Properties

Label 2325.2.c
Level $2325$
Weight $2$
Character orbit 2325.c
Rep. character $\chi_{2325}(1024,\cdot)$
Character field $\Q$
Dimension $88$
Newform subspaces $18$
Sturm bound $640$
Trace bound $14$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(640\)
Trace bound: \(14\)
Distinguishing \(T_p\): \(2\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2325, [\chi])\).

Total New Old
Modular forms 332 88 244
Cusp forms 308 88 220
Eisenstein series 24 0 24

Trace form

\( 88 q - 84 q^{4} - 88 q^{9} + 8 q^{11} - 4 q^{14} + 60 q^{16} + 8 q^{19} - 8 q^{26} + 32 q^{29} - 12 q^{31} + 56 q^{34} + 84 q^{36} + 16 q^{39} + 8 q^{44} - 48 q^{46} - 128 q^{49} - 8 q^{59} - 24 q^{61}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2325, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2325.2.c.a 2325.c 5.b $2$ $18.565$ \(\Q(\sqrt{-1}) \) None 2325.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+i q^{3}-2 q^{4}-2 q^{6}+4 i q^{7}+\cdots\)
2325.2.c.b 2325.c 5.b $2$ $18.565$ \(\Q(\sqrt{-1}) \) None 2325.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}-i q^{3}-2 q^{4}+2 q^{6}-4 i q^{7}+\cdots\)
2325.2.c.c 2325.c 5.b $2$ $18.565$ \(\Q(\sqrt{-1}) \) None 465.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}+q^{4}-q^{6}+4 i q^{7}+\cdots\)
2325.2.c.d 2325.c 5.b $2$ $18.565$ \(\Q(\sqrt{-1}) \) None 465.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}+q^{4}-q^{6}-2 i q^{7}+\cdots\)
2325.2.c.e 2325.c 5.b $2$ $18.565$ \(\Q(\sqrt{-1}) \) None 2325.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}+q^{4}-q^{6}-2 i q^{7}+\cdots\)
2325.2.c.f 2325.c 5.b $2$ $18.565$ \(\Q(\sqrt{-1}) \) None 2325.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}+q^{4}+q^{6}+2 i q^{7}+\cdots\)
2325.2.c.g 2325.c 5.b $2$ $18.565$ \(\Q(\sqrt{-1}) \) None 2325.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+2 q^{4}-q^{9}-3 q^{11}-2 i q^{12}+\cdots\)
2325.2.c.h 2325.c 5.b $4$ $18.565$ \(\Q(i, \sqrt{5})\) None 93.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{2}+\beta _{3}q^{3}+3\beta _{2}q^{4}+(1+\cdots)q^{6}+\cdots\)
2325.2.c.i 2325.c 5.b $4$ $18.565$ \(\Q(\zeta_{8})\) None 465.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}+\beta_1)q^{2}+\beta_1 q^{3}+(-2\beta_{3}-1)q^{4}+\cdots\)
2325.2.c.j 2325.c 5.b $4$ $18.565$ \(\Q(\zeta_{12})\) None 465.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{2} q^{2}+\beta_1 q^{3}-q^{4}+\beta_{3} q^{6}+\cdots\)
2325.2.c.k 2325.c 5.b $6$ $18.565$ 6.0.5089536.1 None 465.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}-\beta _{4}q^{3}+(-2+\beta _{3})q^{4}+\beta _{1}q^{6}+\cdots\)
2325.2.c.l 2325.c 5.b $6$ $18.565$ 6.0.350464.1 None 465.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{3}-\beta _{5})q^{2}-\beta _{3}q^{3}+(-2-\beta _{1}+\cdots)q^{4}+\cdots\)
2325.2.c.m 2325.c 5.b $6$ $18.565$ 6.0.350464.1 None 2325.2.a.t \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}-\beta _{3}q^{3}+(-1+\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
2325.2.c.n 2325.c 5.b $6$ $18.565$ 6.0.3356224.1 None 93.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(-1+\beta _{2})q^{4}-\beta _{4}q^{6}+\cdots\)
2325.2.c.o 2325.c 5.b $6$ $18.565$ 6.0.350464.1 None 465.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}+\beta _{3}q^{3}+(-\beta _{1}+\beta _{2})q^{4}+\cdots\)
2325.2.c.p 2325.c 5.b $8$ $18.565$ 8.0.4589249536.2 None 465.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}-\beta _{5})q^{2}-\beta _{5}q^{3}+(-2+\beta _{2}+\cdots)q^{4}+\cdots\)
2325.2.c.q 2325.c 5.b $12$ $18.565$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 2325.2.a.z \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{6}q^{3}+(-1+\beta _{2})q^{4}+\beta _{7}q^{6}+\cdots\)
2325.2.c.r 2325.c 5.b $12$ $18.565$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 2325.2.a.y \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{5}q^{3}+(-1-\beta _{6}+\beta _{7}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2325, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2325, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(465, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(775, [\chi])\)\(^{\oplus 2}\)