Properties

Label 2325.2.c.l.1024.3
Level $2325$
Weight $2$
Character 2325.1024
Analytic conductor $18.565$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Error: no document with id 226758600 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1024,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1024"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-10,0,6,0,0,-6,0,4,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 465)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1024.3
Root \(1.45161 + 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 2325.1024
Dual form 2325.2.c.l.1024.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21432i q^{2} -1.00000i q^{3} +0.525428 q^{4} -1.21432 q^{6} -1.59210i q^{7} -3.06668i q^{8} -1.00000 q^{9} +0.622216 q^{11} -0.525428i q^{12} -0.214320i q^{13} -1.93332 q^{14} -2.67307 q^{16} +3.52543i q^{17} +1.21432i q^{18} -1.80642 q^{19} -1.59210 q^{21} -0.755569i q^{22} -6.90321i q^{23} -3.06668 q^{24} -0.260253 q^{26} +1.00000i q^{27} -0.836535i q^{28} -9.73975 q^{29} -1.00000 q^{31} -2.88739i q^{32} -0.622216i q^{33} +4.28100 q^{34} -0.525428 q^{36} -4.83654i q^{37} +2.19358i q^{38} -0.214320 q^{39} -7.47949 q^{41} +1.93332i q^{42} -8.23506i q^{43} +0.326929 q^{44} -8.38271 q^{46} +11.4652i q^{47} +2.67307i q^{48} +4.46520 q^{49} +3.52543 q^{51} -0.112610i q^{52} -13.7605i q^{53} +1.21432 q^{54} -4.88247 q^{56} +1.80642i q^{57} +11.8272i q^{58} +4.26025 q^{59} +2.85728 q^{61} +1.21432i q^{62} +1.59210i q^{63} -8.85236 q^{64} -0.755569 q^{66} -2.08097i q^{67} +1.85236i q^{68} -6.90321 q^{69} +1.31111 q^{71} +3.06668i q^{72} +1.65233i q^{73} -5.87310 q^{74} -0.949145 q^{76} -0.990632i q^{77} +0.260253i q^{78} +5.19850 q^{79} +1.00000 q^{81} +9.08250i q^{82} +5.65878i q^{83} -0.836535 q^{84} -10.0000 q^{86} +9.73975i q^{87} -1.90813i q^{88} +1.93332 q^{89} -0.341219 q^{91} -3.62714i q^{92} +1.00000i q^{93} +13.9224 q^{94} -2.88739 q^{96} +6.91750i q^{97} -5.42219i q^{98} -0.622216 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{4} + 6 q^{6} - 6 q^{9} + 4 q^{11} - 12 q^{14} + 10 q^{16} + 16 q^{19} + 4 q^{21} - 18 q^{24} - 28 q^{26} - 32 q^{29} - 6 q^{31} + 12 q^{34} + 10 q^{36} + 12 q^{39} + 8 q^{41} + 28 q^{44} + 16 q^{46}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2325\mathbb{Z}\right)^\times\).

\(n\) \(652\) \(776\) \(1801\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.21432i − 0.858654i −0.903149 0.429327i \(-0.858751\pi\)
0.903149 0.429327i \(-0.141249\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) 0.525428 0.262714
\(5\) 0 0
\(6\) −1.21432 −0.495744
\(7\) − 1.59210i − 0.601759i −0.953662 0.300879i \(-0.902720\pi\)
0.953662 0.300879i \(-0.0972802\pi\)
\(8\) − 3.06668i − 1.08423i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.622216 0.187605 0.0938025 0.995591i \(-0.470098\pi\)
0.0938025 + 0.995591i \(0.470098\pi\)
\(12\) − 0.525428i − 0.151678i
\(13\) − 0.214320i − 0.0594416i −0.999558 0.0297208i \(-0.990538\pi\)
0.999558 0.0297208i \(-0.00946182\pi\)
\(14\) −1.93332 −0.516702
\(15\) 0 0
\(16\) −2.67307 −0.668268
\(17\) 3.52543i 0.855042i 0.904005 + 0.427521i \(0.140613\pi\)
−0.904005 + 0.427521i \(0.859387\pi\)
\(18\) 1.21432i 0.286218i
\(19\) −1.80642 −0.414422 −0.207211 0.978296i \(-0.566439\pi\)
−0.207211 + 0.978296i \(0.566439\pi\)
\(20\) 0 0
\(21\) −1.59210 −0.347426
\(22\) − 0.755569i − 0.161088i
\(23\) − 6.90321i − 1.43942i −0.694275 0.719710i \(-0.744275\pi\)
0.694275 0.719710i \(-0.255725\pi\)
\(24\) −3.06668 −0.625983
\(25\) 0 0
\(26\) −0.260253 −0.0510398
\(27\) 1.00000i 0.192450i
\(28\) − 0.836535i − 0.158090i
\(29\) −9.73975 −1.80863 −0.904313 0.426870i \(-0.859616\pi\)
−0.904313 + 0.426870i \(0.859616\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) − 2.88739i − 0.510423i
\(33\) − 0.622216i − 0.108314i
\(34\) 4.28100 0.734185
\(35\) 0 0
\(36\) −0.525428 −0.0875713
\(37\) − 4.83654i − 0.795122i −0.917576 0.397561i \(-0.869857\pi\)
0.917576 0.397561i \(-0.130143\pi\)
\(38\) 2.19358i 0.355845i
\(39\) −0.214320 −0.0343186
\(40\) 0 0
\(41\) −7.47949 −1.16810 −0.584050 0.811717i \(-0.698533\pi\)
−0.584050 + 0.811717i \(0.698533\pi\)
\(42\) 1.93332i 0.298318i
\(43\) − 8.23506i − 1.25584i −0.778280 0.627918i \(-0.783907\pi\)
0.778280 0.627918i \(-0.216093\pi\)
\(44\) 0.326929 0.0492864
\(45\) 0 0
\(46\) −8.38271 −1.23596
\(47\) 11.4652i 1.67237i 0.548446 + 0.836186i \(0.315220\pi\)
−0.548446 + 0.836186i \(0.684780\pi\)
\(48\) 2.67307i 0.385825i
\(49\) 4.46520 0.637886
\(50\) 0 0
\(51\) 3.52543 0.493659
\(52\) − 0.112610i − 0.0156161i
\(53\) − 13.7605i − 1.89015i −0.326855 0.945074i \(-0.605989\pi\)
0.326855 0.945074i \(-0.394011\pi\)
\(54\) 1.21432 0.165248
\(55\) 0 0
\(56\) −4.88247 −0.652447
\(57\) 1.80642i 0.239267i
\(58\) 11.8272i 1.55298i
\(59\) 4.26025 0.554638 0.277319 0.960778i \(-0.410554\pi\)
0.277319 + 0.960778i \(0.410554\pi\)
\(60\) 0 0
\(61\) 2.85728 0.365837 0.182919 0.983128i \(-0.441446\pi\)
0.182919 + 0.983128i \(0.441446\pi\)
\(62\) 1.21432i 0.154219i
\(63\) 1.59210i 0.200586i
\(64\) −8.85236 −1.10654
\(65\) 0 0
\(66\) −0.755569 −0.0930041
\(67\) − 2.08097i − 0.254231i −0.991888 0.127115i \(-0.959428\pi\)
0.991888 0.127115i \(-0.0405718\pi\)
\(68\) 1.85236i 0.224631i
\(69\) −6.90321 −0.831049
\(70\) 0 0
\(71\) 1.31111 0.155600 0.0777999 0.996969i \(-0.475210\pi\)
0.0777999 + 0.996969i \(0.475210\pi\)
\(72\) 3.06668i 0.361411i
\(73\) 1.65233i 0.193390i 0.995314 + 0.0966951i \(0.0308272\pi\)
−0.995314 + 0.0966951i \(0.969173\pi\)
\(74\) −5.87310 −0.682734
\(75\) 0 0
\(76\) −0.949145 −0.108874
\(77\) − 0.990632i − 0.112893i
\(78\) 0.260253i 0.0294678i
\(79\) 5.19850 0.584877 0.292438 0.956284i \(-0.405533\pi\)
0.292438 + 0.956284i \(0.405533\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 9.08250i 1.00299i
\(83\) 5.65878i 0.621132i 0.950552 + 0.310566i \(0.100519\pi\)
−0.950552 + 0.310566i \(0.899481\pi\)
\(84\) −0.836535 −0.0912735
\(85\) 0 0
\(86\) −10.0000 −1.07833
\(87\) 9.73975i 1.04421i
\(88\) − 1.90813i − 0.203408i
\(89\) 1.93332 0.204932 0.102466 0.994737i \(-0.467327\pi\)
0.102466 + 0.994737i \(0.467327\pi\)
\(90\) 0 0
\(91\) −0.341219 −0.0357695
\(92\) − 3.62714i − 0.378155i
\(93\) 1.00000i 0.103695i
\(94\) 13.9224 1.43599
\(95\) 0 0
\(96\) −2.88739 −0.294693
\(97\) 6.91750i 0.702366i 0.936307 + 0.351183i \(0.114220\pi\)
−0.936307 + 0.351183i \(0.885780\pi\)
\(98\) − 5.42219i − 0.547723i
\(99\) −0.622216 −0.0625350
\(100\) 0 0
\(101\) −9.28592 −0.923983 −0.461992 0.886884i \(-0.652865\pi\)
−0.461992 + 0.886884i \(0.652865\pi\)
\(102\) − 4.28100i − 0.423882i
\(103\) − 0.274543i − 0.0270515i −0.999909 0.0135258i \(-0.995694\pi\)
0.999909 0.0135258i \(-0.00430551\pi\)
\(104\) −0.657249 −0.0644486
\(105\) 0 0
\(106\) −16.7096 −1.62298
\(107\) − 8.18913i − 0.791673i −0.918321 0.395837i \(-0.870455\pi\)
0.918321 0.395837i \(-0.129545\pi\)
\(108\) 0.525428i 0.0505593i
\(109\) 9.13828 0.875288 0.437644 0.899148i \(-0.355813\pi\)
0.437644 + 0.899148i \(0.355813\pi\)
\(110\) 0 0
\(111\) −4.83654 −0.459064
\(112\) 4.25581i 0.402136i
\(113\) − 7.67307i − 0.721822i −0.932600 0.360911i \(-0.882466\pi\)
0.932600 0.360911i \(-0.117534\pi\)
\(114\) 2.19358 0.205447
\(115\) 0 0
\(116\) −5.11753 −0.475151
\(117\) 0.214320i 0.0198139i
\(118\) − 5.17331i − 0.476242i
\(119\) 5.61285 0.514529
\(120\) 0 0
\(121\) −10.6128 −0.964804
\(122\) − 3.46965i − 0.314127i
\(123\) 7.47949i 0.674403i
\(124\) −0.525428 −0.0471848
\(125\) 0 0
\(126\) 1.93332 0.172234
\(127\) 13.6731i 1.21329i 0.794973 + 0.606644i \(0.207485\pi\)
−0.794973 + 0.606644i \(0.792515\pi\)
\(128\) 4.97481i 0.439715i
\(129\) −8.23506 −0.725057
\(130\) 0 0
\(131\) −22.2701 −1.94575 −0.972874 0.231337i \(-0.925690\pi\)
−0.972874 + 0.231337i \(0.925690\pi\)
\(132\) − 0.326929i − 0.0284555i
\(133\) 2.87601i 0.249382i
\(134\) −2.52696 −0.218296
\(135\) 0 0
\(136\) 10.8113 0.927065
\(137\) − 18.1891i − 1.55400i −0.629499 0.777001i \(-0.716740\pi\)
0.629499 0.777001i \(-0.283260\pi\)
\(138\) 8.38271i 0.713583i
\(139\) 4.13335 0.350586 0.175293 0.984516i \(-0.443913\pi\)
0.175293 + 0.984516i \(0.443913\pi\)
\(140\) 0 0
\(141\) 11.4652 0.965544
\(142\) − 1.59210i − 0.133606i
\(143\) − 0.133353i − 0.0111515i
\(144\) 2.67307 0.222756
\(145\) 0 0
\(146\) 2.00645 0.166055
\(147\) − 4.46520i − 0.368284i
\(148\) − 2.54125i − 0.208889i
\(149\) −6.23506 −0.510796 −0.255398 0.966836i \(-0.582207\pi\)
−0.255398 + 0.966836i \(0.582207\pi\)
\(150\) 0 0
\(151\) 8.38271 0.682175 0.341087 0.940032i \(-0.389205\pi\)
0.341087 + 0.940032i \(0.389205\pi\)
\(152\) 5.53972i 0.449330i
\(153\) − 3.52543i − 0.285014i
\(154\) −1.20294 −0.0969360
\(155\) 0 0
\(156\) −0.112610 −0.00901598
\(157\) − 10.2351i − 0.816847i −0.912793 0.408423i \(-0.866079\pi\)
0.912793 0.408423i \(-0.133921\pi\)
\(158\) − 6.31264i − 0.502207i
\(159\) −13.7605 −1.09128
\(160\) 0 0
\(161\) −10.9906 −0.866183
\(162\) − 1.21432i − 0.0954060i
\(163\) − 5.82717i − 0.456419i −0.973612 0.228209i \(-0.926713\pi\)
0.973612 0.228209i \(-0.0732871\pi\)
\(164\) −3.92993 −0.306876
\(165\) 0 0
\(166\) 6.87157 0.533337
\(167\) 23.1842i 1.79405i 0.441982 + 0.897024i \(0.354276\pi\)
−0.441982 + 0.897024i \(0.645724\pi\)
\(168\) 4.88247i 0.376691i
\(169\) 12.9541 0.996467
\(170\) 0 0
\(171\) 1.80642 0.138141
\(172\) − 4.32693i − 0.329925i
\(173\) − 1.57136i − 0.119468i −0.998214 0.0597342i \(-0.980975\pi\)
0.998214 0.0597342i \(-0.0190253\pi\)
\(174\) 11.8272 0.896615
\(175\) 0 0
\(176\) −1.66323 −0.125370
\(177\) − 4.26025i − 0.320220i
\(178\) − 2.34767i − 0.175966i
\(179\) −1.53972 −0.115084 −0.0575420 0.998343i \(-0.518326\pi\)
−0.0575420 + 0.998343i \(0.518326\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0.414349i 0.0307136i
\(183\) − 2.85728i − 0.211216i
\(184\) −21.1699 −1.56067
\(185\) 0 0
\(186\) 1.21432 0.0890382
\(187\) 2.19358i 0.160410i
\(188\) 6.02413i 0.439355i
\(189\) 1.59210 0.115809
\(190\) 0 0
\(191\) 9.11753 0.659721 0.329861 0.944030i \(-0.392998\pi\)
0.329861 + 0.944030i \(0.392998\pi\)
\(192\) 8.85236i 0.638864i
\(193\) 4.72393i 0.340036i 0.985441 + 0.170018i \(0.0543825\pi\)
−0.985441 + 0.170018i \(0.945617\pi\)
\(194\) 8.40006 0.603089
\(195\) 0 0
\(196\) 2.34614 0.167582
\(197\) 15.7003i 1.11860i 0.828966 + 0.559299i \(0.188930\pi\)
−0.828966 + 0.559299i \(0.811070\pi\)
\(198\) 0.755569i 0.0536959i
\(199\) −6.28100 −0.445248 −0.222624 0.974904i \(-0.571462\pi\)
−0.222624 + 0.974904i \(0.571462\pi\)
\(200\) 0 0
\(201\) −2.08097 −0.146780
\(202\) 11.2761i 0.793382i
\(203\) 15.5067i 1.08836i
\(204\) 1.85236 0.129691
\(205\) 0 0
\(206\) −0.333383 −0.0232279
\(207\) 6.90321i 0.479806i
\(208\) 0.572892i 0.0397229i
\(209\) −1.12399 −0.0777477
\(210\) 0 0
\(211\) 19.4795 1.34102 0.670512 0.741899i \(-0.266075\pi\)
0.670512 + 0.741899i \(0.266075\pi\)
\(212\) − 7.23014i − 0.496568i
\(213\) − 1.31111i − 0.0898356i
\(214\) −9.94422 −0.679773
\(215\) 0 0
\(216\) 3.06668 0.208661
\(217\) 1.59210i 0.108079i
\(218\) − 11.0968i − 0.751569i
\(219\) 1.65233 0.111654
\(220\) 0 0
\(221\) 0.755569 0.0508251
\(222\) 5.87310i 0.394177i
\(223\) 15.4193i 1.03255i 0.856423 + 0.516275i \(0.172682\pi\)
−0.856423 + 0.516275i \(0.827318\pi\)
\(224\) −4.59703 −0.307152
\(225\) 0 0
\(226\) −9.31756 −0.619795
\(227\) − 12.8430i − 0.852419i −0.904624 0.426210i \(-0.859849\pi\)
0.904624 0.426210i \(-0.140151\pi\)
\(228\) 0.949145i 0.0628587i
\(229\) 3.08250 0.203697 0.101849 0.994800i \(-0.467524\pi\)
0.101849 + 0.994800i \(0.467524\pi\)
\(230\) 0 0
\(231\) −0.990632 −0.0651788
\(232\) 29.8687i 1.96097i
\(233\) − 8.76986i − 0.574533i −0.957851 0.287266i \(-0.907254\pi\)
0.957851 0.287266i \(-0.0927465\pi\)
\(234\) 0.260253 0.0170133
\(235\) 0 0
\(236\) 2.23845 0.145711
\(237\) − 5.19850i − 0.337679i
\(238\) − 6.81579i − 0.441802i
\(239\) −3.12399 −0.202074 −0.101037 0.994883i \(-0.532216\pi\)
−0.101037 + 0.994883i \(0.532216\pi\)
\(240\) 0 0
\(241\) 29.5625 1.90429 0.952143 0.305653i \(-0.0988747\pi\)
0.952143 + 0.305653i \(0.0988747\pi\)
\(242\) 12.8874i 0.828433i
\(243\) − 1.00000i − 0.0641500i
\(244\) 1.50129 0.0961104
\(245\) 0 0
\(246\) 9.08250 0.579079
\(247\) 0.387152i 0.0246339i
\(248\) 3.06668i 0.194734i
\(249\) 5.65878 0.358611
\(250\) 0 0
\(251\) 21.4193 1.35197 0.675986 0.736914i \(-0.263718\pi\)
0.675986 + 0.736914i \(0.263718\pi\)
\(252\) 0.836535i 0.0526968i
\(253\) − 4.29529i − 0.270042i
\(254\) 16.6035 1.04179
\(255\) 0 0
\(256\) −11.6637 −0.728981
\(257\) − 17.6271i − 1.09955i −0.835313 0.549775i \(-0.814713\pi\)
0.835313 0.549775i \(-0.185287\pi\)
\(258\) 10.0000i 0.622573i
\(259\) −7.70027 −0.478471
\(260\) 0 0
\(261\) 9.73975 0.602875
\(262\) 27.0430i 1.67072i
\(263\) 14.7052i 0.906761i 0.891317 + 0.453380i \(0.149782\pi\)
−0.891317 + 0.453380i \(0.850218\pi\)
\(264\) −1.90813 −0.117438
\(265\) 0 0
\(266\) 3.49240 0.214133
\(267\) − 1.93332i − 0.118317i
\(268\) − 1.09340i − 0.0667899i
\(269\) −1.35260 −0.0824692 −0.0412346 0.999149i \(-0.513129\pi\)
−0.0412346 + 0.999149i \(0.513129\pi\)
\(270\) 0 0
\(271\) 12.1334 0.737049 0.368524 0.929618i \(-0.379863\pi\)
0.368524 + 0.929618i \(0.379863\pi\)
\(272\) − 9.42372i − 0.571397i
\(273\) 0.341219i 0.0206515i
\(274\) −22.0874 −1.33435
\(275\) 0 0
\(276\) −3.62714 −0.218328
\(277\) 18.9382i 1.13789i 0.822376 + 0.568944i \(0.192648\pi\)
−0.822376 + 0.568944i \(0.807352\pi\)
\(278\) − 5.01921i − 0.301032i
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 12.9175 0.770594 0.385297 0.922793i \(-0.374099\pi\)
0.385297 + 0.922793i \(0.374099\pi\)
\(282\) − 13.9224i − 0.829068i
\(283\) − 26.5827i − 1.58018i −0.612991 0.790090i \(-0.710034\pi\)
0.612991 0.790090i \(-0.289966\pi\)
\(284\) 0.688892 0.0408782
\(285\) 0 0
\(286\) −0.161933 −0.00957532
\(287\) 11.9081i 0.702915i
\(288\) 2.88739i 0.170141i
\(289\) 4.57136 0.268904
\(290\) 0 0
\(291\) 6.91750 0.405511
\(292\) 0.868178i 0.0508063i
\(293\) 7.99555i 0.467105i 0.972344 + 0.233553i \(0.0750351\pi\)
−0.972344 + 0.233553i \(0.924965\pi\)
\(294\) −5.42219 −0.316228
\(295\) 0 0
\(296\) −14.8321 −0.862098
\(297\) 0.622216i 0.0361046i
\(298\) 7.57136i 0.438597i
\(299\) −1.47949 −0.0855614
\(300\) 0 0
\(301\) −13.1111 −0.755710
\(302\) − 10.1793i − 0.585752i
\(303\) 9.28592i 0.533462i
\(304\) 4.82870 0.276945
\(305\) 0 0
\(306\) −4.28100 −0.244728
\(307\) − 17.3669i − 0.991180i −0.868556 0.495590i \(-0.834952\pi\)
0.868556 0.495590i \(-0.165048\pi\)
\(308\) − 0.520505i − 0.0296585i
\(309\) −0.274543 −0.0156182
\(310\) 0 0
\(311\) −27.5877 −1.56435 −0.782176 0.623057i \(-0.785890\pi\)
−0.782176 + 0.623057i \(0.785890\pi\)
\(312\) 0.657249i 0.0372094i
\(313\) 13.7255i 0.775809i 0.921700 + 0.387904i \(0.126801\pi\)
−0.921700 + 0.387904i \(0.873199\pi\)
\(314\) −12.4286 −0.701389
\(315\) 0 0
\(316\) 2.73143 0.153655
\(317\) − 24.9447i − 1.40103i −0.713636 0.700517i \(-0.752953\pi\)
0.713636 0.700517i \(-0.247047\pi\)
\(318\) 16.7096i 0.937030i
\(319\) −6.06022 −0.339307
\(320\) 0 0
\(321\) −8.18913 −0.457073
\(322\) 13.3461i 0.743751i
\(323\) − 6.36842i − 0.354348i
\(324\) 0.525428 0.0291904
\(325\) 0 0
\(326\) −7.07604 −0.391906
\(327\) − 9.13828i − 0.505348i
\(328\) 22.9372i 1.26649i
\(329\) 18.2538 1.00636
\(330\) 0 0
\(331\) 19.1798 1.05422 0.527108 0.849799i \(-0.323276\pi\)
0.527108 + 0.849799i \(0.323276\pi\)
\(332\) 2.97328i 0.163180i
\(333\) 4.83654i 0.265041i
\(334\) 28.1530 1.54047
\(335\) 0 0
\(336\) 4.25581 0.232173
\(337\) − 25.3067i − 1.37854i −0.724504 0.689271i \(-0.757931\pi\)
0.724504 0.689271i \(-0.242069\pi\)
\(338\) − 15.7304i − 0.855620i
\(339\) −7.67307 −0.416744
\(340\) 0 0
\(341\) −0.622216 −0.0336949
\(342\) − 2.19358i − 0.118615i
\(343\) − 18.2538i − 0.985613i
\(344\) −25.2543 −1.36162
\(345\) 0 0
\(346\) −1.90813 −0.102582
\(347\) 19.0638i 1.02340i 0.859165 + 0.511698i \(0.170983\pi\)
−0.859165 + 0.511698i \(0.829017\pi\)
\(348\) 5.11753i 0.274328i
\(349\) 1.23014 0.0658479 0.0329240 0.999458i \(-0.489518\pi\)
0.0329240 + 0.999458i \(0.489518\pi\)
\(350\) 0 0
\(351\) 0.214320 0.0114395
\(352\) − 1.79658i − 0.0957580i
\(353\) − 4.50315i − 0.239679i −0.992793 0.119839i \(-0.961762\pi\)
0.992793 0.119839i \(-0.0382379\pi\)
\(354\) −5.17331 −0.274958
\(355\) 0 0
\(356\) 1.01582 0.0538384
\(357\) − 5.61285i − 0.297063i
\(358\) 1.86971i 0.0988172i
\(359\) −18.9240 −0.998768 −0.499384 0.866381i \(-0.666440\pi\)
−0.499384 + 0.866381i \(0.666440\pi\)
\(360\) 0 0
\(361\) −15.7368 −0.828254
\(362\) − 2.42864i − 0.127646i
\(363\) 10.6128i 0.557030i
\(364\) −0.179286 −0.00939714
\(365\) 0 0
\(366\) −3.46965 −0.181362
\(367\) − 9.71456i − 0.507096i −0.967323 0.253548i \(-0.918402\pi\)
0.967323 0.253548i \(-0.0815975\pi\)
\(368\) 18.4528i 0.961917i
\(369\) 7.47949 0.389367
\(370\) 0 0
\(371\) −21.9081 −1.13741
\(372\) 0.525428i 0.0272421i
\(373\) 35.1941i 1.82228i 0.412098 + 0.911139i \(0.364796\pi\)
−0.412098 + 0.911139i \(0.635204\pi\)
\(374\) 2.66370 0.137737
\(375\) 0 0
\(376\) 35.1601 1.81324
\(377\) 2.08742i 0.107508i
\(378\) − 1.93332i − 0.0994394i
\(379\) 22.6637 1.16416 0.582078 0.813133i \(-0.302240\pi\)
0.582078 + 0.813133i \(0.302240\pi\)
\(380\) 0 0
\(381\) 13.6731 0.700493
\(382\) − 11.0716i − 0.566472i
\(383\) − 28.7926i − 1.47123i −0.677398 0.735617i \(-0.736892\pi\)
0.677398 0.735617i \(-0.263108\pi\)
\(384\) 4.97481 0.253870
\(385\) 0 0
\(386\) 5.73636 0.291973
\(387\) 8.23506i 0.418612i
\(388\) 3.63465i 0.184521i
\(389\) 25.0672 1.27096 0.635478 0.772119i \(-0.280803\pi\)
0.635478 + 0.772119i \(0.280803\pi\)
\(390\) 0 0
\(391\) 24.3368 1.23076
\(392\) − 13.6933i − 0.691618i
\(393\) 22.2701i 1.12338i
\(394\) 19.0651 0.960488
\(395\) 0 0
\(396\) −0.326929 −0.0164288
\(397\) − 29.0509i − 1.45802i −0.684503 0.729010i \(-0.739981\pi\)
0.684503 0.729010i \(-0.260019\pi\)
\(398\) 7.62714i 0.382314i
\(399\) 2.87601 0.143981
\(400\) 0 0
\(401\) 11.2607 0.562334 0.281167 0.959659i \(-0.409279\pi\)
0.281167 + 0.959659i \(0.409279\pi\)
\(402\) 2.52696i 0.126033i
\(403\) 0.214320i 0.0106760i
\(404\) −4.87908 −0.242743
\(405\) 0 0
\(406\) 18.8301 0.934521
\(407\) − 3.00937i − 0.149169i
\(408\) − 10.8113i − 0.535241i
\(409\) 25.6128 1.26647 0.633237 0.773958i \(-0.281726\pi\)
0.633237 + 0.773958i \(0.281726\pi\)
\(410\) 0 0
\(411\) −18.1891 −0.897204
\(412\) − 0.144252i − 0.00710680i
\(413\) − 6.78277i − 0.333758i
\(414\) 8.38271 0.411988
\(415\) 0 0
\(416\) −0.618825 −0.0303404
\(417\) − 4.13335i − 0.202411i
\(418\) 1.36488i 0.0667583i
\(419\) 4.36196 0.213096 0.106548 0.994308i \(-0.466020\pi\)
0.106548 + 0.994308i \(0.466020\pi\)
\(420\) 0 0
\(421\) 5.77923 0.281662 0.140831 0.990034i \(-0.455023\pi\)
0.140831 + 0.990034i \(0.455023\pi\)
\(422\) − 23.6543i − 1.15148i
\(423\) − 11.4652i − 0.557457i
\(424\) −42.1990 −2.04936
\(425\) 0 0
\(426\) −1.59210 −0.0771377
\(427\) − 4.54909i − 0.220146i
\(428\) − 4.30279i − 0.207983i
\(429\) −0.133353 −0.00643835
\(430\) 0 0
\(431\) −4.62867 −0.222955 −0.111478 0.993767i \(-0.535558\pi\)
−0.111478 + 0.993767i \(0.535558\pi\)
\(432\) − 2.67307i − 0.128608i
\(433\) − 6.81780i − 0.327643i −0.986490 0.163821i \(-0.947618\pi\)
0.986490 0.163821i \(-0.0523820\pi\)
\(434\) 1.93332 0.0928025
\(435\) 0 0
\(436\) 4.80150 0.229950
\(437\) 12.4701i 0.596527i
\(438\) − 2.00645i − 0.0958721i
\(439\) −9.71456 −0.463651 −0.231825 0.972757i \(-0.574470\pi\)
−0.231825 + 0.972757i \(0.574470\pi\)
\(440\) 0 0
\(441\) −4.46520 −0.212629
\(442\) − 0.917502i − 0.0436411i
\(443\) − 31.1481i − 1.47989i −0.672666 0.739946i \(-0.734851\pi\)
0.672666 0.739946i \(-0.265149\pi\)
\(444\) −2.54125 −0.120602
\(445\) 0 0
\(446\) 18.7239 0.886604
\(447\) 6.23506i 0.294908i
\(448\) 14.0939i 0.665873i
\(449\) −28.1180 −1.32697 −0.663485 0.748189i \(-0.730924\pi\)
−0.663485 + 0.748189i \(0.730924\pi\)
\(450\) 0 0
\(451\) −4.65386 −0.219142
\(452\) − 4.03164i − 0.189633i
\(453\) − 8.38271i − 0.393854i
\(454\) −15.5955 −0.731933
\(455\) 0 0
\(456\) 5.53972 0.259421
\(457\) − 41.4400i − 1.93848i −0.246113 0.969241i \(-0.579154\pi\)
0.246113 0.969241i \(-0.420846\pi\)
\(458\) − 3.74314i − 0.174905i
\(459\) −3.52543 −0.164553
\(460\) 0 0
\(461\) 10.3432 0.481732 0.240866 0.970558i \(-0.422569\pi\)
0.240866 + 0.970558i \(0.422569\pi\)
\(462\) 1.20294i 0.0559660i
\(463\) − 13.3047i − 0.618320i −0.951010 0.309160i \(-0.899952\pi\)
0.951010 0.309160i \(-0.100048\pi\)
\(464\) 26.0350 1.20865
\(465\) 0 0
\(466\) −10.6494 −0.493325
\(467\) − 6.22077i − 0.287863i −0.989588 0.143932i \(-0.954025\pi\)
0.989588 0.143932i \(-0.0459745\pi\)
\(468\) 0.112610i 0.00520538i
\(469\) −3.31312 −0.152985
\(470\) 0 0
\(471\) −10.2351 −0.471607
\(472\) − 13.0648i − 0.601357i
\(473\) − 5.12399i − 0.235601i
\(474\) −6.31264 −0.289949
\(475\) 0 0
\(476\) 2.94914 0.135174
\(477\) 13.7605i 0.630050i
\(478\) 3.79352i 0.173511i
\(479\) 24.8825 1.13691 0.568454 0.822715i \(-0.307542\pi\)
0.568454 + 0.822715i \(0.307542\pi\)
\(480\) 0 0
\(481\) −1.03657 −0.0472633
\(482\) − 35.8983i − 1.63512i
\(483\) 10.9906i 0.500091i
\(484\) −5.57628 −0.253467
\(485\) 0 0
\(486\) −1.21432 −0.0550827
\(487\) − 9.84791i − 0.446251i −0.974790 0.223126i \(-0.928374\pi\)
0.974790 0.223126i \(-0.0716260\pi\)
\(488\) − 8.76235i − 0.396653i
\(489\) −5.82717 −0.263514
\(490\) 0 0
\(491\) −9.84791 −0.444430 −0.222215 0.974998i \(-0.571329\pi\)
−0.222215 + 0.974998i \(0.571329\pi\)
\(492\) 3.92993i 0.177175i
\(493\) − 34.3368i − 1.54645i
\(494\) 0.470127 0.0211520
\(495\) 0 0
\(496\) 2.67307 0.120024
\(497\) − 2.08742i − 0.0936336i
\(498\) − 6.87157i − 0.307922i
\(499\) −0.653858 −0.0292707 −0.0146354 0.999893i \(-0.504659\pi\)
−0.0146354 + 0.999893i \(0.504659\pi\)
\(500\) 0 0
\(501\) 23.1842 1.03579
\(502\) − 26.0098i − 1.16088i
\(503\) − 13.9541i − 0.622181i −0.950380 0.311091i \(-0.899306\pi\)
0.950380 0.311091i \(-0.100694\pi\)
\(504\) 4.88247 0.217482
\(505\) 0 0
\(506\) −5.21585 −0.231873
\(507\) − 12.9541i − 0.575310i
\(508\) 7.18421i 0.318748i
\(509\) 42.7116 1.89316 0.946580 0.322469i \(-0.104513\pi\)
0.946580 + 0.322469i \(0.104513\pi\)
\(510\) 0 0
\(511\) 2.63068 0.116374
\(512\) 24.1131i 1.06566i
\(513\) − 1.80642i − 0.0797556i
\(514\) −21.4050 −0.944133
\(515\) 0 0
\(516\) −4.32693 −0.190482
\(517\) 7.13383i 0.313745i
\(518\) 9.35059i 0.410841i
\(519\) −1.57136 −0.0689751
\(520\) 0 0
\(521\) −12.6035 −0.552168 −0.276084 0.961133i \(-0.589037\pi\)
−0.276084 + 0.961133i \(0.589037\pi\)
\(522\) − 11.8272i − 0.517661i
\(523\) 29.8479i 1.30516i 0.757721 + 0.652579i \(0.226313\pi\)
−0.757721 + 0.652579i \(0.773687\pi\)
\(524\) −11.7013 −0.511175
\(525\) 0 0
\(526\) 17.8568 0.778594
\(527\) − 3.52543i − 0.153570i
\(528\) 1.66323i 0.0723826i
\(529\) −24.6543 −1.07193
\(530\) 0 0
\(531\) −4.26025 −0.184879
\(532\) 1.51114i 0.0655161i
\(533\) 1.60300i 0.0694338i
\(534\) −2.34767 −0.101594
\(535\) 0 0
\(536\) −6.38165 −0.275645
\(537\) 1.53972i 0.0664437i
\(538\) 1.64248i 0.0708125i
\(539\) 2.77832 0.119671
\(540\) 0 0
\(541\) −13.9541 −0.599932 −0.299966 0.953950i \(-0.596975\pi\)
−0.299966 + 0.953950i \(0.596975\pi\)
\(542\) − 14.7338i − 0.632870i
\(543\) − 2.00000i − 0.0858282i
\(544\) 10.1793 0.436433
\(545\) 0 0
\(546\) 0.414349 0.0177325
\(547\) 5.74419i 0.245604i 0.992431 + 0.122802i \(0.0391880\pi\)
−0.992431 + 0.122802i \(0.960812\pi\)
\(548\) − 9.55707i − 0.408258i
\(549\) −2.85728 −0.121946
\(550\) 0 0
\(551\) 17.5941 0.749534
\(552\) 21.1699i 0.901052i
\(553\) − 8.27655i − 0.351955i
\(554\) 22.9971 0.977053
\(555\) 0 0
\(556\) 2.17178 0.0921039
\(557\) − 14.7511i − 0.625025i −0.949914 0.312513i \(-0.898829\pi\)
0.949914 0.312513i \(-0.101171\pi\)
\(558\) − 1.21432i − 0.0514063i
\(559\) −1.76494 −0.0746489
\(560\) 0 0
\(561\) 2.19358 0.0926129
\(562\) − 15.6860i − 0.661673i
\(563\) − 32.9260i − 1.38766i −0.720137 0.693832i \(-0.755921\pi\)
0.720137 0.693832i \(-0.244079\pi\)
\(564\) 6.02413 0.253662
\(565\) 0 0
\(566\) −32.2799 −1.35683
\(567\) − 1.59210i − 0.0668621i
\(568\) − 4.02074i − 0.168707i
\(569\) 3.07604 0.128954 0.0644772 0.997919i \(-0.479462\pi\)
0.0644772 + 0.997919i \(0.479462\pi\)
\(570\) 0 0
\(571\) 4.52051 0.189177 0.0945886 0.995516i \(-0.469846\pi\)
0.0945886 + 0.995516i \(0.469846\pi\)
\(572\) − 0.0700674i − 0.00292966i
\(573\) − 9.11753i − 0.380890i
\(574\) 14.4603 0.603561
\(575\) 0 0
\(576\) 8.85236 0.368848
\(577\) − 30.6923i − 1.27774i −0.769316 0.638868i \(-0.779403\pi\)
0.769316 0.638868i \(-0.220597\pi\)
\(578\) − 5.55109i − 0.230895i
\(579\) 4.72393 0.196320
\(580\) 0 0
\(581\) 9.00937 0.373772
\(582\) − 8.40006i − 0.348194i
\(583\) − 8.56199i − 0.354602i
\(584\) 5.06715 0.209680
\(585\) 0 0
\(586\) 9.70916 0.401082
\(587\) 14.8256i 0.611919i 0.952044 + 0.305960i \(0.0989773\pi\)
−0.952044 + 0.305960i \(0.901023\pi\)
\(588\) − 2.34614i − 0.0967532i
\(589\) 1.80642 0.0744324
\(590\) 0 0
\(591\) 15.7003 0.645823
\(592\) 12.9284i 0.531354i
\(593\) − 23.9684i − 0.984262i −0.870521 0.492131i \(-0.836218\pi\)
0.870521 0.492131i \(-0.163782\pi\)
\(594\) 0.755569 0.0310014
\(595\) 0 0
\(596\) −3.27607 −0.134193
\(597\) 6.28100i 0.257064i
\(598\) 1.79658i 0.0734676i
\(599\) 39.1086 1.59794 0.798968 0.601374i \(-0.205380\pi\)
0.798968 + 0.601374i \(0.205380\pi\)
\(600\) 0 0
\(601\) 22.3082 0.909970 0.454985 0.890499i \(-0.349645\pi\)
0.454985 + 0.890499i \(0.349645\pi\)
\(602\) 15.9210i 0.648893i
\(603\) 2.08097i 0.0847435i
\(604\) 4.40451 0.179217
\(605\) 0 0
\(606\) 11.2761 0.458059
\(607\) 2.82669i 0.114732i 0.998353 + 0.0573659i \(0.0182702\pi\)
−0.998353 + 0.0573659i \(0.981730\pi\)
\(608\) 5.21585i 0.211531i
\(609\) 15.5067 0.628363
\(610\) 0 0
\(611\) 2.45722 0.0994085
\(612\) − 1.85236i − 0.0748771i
\(613\) 36.6844i 1.48167i 0.671687 + 0.740835i \(0.265570\pi\)
−0.671687 + 0.740835i \(0.734430\pi\)
\(614\) −21.0890 −0.851081
\(615\) 0 0
\(616\) −3.03795 −0.122402
\(617\) 1.46659i 0.0590426i 0.999564 + 0.0295213i \(0.00939829\pi\)
−0.999564 + 0.0295213i \(0.990602\pi\)
\(618\) 0.333383i 0.0134106i
\(619\) 15.9541 0.641248 0.320624 0.947207i \(-0.396107\pi\)
0.320624 + 0.947207i \(0.396107\pi\)
\(620\) 0 0
\(621\) 6.90321 0.277016
\(622\) 33.5002i 1.34324i
\(623\) − 3.07805i − 0.123320i
\(624\) 0.572892 0.0229340
\(625\) 0 0
\(626\) 16.6671 0.666151
\(627\) 1.12399i 0.0448876i
\(628\) − 5.37778i − 0.214597i
\(629\) 17.0509 0.679862
\(630\) 0 0
\(631\) −32.0830 −1.27720 −0.638602 0.769538i \(-0.720487\pi\)
−0.638602 + 0.769538i \(0.720487\pi\)
\(632\) − 15.9421i − 0.634143i
\(633\) − 19.4795i − 0.774240i
\(634\) −30.2908 −1.20300
\(635\) 0 0
\(636\) −7.23014 −0.286694
\(637\) − 0.956981i − 0.0379170i
\(638\) 7.35905i 0.291348i
\(639\) −1.31111 −0.0518666
\(640\) 0 0
\(641\) −14.8923 −0.588211 −0.294105 0.955773i \(-0.595022\pi\)
−0.294105 + 0.955773i \(0.595022\pi\)
\(642\) 9.94422i 0.392467i
\(643\) − 12.5205i − 0.493761i −0.969046 0.246880i \(-0.920595\pi\)
0.969046 0.246880i \(-0.0794054\pi\)
\(644\) −5.77478 −0.227558
\(645\) 0 0
\(646\) −7.73329 −0.304262
\(647\) 45.6227i 1.79361i 0.442423 + 0.896807i \(0.354119\pi\)
−0.442423 + 0.896807i \(0.645881\pi\)
\(648\) − 3.06668i − 0.120470i
\(649\) 2.65080 0.104053
\(650\) 0 0
\(651\) 1.59210 0.0623995
\(652\) − 3.06175i − 0.119908i
\(653\) 18.7797i 0.734907i 0.930042 + 0.367453i \(0.119770\pi\)
−0.930042 + 0.367453i \(0.880230\pi\)
\(654\) −11.0968 −0.433919
\(655\) 0 0
\(656\) 19.9932 0.780604
\(657\) − 1.65233i − 0.0644634i
\(658\) − 22.1659i − 0.864119i
\(659\) 28.9240 1.12672 0.563359 0.826212i \(-0.309509\pi\)
0.563359 + 0.826212i \(0.309509\pi\)
\(660\) 0 0
\(661\) −24.3269 −0.946208 −0.473104 0.881007i \(-0.656866\pi\)
−0.473104 + 0.881007i \(0.656866\pi\)
\(662\) − 23.2904i − 0.905206i
\(663\) − 0.755569i − 0.0293439i
\(664\) 17.3536 0.673452
\(665\) 0 0
\(666\) 5.87310 0.227578
\(667\) 67.2355i 2.60337i
\(668\) 12.1816i 0.471321i
\(669\) 15.4193 0.596143
\(670\) 0 0
\(671\) 1.77784 0.0686329
\(672\) 4.59703i 0.177334i
\(673\) 36.5511i 1.40894i 0.709733 + 0.704471i \(0.248815\pi\)
−0.709733 + 0.704471i \(0.751185\pi\)
\(674\) −30.7304 −1.18369
\(675\) 0 0
\(676\) 6.80642 0.261786
\(677\) − 32.1575i − 1.23591i −0.786212 0.617956i \(-0.787961\pi\)
0.786212 0.617956i \(-0.212039\pi\)
\(678\) 9.31756i 0.357839i
\(679\) 11.0134 0.422655
\(680\) 0 0
\(681\) −12.8430 −0.492144
\(682\) 0.755569i 0.0289322i
\(683\) 38.2623i 1.46406i 0.681270 + 0.732032i \(0.261428\pi\)
−0.681270 + 0.732032i \(0.738572\pi\)
\(684\) 0.949145 0.0362915
\(685\) 0 0
\(686\) −22.1659 −0.846300
\(687\) − 3.08250i − 0.117605i
\(688\) 22.0129i 0.839234i
\(689\) −2.94914 −0.112353
\(690\) 0 0
\(691\) −12.3082 −0.468226 −0.234113 0.972209i \(-0.575219\pi\)
−0.234113 + 0.972209i \(0.575219\pi\)
\(692\) − 0.825636i − 0.0313860i
\(693\) 0.990632i 0.0376310i
\(694\) 23.1495 0.878743
\(695\) 0 0
\(696\) 29.8687 1.13217
\(697\) − 26.3684i − 0.998775i
\(698\) − 1.49378i − 0.0565406i
\(699\) −8.76986 −0.331707
\(700\) 0 0
\(701\) 31.5210 1.19053 0.595266 0.803529i \(-0.297047\pi\)
0.595266 + 0.803529i \(0.297047\pi\)
\(702\) − 0.260253i − 0.00982261i
\(703\) 8.73683i 0.329516i
\(704\) −5.50807 −0.207593
\(705\) 0 0
\(706\) −5.46827 −0.205801
\(707\) 14.7841i 0.556015i
\(708\) − 2.23845i − 0.0841263i
\(709\) 7.51114 0.282087 0.141043 0.990003i \(-0.454954\pi\)
0.141043 + 0.990003i \(0.454954\pi\)
\(710\) 0 0
\(711\) −5.19850 −0.194959
\(712\) − 5.92888i − 0.222194i
\(713\) 6.90321i 0.258527i
\(714\) −6.81579 −0.255075
\(715\) 0 0
\(716\) −0.809010 −0.0302341
\(717\) 3.12399i 0.116667i
\(718\) 22.9797i 0.857596i
\(719\) −32.3180 −1.20526 −0.602630 0.798021i \(-0.705880\pi\)
−0.602630 + 0.798021i \(0.705880\pi\)
\(720\) 0 0
\(721\) −0.437101 −0.0162785
\(722\) 19.1095i 0.711184i
\(723\) − 29.5625i − 1.09944i
\(724\) 1.05086 0.0390547
\(725\) 0 0
\(726\) 12.8874 0.478296
\(727\) 6.12245i 0.227069i 0.993534 + 0.113535i \(0.0362173\pi\)
−0.993534 + 0.113535i \(0.963783\pi\)
\(728\) 1.04641i 0.0387825i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 29.0321 1.07379
\(732\) − 1.50129i − 0.0554894i
\(733\) 30.9403i 1.14280i 0.820670 + 0.571402i \(0.193600\pi\)
−0.820670 + 0.571402i \(0.806400\pi\)
\(734\) −11.7966 −0.435420
\(735\) 0 0
\(736\) −19.9323 −0.734713
\(737\) − 1.29481i − 0.0476949i
\(738\) − 9.08250i − 0.334331i
\(739\) 12.6780 0.466368 0.233184 0.972433i \(-0.425086\pi\)
0.233184 + 0.972433i \(0.425086\pi\)
\(740\) 0 0
\(741\) 0.387152 0.0142224
\(742\) 26.6035i 0.976644i
\(743\) − 38.4385i − 1.41017i −0.709122 0.705086i \(-0.750909\pi\)
0.709122 0.705086i \(-0.249091\pi\)
\(744\) 3.06668 0.112430
\(745\) 0 0
\(746\) 42.7368 1.56471
\(747\) − 5.65878i − 0.207044i
\(748\) 1.15257i 0.0421420i
\(749\) −13.0379 −0.476396
\(750\) 0 0
\(751\) −13.4608 −0.491190 −0.245595 0.969373i \(-0.578983\pi\)
−0.245595 + 0.969373i \(0.578983\pi\)
\(752\) − 30.6473i − 1.11759i
\(753\) − 21.4193i − 0.780562i
\(754\) 2.53480 0.0923118
\(755\) 0 0
\(756\) 0.836535 0.0304245
\(757\) − 20.5511i − 0.746942i −0.927642 0.373471i \(-0.878168\pi\)
0.927642 0.373471i \(-0.121832\pi\)
\(758\) − 27.5210i − 0.999607i
\(759\) −4.29529 −0.155909
\(760\) 0 0
\(761\) 42.3432 1.53494 0.767470 0.641084i \(-0.221515\pi\)
0.767470 + 0.641084i \(0.221515\pi\)
\(762\) − 16.6035i − 0.601481i
\(763\) − 14.5491i − 0.526712i
\(764\) 4.79060 0.173318
\(765\) 0 0
\(766\) −34.9634 −1.26328
\(767\) − 0.913056i − 0.0329686i
\(768\) 11.6637i 0.420878i
\(769\) −40.5388 −1.46187 −0.730933 0.682449i \(-0.760915\pi\)
−0.730933 + 0.682449i \(0.760915\pi\)
\(770\) 0 0
\(771\) −17.6271 −0.634826
\(772\) 2.48208i 0.0893320i
\(773\) − 26.2810i − 0.945262i −0.881260 0.472631i \(-0.843304\pi\)
0.881260 0.472631i \(-0.156696\pi\)
\(774\) 10.0000 0.359443
\(775\) 0 0
\(776\) 21.2137 0.761529
\(777\) 7.70027i 0.276246i
\(778\) − 30.4395i − 1.09131i
\(779\) 13.5111 0.484087
\(780\) 0 0
\(781\) 0.815792 0.0291913
\(782\) − 29.5526i − 1.05680i
\(783\) − 9.73975i − 0.348070i
\(784\) −11.9358 −0.426279
\(785\) 0 0
\(786\) 27.0430 0.964593
\(787\) − 0.755569i − 0.0269331i −0.999909 0.0134666i \(-0.995713\pi\)
0.999909 0.0134666i \(-0.00428667\pi\)
\(788\) 8.24935i 0.293871i
\(789\) 14.7052 0.523519
\(790\) 0 0
\(791\) −12.2163 −0.434363
\(792\) 1.90813i 0.0678026i
\(793\) − 0.612371i − 0.0217459i
\(794\) −35.2770 −1.25193
\(795\) 0 0
\(796\) −3.30021 −0.116973
\(797\) 1.89384i 0.0670834i 0.999437 + 0.0335417i \(0.0106787\pi\)
−0.999437 + 0.0335417i \(0.989321\pi\)
\(798\) − 3.49240i − 0.123630i
\(799\) −40.4197 −1.42995
\(800\) 0 0
\(801\) −1.93332 −0.0683106
\(802\) − 13.6741i − 0.482850i
\(803\) 1.02810i 0.0362810i
\(804\) −1.09340 −0.0385611
\(805\) 0 0
\(806\) 0.260253 0.00916701
\(807\) 1.35260i 0.0476136i
\(808\) 28.4769i 1.00181i
\(809\) 28.6671 1.00788 0.503941 0.863738i \(-0.331883\pi\)
0.503941 + 0.863738i \(0.331883\pi\)
\(810\) 0 0
\(811\) −38.0228 −1.33516 −0.667580 0.744538i \(-0.732670\pi\)
−0.667580 + 0.744538i \(0.732670\pi\)
\(812\) 8.14764i 0.285926i
\(813\) − 12.1334i − 0.425535i
\(814\) −3.65433 −0.128084
\(815\) 0 0
\(816\) −9.42372 −0.329896
\(817\) 14.8760i 0.520446i
\(818\) − 31.1022i − 1.08746i
\(819\) 0.341219 0.0119232
\(820\) 0 0
\(821\) −27.2321 −0.950409 −0.475204 0.879876i \(-0.657626\pi\)
−0.475204 + 0.879876i \(0.657626\pi\)
\(822\) 22.0874i 0.770387i
\(823\) − 14.5749i − 0.508049i −0.967198 0.254025i \(-0.918246\pi\)
0.967198 0.254025i \(-0.0817544\pi\)
\(824\) −0.841934 −0.0293302
\(825\) 0 0
\(826\) −8.23645 −0.286583
\(827\) 35.0781i 1.21978i 0.792485 + 0.609892i \(0.208787\pi\)
−0.792485 + 0.609892i \(0.791213\pi\)
\(828\) 3.62714i 0.126052i
\(829\) −18.9077 −0.656690 −0.328345 0.944558i \(-0.606491\pi\)
−0.328345 + 0.944558i \(0.606491\pi\)
\(830\) 0 0
\(831\) 18.9382 0.656960
\(832\) 1.89723i 0.0657748i
\(833\) 15.7418i 0.545419i
\(834\) −5.01921 −0.173801
\(835\) 0 0
\(836\) −0.590573 −0.0204254
\(837\) − 1.00000i − 0.0345651i
\(838\) − 5.29682i − 0.182976i
\(839\) 39.5274 1.36464 0.682319 0.731054i \(-0.260971\pi\)
0.682319 + 0.731054i \(0.260971\pi\)
\(840\) 0 0
\(841\) 65.8627 2.27113
\(842\) − 7.01783i − 0.241850i
\(843\) − 12.9175i − 0.444902i
\(844\) 10.2351 0.352305
\(845\) 0 0
\(846\) −13.9224 −0.478663
\(847\) 16.8968i 0.580579i
\(848\) 36.7828i 1.26313i
\(849\) −26.5827 −0.912317
\(850\) 0 0
\(851\) −33.3876 −1.14451
\(852\) − 0.688892i − 0.0236011i
\(853\) − 41.8894i − 1.43427i −0.696937 0.717133i \(-0.745454\pi\)
0.696937 0.717133i \(-0.254546\pi\)
\(854\) −5.52404 −0.189029
\(855\) 0 0
\(856\) −25.1134 −0.858359
\(857\) 43.2859i 1.47862i 0.673366 + 0.739309i \(0.264848\pi\)
−0.673366 + 0.739309i \(0.735152\pi\)
\(858\) 0.161933i 0.00552831i
\(859\) 49.6513 1.69408 0.847040 0.531530i \(-0.178383\pi\)
0.847040 + 0.531530i \(0.178383\pi\)
\(860\) 0 0
\(861\) 11.9081 0.405828
\(862\) 5.62068i 0.191441i
\(863\) 31.6958i 1.07894i 0.842005 + 0.539469i \(0.181375\pi\)
−0.842005 + 0.539469i \(0.818625\pi\)
\(864\) 2.88739 0.0982310
\(865\) 0 0
\(866\) −8.27899 −0.281331
\(867\) − 4.57136i − 0.155252i
\(868\) 0.836535i 0.0283939i
\(869\) 3.23459 0.109726
\(870\) 0 0
\(871\) −0.445992 −0.0151119
\(872\) − 28.0241i − 0.949017i
\(873\) − 6.91750i − 0.234122i
\(874\) 15.1427 0.512210
\(875\) 0 0
\(876\) 0.868178 0.0293330
\(877\) − 24.0000i − 0.810422i −0.914223 0.405211i \(-0.867198\pi\)
0.914223 0.405211i \(-0.132802\pi\)
\(878\) 11.7966i 0.398115i
\(879\) 7.99555 0.269683
\(880\) 0 0
\(881\) −45.6577 −1.53825 −0.769124 0.639100i \(-0.779307\pi\)
−0.769124 + 0.639100i \(0.779307\pi\)
\(882\) 5.42219i 0.182574i
\(883\) − 7.63158i − 0.256823i −0.991721 0.128412i \(-0.959012\pi\)
0.991721 0.128412i \(-0.0409879\pi\)
\(884\) 0.396997 0.0133524
\(885\) 0 0
\(886\) −37.8238 −1.27071
\(887\) 13.9541i 0.468532i 0.972173 + 0.234266i \(0.0752686\pi\)
−0.972173 + 0.234266i \(0.924731\pi\)
\(888\) 14.8321i 0.497732i
\(889\) 21.7690 0.730107
\(890\) 0 0
\(891\) 0.622216 0.0208450
\(892\) 8.10171i 0.271265i
\(893\) − 20.7110i − 0.693068i
\(894\) 7.57136 0.253224
\(895\) 0 0
\(896\) 7.92042 0.264603
\(897\) 1.47949i 0.0493989i
\(898\) 34.1443i 1.13941i
\(899\) 9.73975 0.324839
\(900\) 0 0
\(901\) 48.5116 1.61616
\(902\) 5.65127i 0.188167i
\(903\) 13.1111i 0.436309i
\(904\) −23.5308 −0.782624
\(905\) 0 0
\(906\) −10.1793 −0.338184
\(907\) 50.6242i 1.68095i 0.541851 + 0.840475i \(0.317724\pi\)
−0.541851 + 0.840475i \(0.682276\pi\)
\(908\) − 6.74806i − 0.223942i
\(909\) 9.28592 0.307994
\(910\) 0 0
\(911\) 40.5847 1.34463 0.672316 0.740264i \(-0.265300\pi\)
0.672316 + 0.740264i \(0.265300\pi\)
\(912\) − 4.82870i − 0.159894i
\(913\) 3.52098i 0.116527i
\(914\) −50.3214 −1.66448
\(915\) 0 0
\(916\) 1.61963 0.0535141
\(917\) 35.4563i 1.17087i
\(918\) 4.28100i 0.141294i
\(919\) −53.3274 −1.75911 −0.879554 0.475798i \(-0.842159\pi\)
−0.879554 + 0.475798i \(0.842159\pi\)
\(920\) 0 0
\(921\) −17.3669 −0.572258
\(922\) − 12.5600i − 0.413641i
\(923\) − 0.280996i − 0.00924911i
\(924\) −0.520505 −0.0171234
\(925\) 0 0
\(926\) −16.1561 −0.530923
\(927\) 0.274543i 0.00901717i
\(928\) 28.1225i 0.923165i
\(929\) −4.67905 −0.153515 −0.0767573 0.997050i \(-0.524457\pi\)
−0.0767573 + 0.997050i \(0.524457\pi\)
\(930\) 0 0
\(931\) −8.06605 −0.264354
\(932\) − 4.60793i − 0.150938i
\(933\) 27.5877i 0.903179i
\(934\) −7.55401 −0.247175
\(935\) 0 0
\(936\) 0.657249 0.0214829
\(937\) − 19.8952i − 0.649949i −0.945723 0.324974i \(-0.894644\pi\)
0.945723 0.324974i \(-0.105356\pi\)
\(938\) 4.02318i 0.131362i
\(939\) 13.7255 0.447913
\(940\) 0 0
\(941\) −1.27946 −0.0417094 −0.0208547 0.999783i \(-0.506639\pi\)
−0.0208547 + 0.999783i \(0.506639\pi\)
\(942\) 12.4286i 0.404947i
\(943\) 51.6325i 1.68139i
\(944\) −11.3880 −0.370646
\(945\) 0 0
\(946\) −6.22216 −0.202300
\(947\) − 35.6686i − 1.15907i −0.814946 0.579537i \(-0.803233\pi\)
0.814946 0.579537i \(-0.196767\pi\)
\(948\) − 2.73143i − 0.0887129i
\(949\) 0.354126 0.0114954
\(950\) 0 0
\(951\) −24.9447 −0.808887
\(952\) − 17.2128i − 0.557870i
\(953\) − 39.7832i − 1.28871i −0.764728 0.644353i \(-0.777127\pi\)
0.764728 0.644353i \(-0.222873\pi\)
\(954\) 16.7096 0.540994
\(955\) 0 0
\(956\) −1.64143 −0.0530876
\(957\) 6.06022i 0.195899i
\(958\) − 30.2153i − 0.976211i
\(959\) −28.9590 −0.935135
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 1.25872i 0.0405828i
\(963\) 8.18913i 0.263891i
\(964\) 15.5329 0.500282
\(965\) 0 0
\(966\) 13.3461 0.429405
\(967\) − 52.9304i − 1.70213i −0.525063 0.851064i \(-0.675958\pi\)
0.525063 0.851064i \(-0.324042\pi\)
\(968\) 32.5462i 1.04607i
\(969\) −6.36842 −0.204583
\(970\) 0 0
\(971\) −54.9624 −1.76383 −0.881913 0.471412i \(-0.843745\pi\)
−0.881913 + 0.471412i \(0.843745\pi\)
\(972\) − 0.525428i − 0.0168531i
\(973\) − 6.58073i − 0.210968i
\(974\) −11.9585 −0.383175
\(975\) 0 0
\(976\) −7.63771 −0.244477
\(977\) 2.97773i 0.0952659i 0.998865 + 0.0476329i \(0.0151678\pi\)
−0.998865 + 0.0476329i \(0.984832\pi\)
\(978\) 7.07604i 0.226267i
\(979\) 1.20294 0.0384463
\(980\) 0 0
\(981\) −9.13828 −0.291763
\(982\) 11.9585i 0.381611i
\(983\) 26.9876i 0.860770i 0.902645 + 0.430385i \(0.141622\pi\)
−0.902645 + 0.430385i \(0.858378\pi\)
\(984\) 22.9372 0.731211
\(985\) 0 0
\(986\) −41.6958 −1.32787
\(987\) − 18.2538i − 0.581025i
\(988\) 0.203420i 0.00647167i
\(989\) −56.8484 −1.80767
\(990\) 0 0
\(991\) 0.520505 0.0165344 0.00826720 0.999966i \(-0.497368\pi\)
0.00826720 + 0.999966i \(0.497368\pi\)
\(992\) 2.88739i 0.0916747i
\(993\) − 19.1798i − 0.608651i
\(994\) −2.53480 −0.0803988
\(995\) 0 0
\(996\) 2.97328 0.0942120
\(997\) − 25.2128i − 0.798497i −0.916843 0.399249i \(-0.869271\pi\)
0.916843 0.399249i \(-0.130729\pi\)
\(998\) 0.793993i 0.0251334i
\(999\) 4.83654 0.153021
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.c.l.1024.3 6
5.2 odd 4 2325.2.a.p.1.3 3
5.3 odd 4 465.2.a.g.1.1 3
5.4 even 2 inner 2325.2.c.l.1024.4 6
15.2 even 4 6975.2.a.bi.1.1 3
15.8 even 4 1395.2.a.h.1.3 3
20.3 even 4 7440.2.a.bm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.g.1.1 3 5.3 odd 4
1395.2.a.h.1.3 3 15.8 even 4
2325.2.a.p.1.3 3 5.2 odd 4
2325.2.c.l.1024.3 6 1.1 even 1 trivial
2325.2.c.l.1024.4 6 5.4 even 2 inner
6975.2.a.bi.1.1 3 15.2 even 4
7440.2.a.bm.1.3 3 20.3 even 4