + 11.4511i −0.746289 + 0.725685i
\(250\) 11.4021 0.721135
\(251\) −1.29273 + 2.23908i −0.0815967 + 0.141330i −0.903936 0.427668i \(-0.859335\pi\)
0.822339 + 0.568997i \(0.192669\pi\)
\(252\) −0.132739 + 4.74074i −0.00836176 + 0.298638i
\(253\) 2.11983 3.67165i 0.133273 0.230835i
\(254\) 2.02802 + 3.51263i 0.127249 + 0.220402i
\(255\) −13.8314 3.91439i −0.866155 0.245129i
\(256\) 1.00000 0.0625000
\(257\) −10.8198 + 18.7404i −0.674919 + 1.16899i 0.301574 + 0.953443i \(0.402488\pi\)
−0.976493 + 0.215550i \(0.930845\pi\)
\(258\) 4.23718 + 16.7476i 0.263796 + 1.04266i
\(259\) −0.0498083 + 0.0862705i −0.00309494 + 0.00536058i
\(260\) 5.98265 + 5.14629i 0.371028 + 0.319160i
\(261\) −13.3241 8.19824i −0.824738 0.507459i
\(262\) −1.85535 3.21356i −0.114624 0.198535i
\(263\) 13.7198 0.846002 0.423001 0.906129i \(-0.360977\pi\)
0.423001 + 0.906129i \(0.360977\pi\)
\(264\) 0.838191 + 0.237215i 0.0515871 + 0.0145995i
\(265\) −10.9378 18.9447i −0.671901 1.16377i
\(266\) −1.63180 −0.100052
\(267\) −2.72888 10.7859i −0.167004 0.660088i
\(268\) 2.98971 5.17833i 0.182626 0.316317i
\(269\) −5.25005 + 9.09335i −0.320101 + 0.554431i −0.980509 0.196476i \(-0.937050\pi\)
0.660408 + 0.750907i \(0.270384\pi\)
\(270\) 3.40206 10.8522i 0.207043 0.660441i
\(271\) −13.4122 23.2307i −0.814735 1.41116i −0.909518 0.415664i \(-0.863549\pi\)
0.0947835 0.995498i \(-0.469784\pi\)
\(272\) 1.89590 3.28380i 0.114956 0.199109i
\(273\) −5.44840 8.23293i −0.329752 0.498280i
\(274\) −2.38751 4.13529i −0.144235 0.249822i
\(275\) −0.0526844 + 0.0912520i −0.00317699 + 0.00550270i
\(276\) 10.4679 10.1789i 0.630091 0.612695i
\(277\) 12.1261 + 21.0031i 0.728590 + 1.26195i 0.957479 + 0.288502i \(0.0931571\pi\)
−0.228890 + 0.973452i \(0.573510\pi\)
\(278\) 14.9600 0.897238
\(279\) 0.420177 15.0065i 0.0251553 0.898416i
\(280\) −1.73004 + 2.99651i −0.103389 + 0.179076i
\(281\) −11.9542 + 20.7053i −0.713129 + 1.23518i 0.250547 + 0.968104i \(0.419390\pi\)
−0.963677 + 0.267072i \(0.913944\pi\)
\(282\) −10.3169 + 10.0321i −0.614361 + 0.597400i
\(283\) −12.3190 + 21.3371i −0.732288 + 1.26836i 0.223615 + 0.974678i \(0.428214\pi\)
−0.955903 + 0.293683i \(0.905119\pi\)
\(284\) −4.15444 + 7.19570i −0.246520 + 0.426986i
\(285\) 3.76525 + 1.06559i 0.223034 + 0.0631203i
\(286\) −1.71148 + 0.599276i −0.101202 + 0.0354360i
\(287\) −8.59134 −0.507131
\(288\) 2.55508 + 1.57213i 0.150559 + 0.0926386i
\(289\) 1.31112 + 2.27092i 0.0771245 + 0.133583i
\(290\) −5.70680 9.88447i −0.335115 0.580436i
\(291\) 3.22293 + 12.7387i 0.188932 + 0.746755i
\(292\) 13.8427 0.810085
\(293\) 9.05213 0.528831 0.264415 0.964409i \(-0.414821\pi\)
0.264415 + 0.964409i \(0.414821\pi\)
\(294\) −5.58902 + 5.43472i −0.325958 + 0.316959i
\(295\) 0.658784 + 1.14105i 0.0383559 + 0.0664344i
\(296\) 0.0315070 + 0.0545717i 0.00183131 + 0.00317191i
\(297\) 1.76871 + 1.92385i 0.102631 + 0.111633i
\(298\) 4.24030 0.245634
\(299\) −5.64433 + 29.8654i −0.326420 + 1.72716i
\(300\) −0.260159 + 0.252976i −0.0150203 + 0.0146056i
\(301\) 7.88367 13.6549i 0.454407 0.787056i
\(302\) −5.98383 + 10.3643i −0.344331 + 0.596398i
\(303\) 29.2717 + 8.28411i 1.68161 + 0.475910i
\(304\) −0.516111 + 0.893931i −0.0296010 + 0.0512704i
\(305\) −3.13456 + 5.42922i −0.179485 + 0.310876i
\(306\) 10.0067 5.40975i 0.572046 0.309255i
\(307\) 18.3002 1.04445 0.522225 0.852808i \(-0.325102\pi\)
0.522225 + 0.852808i \(0.325102\pi\)
\(308\) −0.397537 0.688555i −0.0226518 0.0392341i
\(309\) −4.03980 15.9674i −0.229816 0.908352i
\(310\) 5.47632 9.48526i 0.311034 0.538727i
\(311\) 5.21196 + 9.02738i 0.295543 + 0.511896i 0.975111 0.221717i \(-0.0711661\pi\)
−0.679568 + 0.733613i \(0.737833\pi\)
\(312\) −6.23338 + 0.380797i −0.352896 + 0.0215584i
\(313\) 15.1740 26.2821i 0.857685 1.48555i −0.0164472 0.999865i \(-0.505236\pi\)
0.874132 0.485689i \(-0.161431\pi\)
\(314\) 8.87870 + 15.3784i 0.501054 + 0.867851i
\(315\) −9.13127 + 4.93647i −0.514489 + 0.278138i
\(316\) 2.13387 3.69598i 0.120040 0.207915i
\(317\) 3.71925 6.44193i 0.208894 0.361815i −0.742472 0.669877i \(-0.766347\pi\)
0.951366 + 0.308062i \(0.0996803\pi\)
\(318\) 16.6570 + 4.71407i 0.934081 + 0.264352i
\(319\) 2.62268 0.146842
\(320\) 1.09436 + 1.89549i 0.0611766 + 0.105961i
\(321\) 0.684817 + 2.70675i 0.0382228 + 0.151076i
\(322\) −13.3264 −0.742651
\(323\) 1.95699 + 3.38961i 0.108890 + 0.188603i
\(324\) 4.05682 + 8.03382i 0.225379 + 0.446323i
\(325\) 0.140279 0.742249i 0.00778129 0.0411726i
\(326\) −10.4495 + 18.0991i −0.578744 + 1.00241i
\(327\) 29.6958 + 8.40414i 1.64218 + 0.464750i
\(328\) −2.71729 + 4.70648i −0.150037 + 0.259872i
\(329\) 13.1342 0.724112
\(330\) 0.467646 + 1.84838i 0.0257431 + 0.101750i
\(331\) 1.70727 + 2.95708i 0.0938401 + 0.162536i 0.909124 0.416526i \(-0.136752\pi\)
−0.815284 + 0.579062i \(0.803419\pi\)
\(332\) 4.74173 8.21292i 0.260236 0.450742i
\(333\) −0.00529102 + 0.188968i −0.000289946 + 0.0103554i
\(334\) 10.5288 18.2365i 0.576113 0.997857i
\(335\) 13.0873 0.715034
\(336\) −0.671597 2.65450i −0.0366386 0.144815i
\(337\) −6.02371 10.4334i −0.328133 0.568342i 0.654009 0.756487i \(-0.273086\pi\)
−0.982141 + 0.188145i \(0.939753\pi\)
\(338\) 10.1604 8.10965i 0.552653 0.441107i
\(339\) −19.2682 5.45304i −1.04650 0.296168i
\(340\) 8.29919 0.450087
\(341\) 1.25838 + 2.17958i 0.0681451 + 0.118031i
\(342\) −2.72408 + 1.47267i −0.147301 + 0.0796327i
\(343\) 18.1813 0.981699
\(344\) −4.98693 8.63762i −0.268878 0.465710i
\(345\) 30.7495 + 8.70234i 1.65550 + 0.468518i
\(346\) −5.99936 10.3912i −0.322528 0.558634i
\(347\) 7.72226 0.414553 0.207276 0.978282i \(-0.433540\pi\)
0.207276 + 0.978282i \(0.433540\pi\)
\(348\) 8.69086 + 2.45958i 0.465879 + 0.131847i
\(349\) 26.4081 1.41359 0.706797 0.707416i \(-0.250139\pi\)
0.706797 + 0.707416i \(0.250139\pi\)
\(350\) 0.331202 0.0177035
\(351\) −16.5254 8.82671i −0.882061 0.471135i
\(352\) −0.502937 −0.0268066
\(353\) −34.2383 −1.82232 −0.911161 0.412050i \(-0.864813\pi\)
−0.911161 + 0.412050i \(0.864813\pi\)
\(354\) −1.00326 0.283930i −0.0533226 0.0150907i
\(355\) −18.1858 −0.965202
\(356\) 3.21174 + 5.56289i 0.170222 + 0.294833i
\(357\) −9.99012 2.82728i −0.528733 0.149635i
\(358\) −1.33168 2.30654i −0.0703816 0.121904i
\(359\) 20.0071 1.05593 0.527967 0.849265i \(-0.322955\pi\)
0.527967 + 0.849265i \(0.322955\pi\)
\(360\) −0.183778 + 6.56359i −0.00968594 + 0.345931i
\(361\) 8.96726 + 15.5317i 0.471961 + 0.817460i
\(362\) −8.09512 −0.425470
\(363\) 17.9110 + 5.06895i 0.940083 + 0.266051i
\(364\) 4.32114 + 3.71706i 0.226489 + 0.194827i
\(365\) 15.1489 + 26.2387i 0.792932 + 1.37340i
\(366\) −1.21683 4.80955i −0.0636049 0.251399i
\(367\) 27.7949 1.45088 0.725440 0.688285i \(-0.241636\pi\)
0.725440 + 0.688285i \(0.241636\pi\)
\(368\) −4.21490 + 7.30043i −0.219717 + 0.380561i
\(369\) −14.3421 + 7.75349i −0.746619 + 0.403631i
\(370\) −0.0689599 + 0.119442i −0.00358506 + 0.00620950i
\(371\) −7.90010 13.6834i −0.410153 0.710406i
\(372\) 2.12590 + 8.40265i 0.110223 + 0.435657i
\(373\) −12.3059 −0.637174 −0.318587 0.947894i \(-0.603208\pi\)
−0.318587 + 0.947894i \(0.603208\pi\)
\(374\) −0.953518 + 1.65154i −0.0493052 + 0.0853992i
\(375\) −19.0028 5.37793i −0.981298 0.277715i
\(376\) 4.15412 7.19514i 0.214232 0.371061i
\(377\) −17.7456 + 6.21365i −0.913945 + 0.320019i
\(378\) 2.45723 7.83828i 0.126386 0.403158i
\(379\) −4.55621 7.89159i −0.234037 0.405364i 0.724956 0.688796i \(-0.241860\pi\)
−0.958992 + 0.283432i \(0.908527\pi\)
\(380\) −2.25925 −0.115897
\(381\) −1.72312 6.81067i −0.0882782 0.348921i
\(382\) 11.9953 + 20.7764i 0.613732 + 1.06301i
\(383\) −5.01951 −0.256485 −0.128242 0.991743i \(-0.540934\pi\)
−0.128242 + 0.991743i \(0.540934\pi\)
\(384\) −1.66659 0.471659i −0.0850481 0.0240693i
\(385\) 0.870098 1.50705i 0.0443443 0.0768066i
\(386\) 2.79996 4.84966i 0.142514 0.246841i
\(387\) 0.837465 29.9099i 0.0425708 1.52041i
\(388\) −3.79321 6.57004i −0.192571 0.333543i
\(389\) 11.1313 19.2800i 0.564380 0.977535i −0.432727 0.901525i \(-0.642449\pi\)
0.997107 0.0760100i \(-0.0242181\pi\)
\(390\) −7.54335 11.3986i −0.381973 0.577188i
\(391\) 15.9821 + 27.6818i 0.808249 + 1.39993i
\(392\) 2.25043 3.89786i 0.113664 0.196872i
\(393\) 1.57641 + 6.23080i 0.0795195 + 0.314302i
\(394\) 0.0520349 + 0.0901272i 0.00262148 + 0.00454054i
\(395\) 9.34091 0.469992
\(396\) −1.28504 0.790681i −0.0645757 0.0397332i
\(397\) −13.0759 + 22.6481i −0.656259 + 1.13667i 0.325317 + 0.945605i \(0.394529\pi\)
−0.981577 + 0.191069i \(0.938804\pi\)
\(398\) −9.85896 + 17.0762i −0.494185 + 0.855953i
\(399\) 2.71956 + 0.769655i 0.136148 + 0.0385310i
\(400\) 0.104754 0.181438i 0.00523768 0.00907192i
\(401\) 13.0125 22.5384i 0.649815 1.12551i −0.333352 0.942802i \(-0.608180\pi\)
0.983167 0.182709i \(-0.0584868\pi\)
\(402\) −7.42504 + 7.22005i −0.370327 + 0.360104i
\(403\) −13.6783 11.7661i −0.681365 0.586112i
\(404\) −17.5638 −0.873831
\(405\) −10.7884 + 16.4815i −0.536078 + 0.818974i
\(406\) −4.12190 7.13934i −0.204566 0.354320i
\(407\) −0.0158460 0.0274461i −0.000785457 0.00136045i
\(408\) −4.70853 + 4.57854i −0.233107 + 0.226672i
\(409\) −11.7798 −0.582475 −0.291238 0.956651i \(-0.594067\pi\)
−0.291238 + 0.956651i \(0.594067\pi\)
\(410\) −11.8948 −0.587441
\(411\) 2.02857 + 8.01795i 0.100062 + 0.395496i
\(412\) 4.75462 + 8.23524i 0.234243 + 0.405721i
\(413\) 0.475826 + 0.824154i 0.0234139 + 0.0405540i
\(414\) −22.2466 + 12.0268i −1.09336 + 0.591084i
\(415\) 20.7566 1.01890
\(416\) 3.40297 1.19155i 0.166844 0.0584208i
\(417\) −24.9322 7.05600i −1.22093 0.345534i
\(418\) 0.259571 0.449590i 0.0126960 0.0219902i
\(419\) −14.9908 + 25.9648i −0.732348 + 1.26846i 0.223529 + 0.974697i \(0.428242\pi\)
−0.955877 + 0.293767i \(0.905091\pi\)
\(420\) 4.29660 4.17798i 0.209652 0.203864i
\(421\) −9.62578 + 16.6723i −0.469132 + 0.812560i −0.999377 0.0352841i \(-0.988766\pi\)
0.530246 + 0.847844i \(0.322100\pi\)
\(422\) −8.01373 + 13.8802i −0.390102 + 0.675677i
\(423\) 21.9258 11.8533i 1.06607 0.576328i
\(424\) −9.99466 −0.485383
\(425\) −0.397205 0.687979i −0.0192673 0.0333719i
\(426\) 10.3177 10.0328i 0.499893 0.486092i
\(427\) −2.26403 + 3.92141i −0.109564 + 0.189770i
\(428\) −0.805993 1.39602i −0.0389591 0.0674792i
\(429\) 3.13499 0.191517i 0.151359 0.00924653i
\(430\) 10.9150 18.9053i 0.526368 0.911696i
\(431\) −4.11765 7.13198i −0.198340 0.343535i 0.749650 0.661834i \(-0.230222\pi\)
−0.947990 + 0.318299i \(0.896888\pi\)
\(432\) −3.51677 3.82523i −0.169200 0.184041i
\(433\) 1.34932 2.33708i 0.0648440 0.112313i −0.831781 0.555104i \(-0.812678\pi\)
0.896625 + 0.442791i \(0.146012\pi\)
\(434\) 3.95543 6.85100i 0.189867 0.328859i
\(435\) 4.84882 + 19.1651i 0.232483 + 0.918895i
\(436\) −17.8183 −0.853339
\(437\) −4.35072 7.53567i −0.208123 0.360480i
\(438\) −23.0702 6.52905i −1.10234 0.311970i
\(439\) 29.8318 1.42379 0.711896 0.702285i \(-0.247837\pi\)
0.711896 + 0.702285i \(0.247837\pi\)
\(440\) −0.550393 0.953309i −0.0262390 0.0454472i
\(441\) 11.8780 6.42137i 0.565618 0.305779i
\(442\) 2.53887 13.4337i 0.120762 0.638977i
\(443\) 1.33729 2.31625i 0.0635364 0.110048i −0.832507 0.554014i \(-0.813095\pi\)
0.896044 + 0.443966i \(0.146429\pi\)
\(444\) −0.0267701 0.105809i −0.00127045 0.00502149i
\(445\) −7.02959 + 12.1756i −0.333235 + 0.577179i
\(446\) −5.51471 −0.261129
\(447\) −7.06686 1.99998i −0.334251 0.0945956i
\(448\) 0.790433 + 1.36907i 0.0373444 + 0.0646824i
\(449\) −1.88447 + 3.26401i −0.0889338 + 0.154038i −0.907061 0.421000i \(-0.861679\pi\)
0.818127 + 0.575038i \(0.195013\pi\)
\(450\) 0.552898 0.298903i 0.0260639 0.0140904i
\(451\) 1.36662 2.36706i 0.0643518 0.111461i
\(452\) 11.5614 0.543802
\(453\) 14.8610 14.4508i 0.698232 0.678956i
\(454\) −10.7089 18.5484i −0.502594 0.870518i
\(455\) −2.31675 + 12.2585i −0.108611 + 0.574685i
\(456\) 1.28178 1.24639i 0.0600248 0.0583676i
\(457\) 22.8754 1.07006 0.535032 0.844832i \(-0.320300\pi\)
0.535032 + 0.844832i \(0.320300\pi\)
\(458\) −11.8440 20.5144i −0.553433 0.958573i
\(459\) −19.2287 + 4.29610i −0.897519 + 0.200525i
\(460\) −18.4505 −0.860258
\(461\) −9.21067 15.9533i −0.428984 0.743021i 0.567800 0.823167i \(-0.307795\pi\)
−0.996783 + 0.0801455i \(0.974461\pi\)
\(462\) 0.337770 + 1.33504i 0.0157145 + 0.0621119i
\(463\) 9.45153 + 16.3705i 0.439250 + 0.760803i 0.997632 0.0687812i \(-0.0219110\pi\)
−0.558382 + 0.829584i \(0.688578\pi\)
\(464\) −5.21474 −0.242088
\(465\) −13.6006 + 13.2251i −0.630713 + 0.613301i
\(466\) −5.93580 −0.274970
\(467\) 24.6818 1.14214 0.571068 0.820903i \(-0.306529\pi\)
0.571068 + 0.820903i \(0.306529\pi\)
\(468\) 10.5681 + 2.30539i 0.488512 + 0.106567i
\(469\) 9.45266 0.436483
\(470\) 18.1844 0.838784
\(471\) −7.54385 29.8172i −0.347602 1.37391i
\(472\) 0.601981 0.0277084
\(473\) 2.50811 + 4.34418i 0.115323 + 0.199745i
\(474\) −5.29955 + 5.15324i −0.243416 + 0.236696i
\(475\) 0.108129 + 0.187285i 0.00496130 + 0.00859322i
\(476\) 5.99433 0.274750
\(477\) −25.5371 15.7129i −1.16926 0.719444i
\(478\) 2.91836 + 5.05475i 0.133483 + 0.231199i
\(479\) 36.6440 1.67431 0.837154 0.546967i \(-0.184218\pi\)
0.837154 + 0.546967i \(0.184218\pi\)
\(480\) −0.929831 3.67517i −0.0424408 0.167748i
\(481\) 0.172242 + 0.148163i 0.00785358 + 0.00675567i
\(482\) 5.79116 + 10.0306i 0.263780 + 0.456881i
\(483\) 22.2097 + 6.28551i 1.01058 + 0.286001i
\(484\) −10.7471 −0.488502
\(485\) 8.30228 14.3800i 0.376987 0.652961i
\(486\) −2.97185 15.3026i −0.134806 0.694138i
\(487\) −4.39414 + 7.61087i −0.199117 + 0.344881i −0.948242 0.317547i \(-0.897141\pi\)
0.749125 + 0.662428i \(0.230474\pi\)
\(488\) 1.43215 + 2.48055i 0.0648302 + 0.112289i
\(489\) 25.9517 25.2352i 1.17357 1.14117i
\(490\) 9.85113 0.445029
\(491\) 8.82292 15.2817i 0.398173 0.689655i −0.595328 0.803483i \(-0.702978\pi\)
0.993501 + 0.113828i \(0.0363111\pi\)
\(492\) 6.74848 6.56217i 0.304245 0.295845i
\(493\) −9.88663 + 17.1242i −0.445272 + 0.771233i
\(494\) −0.691143 + 3.65699i −0.0310960 + 0.164536i
\(495\) 0.0924286 3.30107i 0.00415436 0.148372i
\(496\) −2.50207 4.33370i −0.112346 0.194589i
\(497\) −13.1352 −0.589195
\(498\) −11.7762 + 11.4511i −0.527706 + 0.513137i
\(499\) −19.3003 33.4291i −0.864000 1.49649i −0.868037 0.496499i \(-0.834618\pi\)
0.00403743 0.999992i \(-0.498715\pi\)
\(500\) 11.4021 0.509920
\(501\) −26.1487 + 25.4268i −1.16824 + 1.13599i
\(502\) −1.29273 + 2.23908i −0.0576976 + 0.0999351i
\(503\) −1.82085 + 3.15380i −0.0811876 + 0.140621i −0.903760 0.428039i \(-0.859205\pi\)
0.822573 + 0.568660i \(0.192538\pi\)
\(504\) −0.132739 + 4.74074i −0.00591266 + 0.211169i
\(505\) −19.2211 33.2919i −0.855327 1.48147i
\(506\) 2.11983 3.67165i 0.0942379 0.163225i
\(507\) −20.7582 + 8.72325i −0.921906 + 0.387413i
\(508\) 2.02802 + 3.51263i 0.0899788 + 0.155848i
\(509\) −8.80595 + 15.2524i −0.390317 + 0.676049i −0.992491 0.122316i \(-0.960968\pi\)
0.602174 + 0.798365i \(0.294301\pi\)
\(510\) −13.8314 3.91439i −0.612464 0.173332i
\(511\) 10.9418 + 18.9517i 0.484035 + 0.838373i
\(512\) 1.00000 0.0441942
\(513\) 5.23453 1.16950i 0.231110 0.0516348i
\(514\) −10.8198 + 18.7404i −0.477239 + 0.826603i
\(515\) −10.4065 + 18.0246i −0.458566 + 0.794260i
\(516\) 4.23718 + 16.7476i 0.186532 + 0.737270i
\(517\) −2.08926 + 3.61870i −0.0918854 + 0.159150i
\(518\) −0.0498083 + 0.0862705i −0.00218845 + 0.00379051i
\(519\) 5.09740 + 20.1476i 0.223751 + 0.884380i
\(520\) 5.98265 + 5.14629i 0.262356 + 0.225680i
\(521\) −17.1950 −0.753327 −0.376663 0.926350i \(-0.622929\pi\)
−0.376663 + 0.926350i \(0.622929\pi\)
\(522\) −13.3241 8.19824i −0.583178 0.358827i
\(523\) −12.1008 20.9592i −0.529131 0.916482i −0.999423 0.0339708i \(-0.989185\pi\)
0.470292 0.882511i \(-0.344149\pi\)
\(524\) −1.85535 3.21356i −0.0810514 0.140385i
\(525\) −0.551980 0.156215i −0.0240904 0.00681777i
\(526\) 13.7198 0.598214
\(527\) −18.9747 −0.826550
\(528\) 0.838191 + 0.237215i 0.0364776 + 0.0103234i
\(529\) −24.0308 41.6226i −1.04482 1.80968i
\(530\) −10.9378 18.9447i −0.475106 0.822907i
\(531\) 1.53811 + 0.946392i 0.0667482 + 0.0410699i
\(532\) −1.63180 −0.0707477
\(533\) −3.63882 + 19.2538i −0.157615 + 0.833975i
\(534\) −2.72888 10.7859i −0.118090 0.466753i
\(535\) 1.76409 3.05550i 0.0762683 0.132101i
\(536\) 2.98971 5.17833i 0.129136 0.223670i
\(537\) 1.13147 + 4.47217i 0.0488267 + 0.192988i
\(538\) −5.25005 + 9.09335i −0.226346 + 0.392042i
\(539\) −1.13182 + 1.96038i −0.0487511 + 0.0844395i
\(540\) 3.40206 10.8522i 0.146401 0.467002i
\(541\) 15.1390 0.650876 0.325438 0.945563i \(-0.394488\pi\)
0.325438 + 0.945563i \(0.394488\pi\)
\(542\) −13.4122 23.2307i −0.576104 0.997842i
\(543\) 13.4913 + 3.81813i 0.578966 + 0.163852i
\(544\) 1.89590 3.28380i 0.0812861 0.140792i
\(545\) −19.4996 33.7743i −0.835270 1.44673i
\(546\) −5.44840 8.23293i −0.233170 0.352337i
\(547\) −15.6144 + 27.0449i −0.667623 + 1.15636i 0.310944 + 0.950428i \(0.399355\pi\)
−0.978567 + 0.205929i \(0.933979\pi\)
\(548\) −2.38751 4.13529i −0.101989 0.176651i
\(549\) −0.240503 + 8.58951i −0.0102644 + 0.366591i
\(550\) −0.0526844 + 0.0912520i −0.00224647 + 0.00389100i
\(551\) 2.69139 4.66162i 0.114657 0.198592i
\(552\) 10.4679 10.1789i 0.445541 0.433241i
\(553\) 6.74674 0.286900
\(554\) 12.1261 + 21.0031i 0.515191 + 0.892336i
\(555\) 0.171264 0.166536i 0.00726976 0.00706906i
\(556\) 14.9600 0.634443
\(557\) 14.7933 + 25.6228i 0.626814 + 1.08567i 0.988187 + 0.153252i \(0.0489746\pi\)
−0.361374 + 0.932421i \(0.617692\pi\)
\(558\) 0.420177 15.0065i 0.0177875 0.635276i
\(559\) −27.2626 23.4514i −1.15308 0.991887i
\(560\) −1.73004 + 2.99651i −0.0731073 + 0.126626i
\(561\) 2.36809 2.30272i 0.0999810 0.0972207i
\(562\) −11.9542 + 20.7053i −0.504259 + 0.873402i
\(563\) −18.3886 −0.774989 −0.387495 0.921872i \(-0.626659\pi\)
−0.387495 + 0.921872i \(0.626659\pi\)
\(564\) −10.3169 + 10.0321i −0.434419 + 0.422426i
\(565\) 12.6523 + 21.9145i 0.532287 + 0.921949i
\(566\) −12.3190 + 21.3371i −0.517806 + 0.896866i
\(567\) −7.79221 + 11.9043i −0.327242 + 0.499932i
\(568\) −4.15444 + 7.19570i −0.174316 + 0.301925i
\(569\) 11.9512 0.501022 0.250511 0.968114i \(-0.419401\pi\)
0.250511 + 0.968114i \(0.419401\pi\)
\(570\) 3.76525 + 1.06559i 0.157709 + 0.0446328i
\(571\) −7.09377 12.2868i −0.296865 0.514186i 0.678552 0.734553i \(-0.262608\pi\)
−0.975417 + 0.220367i \(0.929275\pi\)
\(572\) −1.71148 + 0.599276i −0.0715605 + 0.0250570i
\(573\) −10.1919 40.2836i −0.425772 1.68287i
\(574\) −8.59134 −0.358595
\(575\) 0.883052 + 1.52949i 0.0368258 + 0.0637842i
\(576\) 2.55508 + 1.57213i 0.106461 + 0.0655054i
\(577\) −12.1846 −0.507251 −0.253626 0.967302i \(-0.581623\pi\)
−0.253626 + 0.967302i \(0.581623\pi\)
\(578\) 1.31112 + 2.27092i 0.0545352 + 0.0944578i
\(579\) −6.95378 + 6.76180i −0.288989 + 0.281011i
\(580\) −5.70680 9.88447i −0.236962 0.410430i
\(581\) 14.9921 0.621976
\(582\) 3.22293 + 12.7387i 0.133595 + 0.528036i
\(583\) 5.02668 0.208184
\(584\) 13.8427 0.572817
\(585\) 7.19548 + 22.5547i 0.297497 + 0.932520i
\(586\) 9.05213 0.373940
\(587\) 44.4050 1.83279 0.916394 0.400277i \(-0.131086\pi\)
0.916394 + 0.400277i \(0.131086\pi\)
\(588\) −5.58902 + 5.43472i −0.230487 + 0.224124i
\(589\) 5.16538 0.212836
\(590\) 0.658784 + 1.14105i 0.0271217 + 0.0469762i
\(591\) −0.0442119 0.174748i −0.00181863 0.00718818i
\(592\) 0.0315070 + 0.0545717i 0.00129493 + 0.00224288i
\(593\) −23.5622 −0.967585 −0.483793 0.875183i \(-0.660741\pi\)
−0.483793 + 0.875183i \(0.660741\pi\)
\(594\) 1.76871 + 1.92385i 0.0725711 + 0.0789364i
\(595\) 6.55995 + 11.3622i 0.268932 + 0.465804i
\(596\) 4.24030 0.173689
\(597\) 24.4850 23.8091i 1.00211 0.974440i
\(598\) −5.64433 + 29.8654i −0.230814 + 1.22129i
\(599\) 8.29582 + 14.3688i 0.338958 + 0.587093i 0.984237 0.176854i \(-0.0565921\pi\)
−0.645279 + 0.763947i \(0.723259\pi\)
\(600\) −0.260159 + 0.252976i −0.0106209 + 0.0103277i
\(601\) −18.4642 −0.753172 −0.376586 0.926382i \(-0.622902\pi\)
−0.376586 + 0.926382i \(0.622902\pi\)
\(602\) 7.88367 13.6549i 0.321314 0.556533i
\(603\) 15.7799 8.53081i 0.642609 0.347402i
\(604\) −5.98383 + 10.3643i −0.243479 + 0.421717i
\(605\) −11.7611 20.3709i −0.478159 0.828195i
\(606\) 29.2717 + 8.28411i 1.18908 + 0.336519i
\(607\) −24.4901 −0.994022 −0.497011 0.867744i \(-0.665569\pi\)
−0.497011 + 0.867744i \(0.665569\pi\)
\(608\) −0.516111 + 0.893931i −0.0209311 + 0.0362537i
\(609\) 3.50220 + 13.8425i 0.141916 + 0.560927i
\(610\) −3.13456 + 5.42922i −0.126915 + 0.219823i
\(611\) 5.56293 29.4347i 0.225052 1.19080i
\(612\) 10.0067 5.40975i 0.404498 0.218676i
\(613\) −7.45946 12.9202i −0.301285 0.521841i 0.675142 0.737687i \(-0.264082\pi\)
−0.976427 + 0.215847i \(0.930749\pi\)
\(614\) 18.3002 0.738538
\(615\) 19.8238 + 5.61028i 0.799371 + 0.226228i
\(616\) −0.397537 0.688555i −0.0160172 0.0277427i
\(617\) −6.78895 −0.273313 −0.136656 0.990618i \(-0.543636\pi\)
−0.136656 + 0.990618i \(0.543636\pi\)
\(618\) −4.03980 15.9674i −0.162504 0.642302i
\(619\) −14.8515 + 25.7236i −0.596934 + 1.03392i 0.396337 + 0.918105i \(0.370281\pi\)
−0.993271 + 0.115815i \(0.963052\pi\)
\(620\) 5.47632 9.48526i 0.219934 0.380937i
\(621\) 42.7486 9.55094i 1.71544 0.383266i
\(622\) 5.21196 + 9.02738i 0.208980 + 0.361965i
\(623\) −5.07732 + 8.79418i −0.203419 + 0.352331i
\(624\) −6.23338 + 0.380797i −0.249535 + 0.0152441i
\(625\) 11.9543 + 20.7054i 0.478171 + 0.828217i
\(626\) 15.1740 26.2821i 0.606475 1.05044i
\(627\) −0.644653 + 0.626856i −0.0257450 + 0.0250342i
\(628\) 8.87870 + 15.3784i 0.354299 + 0.613664i
\(629\) 0.238936 0.00952702
\(630\) −9.13127 + 4.93647i −0.363798 + 0.196674i
\(631\) −2.92669 + 5.06917i −0.116510 + 0.201800i −0.918382 0.395695i \(-0.870504\pi\)
0.801873 + 0.597495i \(0.203837\pi\)
\(632\) 2.13387 3.69598i 0.0848810 0.147018i
\(633\) 19.9023 19.3529i 0.791047 0.769208i
\(634\) 3.71925 6.44193i 0.147710 0.255842i
\(635\) −4.43877 + 7.68817i −0.176147 + 0.305096i
\(636\) 16.6570 + 4.71407i 0.660495 + 0.186925i
\(637\) 3.01363 15.9458i 0.119405 0.631797i
\(638\) 2.62268 0.103833
\(639\) −21.9275 + 11.8542i −0.867437 + 0.468946i
\(640\) 1.09436 + 1.89549i 0.0432584 + 0.0749257i
\(641\) −10.4953 18.1784i −0.414539 0.718003i 0.580841 0.814017i \(-0.302724\pi\)
−0.995380 + 0.0960144i \(0.969391\pi\)
\(642\) 0.684817 + 2.70675i 0.0270276 + 0.106827i
\(643\) 21.4715 0.846753 0.423376 0.905954i \(-0.360845\pi\)
0.423376 + 0.905954i \(0.360845\pi\)
\(644\) −13.3264 −0.525133
\(645\) −27.1078 + 26.3594i −1.06737 + 1.03790i
\(646\) 1.95699 + 3.38961i 0.0769968 + 0.133362i
\(647\) −22.9293 39.7147i −0.901443 1.56135i −0.825622 0.564224i \(-0.809175\pi\)
−0.0758216 0.997121i \(-0.524158\pi\)
\(648\) 4.05682 + 8.03382i 0.159367 + 0.315598i
\(649\) −0.302758 −0.0118843
\(650\) 0.140279 0.742249i 0.00550220 0.0291134i
\(651\) −9.82343 + 9.55223i −0.385011 + 0.374381i
\(652\) −10.4495 + 18.0991i −0.409234 + 0.708814i
\(653\) 18.3421 31.7694i 0.717781 1.24323i −0.244096 0.969751i \(-0.578491\pi\)
0.961877 0.273483i \(-0.0881756\pi\)
\(654\) 29.6958 + 8.40414i 1.16120 + 0.328628i
\(655\) 4.06084 7.03359i 0.158670 0.274825i
\(656\) −2.71729 + 4.70648i −0.106092 + 0.183757i
\(657\) 35.3692 + 21.7626i 1.37989 + 0.849039i
\(658\) 13.1342 0.512024
\(659\) 6.30720 + 10.9244i 0.245693 + 0.425554i 0.962326 0.271897i \(-0.0876510\pi\)
−0.716633 + 0.697451i \(0.754318\pi\)
\(660\) 0.467646 + 1.84838i 0.0182031 + 0.0719480i
\(661\) −9.45509 + 16.3767i −0.367761 + 0.636980i −0.989215 0.146470i \(-0.953209\pi\)
0.621455 + 0.783450i \(0.286542\pi\)
\(662\) 1.70727 + 2.95708i 0.0663550 + 0.114930i
\(663\) −10.5674 + 21.1911i −0.410404 + 0.822994i
\(664\) 4.74173 8.21292i 0.184015 0.318723i
\(665\) −1.78578 3.09306i −0.0692496 0.119944i
\(666\) −0.00529102 + 0.188968i −0.000205023 + 0.00732235i
\(667\) 21.9796 38.0698i 0.851055 1.47407i
\(668\) 10.5288 18.2365i 0.407373 0.705591i
\(669\) 9.19079 + 2.60106i 0.355336 + 0.100563i
\(670\) 13.0873 0.505605
\(671\) −0.720278 1.24756i −0.0278060 0.0481615i
\(672\) −0.671597 2.65450i −0.0259074 0.102399i
\(673\) −42.6161 −1.64273 −0.821365 0.570402i \(-0.806787\pi\)
−0.821365 + 0.570402i \(0.806787\pi\)
\(674\) −6.02371 10.4334i −0.232025 0.401879i
\(675\) −1.06244 + 0.237371i −0.0408932 + 0.00913640i
\(676\) 10.1604 8.10965i 0.390784 0.311910i
\(677\) −0.843701 + 1.46133i −0.0324261 + 0.0561636i −0.881783 0.471655i \(-0.843657\pi\)
0.849357 + 0.527819i \(0.176990\pi\)
\(678\) −19.2682 5.45304i −0.739989 0.209423i
\(679\) 5.99656 10.3863i 0.230127 0.398591i
\(680\) 8.29919 0.318260
\(681\) 9.09889 + 35.9635i 0.348670 + 1.37813i
\(682\) 1.25838 + 2.17958i 0.0481859 + 0.0834604i
\(683\) 8.86025 15.3464i 0.339028 0.587214i −0.645222 0.763995i \(-0.723235\pi\)
0.984250 + 0.176781i \(0.0565686\pi\)
\(684\) −2.72408 + 1.47267i −0.104158 + 0.0563088i
\(685\) 5.22560 9.05100i 0.199660 0.345821i
\(686\) 18.1813 0.694166
\(687\) 10.0633 + 39.7754i 0.383939 + 1.51753i
\(688\) −4.98693 8.63762i −0.190125 0.329306i
\(689\) −34.0115 + 11.9092i −1.29574 + 0.453704i
\(690\) 30.7495 + 8.70234i 1.17061 + 0.331292i
\(691\) −9.61795 −0.365884 −0.182942 0.983124i \(-0.558562\pi\)
−0.182942 + 0.983124i \(0.558562\pi\)
\(692\) −5.99936 10.3912i −0.228061 0.395014i
\(693\) 0.0667592 2.38429i 0.00253597 0.0905717i
\(694\) 7.72226 0.293133
\(695\) 16.3716 + 28.3564i 0.621009 + 1.07562i
\(696\) 8.69086 + 2.45958i 0.329426 + 0.0932301i
\(697\) 10.3034 + 17.8461i 0.390270 + 0.675968i
\(698\) 26.4081 0.999562
\(699\) 9.89257 + 2.79967i 0.374171 + 0.105893i
\(700\) 0.331202 0.0125183
\(701\) −0.852825 −0.0322108 −0.0161054 0.999870i \(-0.505127\pi\)
−0.0161054 + 0.999870i \(0.505127\pi\)
\(702\) −16.5254 8.82671i −0.623711 0.333143i
\(703\) −0.0650444 −0.00245320
\(704\) −0.502937 −0.0189551
\(705\) −30.3060 8.57683i −1.14139 0.323022i
\(706\) −34.2383 −1.28858
\(707\) −13.8830 24.0460i −0.522123 0.904344i
\(708\) −1.00326 0.283930i −0.0377048 0.0106707i
\(709\) −12.9136 22.3670i −0.484980 0.840011i 0.514871 0.857268i \(-0.327840\pi\)
−0.999851 + 0.0172572i \(0.994507\pi\)
\(710\) −18.1858 −0.682501
\(711\) 11.2628 6.08878i 0.422387 0.228347i
\(712\) 3.21174 + 5.56289i 0.120365 + 0.208478i
\(713\) 42.1839 1.57980
\(714\) −9.99012 2.82728i −0.373871 0.105808i
\(715\) −3.00889 2.58826i −0.112526 0.0967954i
\(716\) −1.33168 2.30654i −0.0497673 0.0861995i
\(717\) −2.47960 9.80068i −0.0926025 0.366013i
\(718\) 20.0071 0.746658
\(719\) −5.75979 + 9.97624i −0.214804 + 0.372051i −0.953212 0.302303i \(-0.902245\pi\)
0.738408 + 0.674354i \(0.235578\pi\)
\(720\) −0.183778 + 6.56359i −0.00684900 + 0.244610i
\(721\) −7.51641 + 13.0188i −0.279926 + 0.484846i
\(722\) 8.96726 + 15.5317i 0.333727 + 0.578032i
\(723\) −4.92050 19.4484i −0.182995 0.723293i
\(724\) −8.09512 −0.300853
\(725\) −0.546262 + 0.946154i −0.0202877 + 0.0351393i
\(726\) 17.9110 + 5.06895i 0.664739 + 0.188126i
\(727\) −9.39286 + 16.2689i −0.348362 + 0.603381i −0.985959 0.166990i \(-0.946595\pi\)
0.637597 + 0.770370i \(0.279929\pi\)
\(728\) 4.32114 + 3.71706i 0.160152 + 0.137763i
\(729\) −2.26471 + 26.9049i −0.0838782 + 0.996476i
\(730\) 15.1489 + 26.2387i 0.560687 + 0.971139i
\(731\) −37.8189 −1.39878
\(732\) −1.21683 4.80955i −0.0449754 0.177766i
\(733\) 18.9323 + 32.7917i 0.699279 + 1.21119i 0.968717 + 0.248169i \(0.0798290\pi\)
−0.269437 + 0.963018i \(0.586838\pi\)
\(734\) 27.7949 1.02593
\(735\) −16.4178 4.64638i −0.605581 0.171384i
\(736\) −4.21490 + 7.30043i −0.155363 + 0.269097i
\(737\) −1.50363 + 2.60437i −0.0553871 + 0.0959332i
\(738\) −14.3421 + 7.75349i −0.527939 + 0.285410i
\(739\) −3.39393 5.87846i −0.124848 0.216243i 0.796826 0.604209i \(-0.206511\pi\)
−0.921673 + 0.387967i \(0.873178\pi\)
\(740\) −0.0689599 + 0.119442i −0.00253502 + 0.00439078i
\(741\) 2.87671 5.76874i 0.105679 0.211920i
\(742\) −7.90010 13.6834i −0.290022 0.502333i
\(743\) 5.55678 9.62462i 0.203858 0.353093i −0.745910 0.666047i \(-0.767985\pi\)
0.949768 + 0.312954i \(0.101318\pi\)
\(744\) 2.12590 + 8.40265i 0.0779392 + 0.308056i
\(745\) 4.64041 + 8.03743i 0.170012 + 0.294469i
\(746\) −12.3059 −0.450550
\(747\) 25.0272 13.5300i 0.915699 0.495037i
\(748\) −0.953518 + 1.65154i −0.0348641 + 0.0603863i
\(749\) 1.27417 2.20692i 0.0465570 0.0806391i
\(750\) −19.0028 5.37793i −0.693883 0.196374i
\(751\) 3.58697 6.21282i 0.130891 0.226709i −0.793130 0.609053i \(-0.791550\pi\)
0.924020 + 0.382344i \(0.124883\pi\)
\(752\) 4.15412 7.19514i 0.151485 0.262380i
\(753\) 3.21055 3.12191i 0.116999 0.113769i
\(754\) −17.7456 + 6.21365i −0.646257 + 0.226288i
\(755\) −26.1938 −0.953292
\(756\) 2.45723 7.83828i 0.0893687 0.285075i
\(757\) −18.5543 32.1370i −0.674368 1.16804i −0.976653 0.214822i \(-0.931083\pi\)
0.302286 0.953217i \(-0.402250\pi\)
\(758\) −4.55621 7.89159i −0.165489 0.286635i
\(759\) −5.26466 + 5.11932i −0.191095 + 0.185820i
\(760\) −2.25925 −0.0819514
\(761\) −17.1003 −0.619887 −0.309943 0.950755i \(-0.600310\pi\)
−0.309943 + 0.950755i \(0.600310\pi\)
\(762\) −1.72312 6.81067i −0.0624221 0.246724i
\(763\) −14.0841 24.3944i −0.509880 0.883137i
\(764\) 11.9953 + 20.7764i 0.433974 + 0.751665i
\(765\) 21.2051 + 13.0474i 0.766671 + 0.471730i
\(766\) −5.01951 −0.181362
\(767\) 2.04852 0.717294i 0.0739679 0.0259000i
\(768\) −1.66659 0.471659i −0.0601381 0.0170195i
\(769\) 12.2695 21.2513i 0.442448 0.766343i −0.555422 0.831568i \(-0.687443\pi\)
0.997871 + 0.0652257i \(0.0207767\pi\)
\(770\) 0.870098 1.50705i 0.0313561 0.0543104i
\(771\) 26.8712 26.1294i 0.967744 0.941027i
\(772\) 2.79996 4.84966i 0.100773 0.174543i
\(773\) 11.3259 19.6170i 0.407363 0.705573i −0.587231 0.809420i \(-0.699782\pi\)
0.994593 + 0.103847i \(0.0331152\pi\)
\(774\) 0.837465 29.9099i 0.0301021 1.07509i
\(775\) −1.04840 −0.0376597
\(776\) −3.79321 6.57004i −0.136168 0.235851i
\(777\) 0.123700 0.120285i 0.00443773 0.00431521i
\(778\) 11.1313 19.2800i 0.399077 0.691222i
\(779\) −2.80485 4.85814i −0.100494 0.174061i
\(780\) −7.54335 11.3986i −0.270095 0.408134i
\(781\) 2.08942 3.61898i 0.0747653 0.129497i
\(782\) 15.9821 + 27.6818i 0.571518 + 0.989899i
\(783\) 18.3390 + 19.9476i 0.655383 + 0.712868i
\(784\) 2.25043 3.89786i 0.0803726 0.139209i
\(785\) −19.4330 + 33.6589i −0.693593 + 1.20134i
\(786\) 1.57641 + 6.23080i 0.0562288 + 0.222245i
\(787\) 31.6876 1.12954 0.564771 0.825248i \(-0.308964\pi\)
0.564771 + 0.825248i \(0.308964\pi\)
\(788\) 0.0520349 + 0.0901272i 0.00185367 + 0.00321065i
\(789\) −22.8654 6.47109i −0.814031 0.230377i
\(790\) 9.34091 0.332335
\(791\) 9.13851 + 15.8284i 0.324928 + 0.562792i
\(792\) −1.28504 0.790681i −0.0456619 0.0280956i
\(793\) 7.82925 + 6.73475i 0.278025 + 0.239158i
\(794\) −13.0759 + 22.6481i −0.464045 + 0.803750i
\(795\) 9.29334 + 36.7321i 0.329601 + 1.30275i
\(796\) −9.85896 + 17.0762i −0.349441 + 0.605250i
\(797\) 29.3558 1.03983 0.519917 0.854217i \(-0.325963\pi\)
0.519917 + 0.854217i \(0.325963\pi\)
\(798\) 2.71956 + 0.769655i 0.0962712 + 0.0272455i
\(799\) −15.7516 27.2826i −0.557251 0.965188i
\(800\) 0.104754 0.181438i 0.00370360 0.00641482i
\(801\) −0.539353 + 19.2629i −0.0190571 + 0.680620i
\(802\) 13.0125 22.5384i 0.459488 0.795857i
\(803\) −6.96202 −0.245684
\(804\) −7.42504 + 7.22005i −0.261861 + 0.254632i
\(805\) −14.5839 25.2600i −0.514014 0.890298i
\(806\) −13.6783 11.7661i −0.481797 0.414444i
\(807\) 13.0387 12.6787i 0.458983 0.446311i
\(808\) −17.5638 −0.617891
\(809\) 12.6075 + 21.8369i 0.443257 + 0.767743i 0.997929 0.0643259i \(-0.0204897\pi\)
−0.554672 + 0.832069i \(0.687156\pi\)
\(810\) −10.7884 + 16.4815i −0.379065 + 0.579102i
\(811\) 19.9539 0.700677 0.350338 0.936623i \(-0.386067\pi\)
0.350338 + 0.936623i \(0.386067\pi\)
\(812\) −4.12190 7.13934i −0.144650 0.250542i
\(813\) 11.3958 + 45.0421i 0.399668 + 1.57969i
\(814\) −0.0158460 0.0274461i −0.000555402 0.000961985i
\(815\) −45.7420 −1.60227
\(816\) −4.70853 + 4.57854i −0.164832 + 0.160281i
\(817\) 10.2953 0.360185
\(818\) −11.7798 −0.411872
\(819\) 5.19714 + 16.2907i 0.181603 + 0.569245i
\(820\) −11.8948 −0.415383
\(821\) −42.8230 −1.49453 −0.747266 0.664525i \(-0.768634\pi\)
−0.747266 + 0.664525i \(0.768634\pi\)
\(822\) 2.02857 + 8.01795i 0.0707544 + 0.279658i
\(823\) −28.2340 −0.984177 −0.492088 0.870545i \(-0.663766\pi\)
−0.492088 + 0.870545i \(0.663766\pi\)
\(824\) 4.75462 + 8.23524i 0.165635 + 0.286888i
\(825\) 0.130843 0.127231i 0.00455538 0.00442962i
\(826\) 0.475826 + 0.824154i 0.0165561 + 0.0286760i
\(827\) 19.0288 0.661696 0.330848 0.943684i \(-0.392665\pi\)
0.330848 + 0.943684i \(0.392665\pi\)
\(828\) −22.2466 + 12.0268i −0.773123 + 0.417959i
\(829\) 17.7356 + 30.7190i 0.615983 + 1.06691i 0.990211 + 0.139577i \(0.0445742\pi\)
−0.374229 + 0.927337i \(0.622092\pi\)
\(830\) 20.7566 0.720473
\(831\) −10.3031 40.7231i −0.357409 1.41267i
\(832\) 3.40297 1.19155i 0.117977 0.0413097i
\(833\) −8.53320 14.7799i −0.295658 0.512094i
\(834\) −24.9322 7.05600i −0.863331 0.244329i
\(835\) 46.0894 1.59499
\(836\) 0.259571 0.449590i 0.00897746 0.0155494i
\(837\) −7.77822 + 24.8116i −0.268855 + 0.857614i
\(838\) −14.9908 + 25.9648i −0.517848 + 0.896940i
\(839\) −28.8184 49.9149i −0.994921 1.72325i −0.584632 0.811299i \(-0.698761\pi\)
−0.410289 0.911955i \(-0.634572\pi\)
\(840\) 4.29660 4.17798i 0.148247 0.144154i
\(841\) −1.80649 −0.0622926
\(842\) −9.62578 + 16.6723i −0.331726 + 0.574567i
\(843\) 29.6887 28.8691i 1.02253 0.994304i
\(844\) −8.01373 + 13.8802i −0.275844 + 0.477775i
\(845\) 26.4909 + 10.3840i 0.911313 + 0.357221i
\(846\) 21.9258 11.8533i 0.753824 0.407526i
\(847\) −8.49482 14.7135i −0.291886 0.505561i
\(848\) −9.99466 −0.343218
\(849\) 30.5946 29.7500i 1.05000 1.02102i
\(850\) −0.397205 0.687979i −0.0136240 0.0235975i
\(851\) −0.531195 −0.0182091
\(852\) 10.3177 10.0328i 0.353478 0.343719i
\(853\) −20.3319 + 35.2159i −0.696152 + 1.20577i 0.273639 + 0.961832i \(0.411773\pi\)
−0.969791 + 0.243938i \(0.921561\pi\)
\(854\) −2.26403 + 3.92141i −0.0774735 + 0.134188i
\(855\) −5.77254 3.55182i −0.197417 0.121470i
\(856\) −0.805993 1.39602i −0.0275483 0.0477150i
\(857\) 7.25844 12.5720i 0.247944 0.429451i −0.715011 0.699113i \(-0.753579\pi\)
0.962955 + 0.269662i \(0.0869119\pi\)
\(858\) 3.13499 0.191517i 0.107027 0.00653828i
\(859\) −10.3569 17.9386i −0.353372 0.612058i 0.633466 0.773770i \(-0.281632\pi\)
−0.986838 + 0.161713i \(0.948298\pi\)
\(860\) 10.9150 18.9053i 0.372198 0.644667i
\(861\) 14.3183 + 4.05218i 0.487966 + 0.138098i
\(862\) −4.11765 7.13198i −0.140248 0.242916i
\(863\) −42.2200 −1.43719 −0.718594 0.695430i \(-0.755214\pi\)
−0.718594 + 0.695430i \(0.755214\pi\)
\(864\) −3.51677 3.82523i −0.119643 0.130137i
\(865\) 13.1309 22.7434i 0.446465 0.773299i
\(866\) 1.34932 2.33708i 0.0458516 0.0794173i
\(867\) −1.11400 4.40310i −0.0378334 0.149537i
\(868\) 3.95543 6.85100i 0.134256 0.232538i
\(869\) −1.07320 + 1.85884i −0.0364059 + 0.0630569i
\(870\) 4.84882 + 19.1651i 0.164391 + 0.649757i
\(871\) 4.00363 21.1841i 0.135658 0.717796i
\(872\) −17.8183 −0.603402
\(873\) 0.637001 22.7504i 0.0215592 0.769983i
\(874\) −4.35072 7.53567i −0.147165 0.254898i
\(875\) 9.01263 + 15.6103i 0.304682 + 0.527726i
\(876\) −23.0702 6.52905i −0.779471 0.220596i
\(877\) 0.304202 0.0102722 0.00513609 0.999987i \(-0.498365\pi\)
0.00513609 + 0.999987i \(0.498365\pi\)
\(878\) 29.8318 1.00677
\(879\) −15.0862 4.26952i −0.508846 0.144007i
\(880\) −0.550393 0.953309i −0.0185538 0.0321361i
\(881\) 8.50208 + 14.7260i 0.286442 + 0.496133i 0.972958 0.230982i \(-0.0741939\pi\)
−0.686516 + 0.727115i \(0.740861\pi\)
\(882\) 11.8780 6.42137i 0.399952 0.216219i
\(883\) −31.1680 −1.04889 −0.524443 0.851446i \(-0.675726\pi\)
−0.524443 + 0.851446i \(0.675726\pi\)
\(884\) 2.53887 13.4337i 0.0853914 0.451825i
\(885\) −0.559741 2.21239i −0.0188155 0.0743685i
\(886\) 1.33729 2.31625i 0.0449270 0.0778159i
\(887\) −6.41145 + 11.1050i −0.215276 + 0.372868i −0.953358 0.301843i \(-0.902398\pi\)
0.738082 + 0.674711i \(0.235732\pi\)
\(888\) −0.0267701 0.105809i −0.000898347 0.00355073i
\(889\) −3.20603 + 5.55300i −0.107527 + 0.186242i
\(890\) −7.02959 + 12.1756i −0.235632 + 0.408127i
\(891\) −2.04032 4.04050i −0.0683534 0.135362i
\(892\) −5.51471 −0.184646
\(893\) 4.28797 + 7.42699i 0.143492 + 0.248535i
\(894\) −7.06686 1.99998i −0.236351 0.0668892i
\(895\) 2.91468 5.04837i 0.0974269 0.168748i
\(896\) 0.790433 + 1.36907i 0.0264065 + 0.0457374i
\(897\) 23.4931 47.1114i 0.784412 1.57300i
\(898\) −1.88447 + 3.26401i −0.0628857 + 0.108921i
\(899\) 13.0476 + 22.5991i 0.435163 + 0.753724i
\(900\) 0.552898 0.298903i 0.0184299 0.00996343i
\(901\) −18.9489 + 32.8204i −0.631279 + 1.09341i
\(902\) 1.36662 2.36706i 0.0455036 0.0788146i
\(903\) −19.5794 + 19.0388i −0.651560 + 0.633572i
\(904\) 11.5614 0.384526
\(905\) −8.85897 15.3442i −0.294482 0.510058i
\(906\) 14.8610 14.4508i 0.493725 0.480094i
\(907\) 41.7253 1.38546 0.692732 0.721195i \(-0.256407\pi\)
0.692732 + 0.721195i \(0.256407\pi\)
\(908\) −10.7089 18.5484i −0.355387 0.615549i
\(909\) −44.8768 27.6125i −1.48847 0.915850i
\(910\) −2.31675 + 12.2585i −0.0767996 + 0.406364i
\(911\) 2.74971 4.76264i 0.0911020 0.157793i −0.816873 0.576817i \(-0.804294\pi\)
0.907975 + 0.419024i \(0.137628\pi\)
\(912\) 1.28178 1.24639i 0.0424439 0.0412722i
\(913\) −2.38479 + 4.13058i −0.0789250 + 0.136702i
\(914\) 22.8754 0.756649
\(915\) 7.78479 7.56987i 0.257357 0.250252i
\(916\) −11.8440 20.5144i −0.391336 0.677814i
\(917\) 2.93306 5.08021i 0.0968581 0.167763i
\(918\) −19.2287 + 4.29610i −0.634642 + 0.141792i
\(919\) −20.2614 + 35.0938i −0.668362 + 1.15764i 0.310000 + 0.950736i \(0.399671\pi\)
−0.978362 + 0.206900i \(0.933662\pi\)
\(920\) −18.4505 −0.608295
\(921\) −30.4991 8.63148i −1.00498 0.284417i
\(922\) −9.21067 15.9533i −0.303337 0.525395i
\(923\) −5.56335 + 29.4370i −0.183120 + 0.968930i
\(924\) 0.337770 + 1.33504i 0.0111118 + 0.0439197i
\(925\) 0.0132019 0.000434075
\(926\) 9.45153 + 16.3705i 0.310596 + 0.537969i
\(927\) −0.798452 + 28.5165i −0.0262246 + 0.936606i
\(928\) −5.21474 −0.171182
\(929\) 15.0423 + 26.0541i 0.493523 + 0.854807i 0.999972 0.00746317i \(-0.00237562\pi\)
−0.506449 + 0.862270i \(0.669042\pi\)
\(930\) −13.6006 + 13.2251i −0.445982 + 0.433669i
\(931\) 2.32295 + 4.02346i 0.0761315 + 0.131864i
\(932\) −5.93580 −0.194434
\(933\) −4.42838 17.5032i −0.144979 0.573031i
\(934\) 24.6818 0.807613
\(935\) −4.17397 −0.136503
\(936\) 10.5681 + 2.30539i 0.345430 + 0.0753542i
\(937\) 5.81770 0.190056 0.0950279 0.995475i \(-0.469706\pi\)
0.0950279 + 0.995475i \(0.469706\pi\)
\(938\) 9.45266 0.308640
\(939\) −37.6851 + 36.6447i −1.22981 + 1.19585i
\(940\) 18.1844 0.593110
\(941\) 16.7402 + 28.9948i 0.545714 + 0.945204i 0.998562 + 0.0536160i \(0.0170747\pi\)
−0.452848 + 0.891588i \(0.649592\pi\)
\(942\) −7.54385 29.8172i −0.245792 0.971498i
\(943\) −22.9062 39.6748i −0.745930 1.29199i
\(944\) 0.601981 0.0195928
\(945\) 17.5465 3.92024i 0.570786 0.127526i
\(946\) 2.50811 + 4.34418i 0.0815457 + 0.141241i
\(947\) −43.5979 −1.41674 −0.708371 0.705841i \(-0.750569\pi\)
−0.708371 + 0.705841i \(0.750569\pi\)
\(948\) −5.29955 + 5.15324i −0.172121 + 0.167369i
\(949\) 47.1064 16.4944i 1.52914 0.535430i
\(950\) 0.108129 + 0.187285i 0.00350817 + 0.00607632i
\(951\) −9.23688 + 8.98187i −0.299526 + 0.291257i
\(952\) 5.99433 0.194277
\(953\) −29.1665 + 50.5179i −0.944795 + 1.63643i −0.188635 + 0.982047i \(0.560406\pi\)
−0.756160 + 0.654386i \(0.772927\pi\)
\(954\) −25.5371 15.7129i −0.826794 0.508724i
\(955\) −26.2543 + 45.4738i −0.849569 + 1.47150i
\(956\) 2.91836 + 5.05475i 0.0943865 + 0.163482i
\(957\) −4.37095 1.23701i −0.141293 0.0399869i
\(958\) 36.6440 1.18391
\(959\) 3.77434 6.53734i 0.121880 0.211102i
\(960\) −0.929831 3.67517i −0.0300102 0.118616i
\(961\) 2.97934 5.16036i 0.0961076 0.166463i
\(962\) 0.172242 + 0.148163i 0.00555332 + 0.00477698i
\(963\) 0.135352 4.83406i 0.00436165 0.155775i
\(964\) 5.79116 + 10.0306i 0.186521 + 0.323063i
\(965\) 12.2566 0.394555
\(966\) 22.2097 + 6.28551i 0.714585 + 0.202233i
\(967\) −7.60966 13.1803i −0.244710 0.423850i 0.717340 0.696723i \(-0.245359\pi\)
−0.962050 + 0.272873i \(0.912026\pi\)
\(968\) −10.7471 −0.345423
\(969\) −1.66277 6.57214i −0.0534159 0.211127i
\(970\) 8.30228 14.3800i 0.266570 0.461713i
\(971\) 9.56971 16.5752i 0.307107 0.531924i −0.670621 0.741800i \(-0.733972\pi\)
0.977728 + 0.209875i \(0.0673058\pi\)
\(972\) −2.97185 15.3026i −0.0953222 0.490830i
\(973\) 11.8248 + 20.4812i 0.379087 + 0.656598i
\(974\) −4.39414 + 7.61087i −0.140797 + 0.243868i
\(975\) −0.583877 + 1.17086i −0.0186990 + 0.0374977i
\(976\) 1.43215 + 2.48055i 0.0458419 + 0.0794004i
\(977\) 23.3594 40.4597i 0.747335 1.29442i −0.201761 0.979435i \(-0.564666\pi\)
0.949096 0.314987i \(-0.102000\pi\)
\(978\) 25.9517 25.2352i 0.829842 0.806932i
\(979\) −1.61530 2.79778i −0.0516252 0.0894175i
\(980\) 9.85113 0.314683
\(981\) −45.5270 28.0126i −1.45356 0.894373i
\(982\) 8.82292 15.2817i 0.281551 0.487660i
\(983\) −4.32744 + 7.49535i −0.138024 + 0.239064i −0.926749 0.375682i \(-0.877408\pi\)
0.788725 + 0.614747i \(0.210742\pi\)
\(984\) 6.74848 6.56217i 0.215134 0.209194i
\(985\) −0.113890 + 0.197263i −0.00362883 + 0.00628532i
\(986\) −9.88663 + 17.1242i −0.314855 + 0.545344i
\(987\) −21.8894 6.19486i −0.696747 0.197185i
\(988\) −0.691143 + 3.65699i −0.0219882 + 0.116344i
\(989\) 84.0778 2.67352
\(990\) 0.0924286 3.30107i 0.00293757 0.104915i
\(991\) −2.67182 4.62773i −0.0848733 0.147005i 0.820464 0.571698i \(-0.193715\pi\)
−0.905337 + 0.424693i \(0.860382\pi\)
\(992\) −2.50207 4.33370i −0.0794407 0.137595i
\(993\) −1.45060 5.73350i −0.0460332 0.181947i
\(994\) −13.1352 −0.416624
\(995\) −43.1570 −1.36817
\(996\) −11.7762 + 11.4511i −0.373144 + 0.362843i
\(997\) −2.19341 3.79910i −0.0694661 0.120319i 0.829200 0.558952i \(-0.188796\pi\)
−0.898666 + 0.438633i \(0.855463\pi\)
\(998\) −19.3003 33.4291i −0.610940 1.05818i
\(999\) 0.0979464 0.312437i 0.00309889 0.00988507i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.f.d.133.1 12
3.2 odd 2 702.2.f.c.289.2 12
9.4 even 3 234.2.g.c.211.4 yes 12
9.5 odd 6 702.2.g.d.523.2 12
13.9 even 3 234.2.g.c.61.4 yes 12
39.35 odd 6 702.2.g.d.451.2 12
117.22 even 3 inner 234.2.f.d.139.1 yes 12
117.113 odd 6 702.2.f.c.685.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.f.d.133.1 12 1.1 even 1 trivial
234.2.f.d.139.1 yes 12 117.22 even 3 inner
234.2.g.c.61.4 yes 12 13.9 even 3
234.2.g.c.211.4 yes 12 9.4 even 3
702.2.f.c.289.2 12 3.2 odd 2
702.2.f.c.685.2 12 117.113 odd 6
702.2.g.d.451.2 12 39.35 odd 6
702.2.g.d.523.2 12 9.5 odd 6