Properties

Label 2325.2.a.p.1.3
Level $2325$
Weight $2$
Character 2325.1
Self dual yes
Analytic conductor $18.565$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-3,5,0,3,-2,-9,3,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5652184699\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 2325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.21432 q^{2} -1.00000 q^{3} -0.525428 q^{4} -1.21432 q^{6} +1.59210 q^{7} -3.06668 q^{8} +1.00000 q^{9} +0.622216 q^{11} +0.525428 q^{12} -0.214320 q^{13} +1.93332 q^{14} -2.67307 q^{16} -3.52543 q^{17} +1.21432 q^{18} +1.80642 q^{19} -1.59210 q^{21} +0.755569 q^{22} -6.90321 q^{23} +3.06668 q^{24} -0.260253 q^{26} -1.00000 q^{27} -0.836535 q^{28} +9.73975 q^{29} -1.00000 q^{31} +2.88739 q^{32} -0.622216 q^{33} -4.28100 q^{34} -0.525428 q^{36} +4.83654 q^{37} +2.19358 q^{38} +0.214320 q^{39} -7.47949 q^{41} -1.93332 q^{42} -8.23506 q^{43} -0.326929 q^{44} -8.38271 q^{46} -11.4652 q^{47} +2.67307 q^{48} -4.46520 q^{49} +3.52543 q^{51} +0.112610 q^{52} -13.7605 q^{53} -1.21432 q^{54} -4.88247 q^{56} -1.80642 q^{57} +11.8272 q^{58} -4.26025 q^{59} +2.85728 q^{61} -1.21432 q^{62} +1.59210 q^{63} +8.85236 q^{64} -0.755569 q^{66} +2.08097 q^{67} +1.85236 q^{68} +6.90321 q^{69} +1.31111 q^{71} -3.06668 q^{72} +1.65233 q^{73} +5.87310 q^{74} -0.949145 q^{76} +0.990632 q^{77} +0.260253 q^{78} -5.19850 q^{79} +1.00000 q^{81} -9.08250 q^{82} +5.65878 q^{83} +0.836535 q^{84} -10.0000 q^{86} -9.73975 q^{87} -1.90813 q^{88} -1.93332 q^{89} -0.341219 q^{91} +3.62714 q^{92} +1.00000 q^{93} -13.9224 q^{94} -2.88739 q^{96} -6.91750 q^{97} -5.42219 q^{98} +0.622216 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 5 q^{4} + 3 q^{6} - 2 q^{7} - 9 q^{8} + 3 q^{9} + 2 q^{11} - 5 q^{12} + 6 q^{13} + 6 q^{14} + 5 q^{16} - 4 q^{17} - 3 q^{18} - 8 q^{19} + 2 q^{21} + 2 q^{22} - 14 q^{23} + 9 q^{24}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21432 0.858654 0.429327 0.903149i \(-0.358751\pi\)
0.429327 + 0.903149i \(0.358751\pi\)
\(3\) −1.00000 −0.577350
\(4\) −0.525428 −0.262714
\(5\) 0 0
\(6\) −1.21432 −0.495744
\(7\) 1.59210 0.601759 0.300879 0.953662i \(-0.402720\pi\)
0.300879 + 0.953662i \(0.402720\pi\)
\(8\) −3.06668 −1.08423
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.622216 0.187605 0.0938025 0.995591i \(-0.470098\pi\)
0.0938025 + 0.995591i \(0.470098\pi\)
\(12\) 0.525428 0.151678
\(13\) −0.214320 −0.0594416 −0.0297208 0.999558i \(-0.509462\pi\)
−0.0297208 + 0.999558i \(0.509462\pi\)
\(14\) 1.93332 0.516702
\(15\) 0 0
\(16\) −2.67307 −0.668268
\(17\) −3.52543 −0.855042 −0.427521 0.904005i \(-0.640613\pi\)
−0.427521 + 0.904005i \(0.640613\pi\)
\(18\) 1.21432 0.286218
\(19\) 1.80642 0.414422 0.207211 0.978296i \(-0.433561\pi\)
0.207211 + 0.978296i \(0.433561\pi\)
\(20\) 0 0
\(21\) −1.59210 −0.347426
\(22\) 0.755569 0.161088
\(23\) −6.90321 −1.43942 −0.719710 0.694275i \(-0.755725\pi\)
−0.719710 + 0.694275i \(0.755725\pi\)
\(24\) 3.06668 0.625983
\(25\) 0 0
\(26\) −0.260253 −0.0510398
\(27\) −1.00000 −0.192450
\(28\) −0.836535 −0.158090
\(29\) 9.73975 1.80863 0.904313 0.426870i \(-0.140384\pi\)
0.904313 + 0.426870i \(0.140384\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 2.88739 0.510423
\(33\) −0.622216 −0.108314
\(34\) −4.28100 −0.734185
\(35\) 0 0
\(36\) −0.525428 −0.0875713
\(37\) 4.83654 0.795122 0.397561 0.917576i \(-0.369857\pi\)
0.397561 + 0.917576i \(0.369857\pi\)
\(38\) 2.19358 0.355845
\(39\) 0.214320 0.0343186
\(40\) 0 0
\(41\) −7.47949 −1.16810 −0.584050 0.811717i \(-0.698533\pi\)
−0.584050 + 0.811717i \(0.698533\pi\)
\(42\) −1.93332 −0.298318
\(43\) −8.23506 −1.25584 −0.627918 0.778280i \(-0.716093\pi\)
−0.627918 + 0.778280i \(0.716093\pi\)
\(44\) −0.326929 −0.0492864
\(45\) 0 0
\(46\) −8.38271 −1.23596
\(47\) −11.4652 −1.67237 −0.836186 0.548446i \(-0.815220\pi\)
−0.836186 + 0.548446i \(0.815220\pi\)
\(48\) 2.67307 0.385825
\(49\) −4.46520 −0.637886
\(50\) 0 0
\(51\) 3.52543 0.493659
\(52\) 0.112610 0.0156161
\(53\) −13.7605 −1.89015 −0.945074 0.326855i \(-0.894011\pi\)
−0.945074 + 0.326855i \(0.894011\pi\)
\(54\) −1.21432 −0.165248
\(55\) 0 0
\(56\) −4.88247 −0.652447
\(57\) −1.80642 −0.239267
\(58\) 11.8272 1.55298
\(59\) −4.26025 −0.554638 −0.277319 0.960778i \(-0.589446\pi\)
−0.277319 + 0.960778i \(0.589446\pi\)
\(60\) 0 0
\(61\) 2.85728 0.365837 0.182919 0.983128i \(-0.441446\pi\)
0.182919 + 0.983128i \(0.441446\pi\)
\(62\) −1.21432 −0.154219
\(63\) 1.59210 0.200586
\(64\) 8.85236 1.10654
\(65\) 0 0
\(66\) −0.755569 −0.0930041
\(67\) 2.08097 0.254231 0.127115 0.991888i \(-0.459428\pi\)
0.127115 + 0.991888i \(0.459428\pi\)
\(68\) 1.85236 0.224631
\(69\) 6.90321 0.831049
\(70\) 0 0
\(71\) 1.31111 0.155600 0.0777999 0.996969i \(-0.475210\pi\)
0.0777999 + 0.996969i \(0.475210\pi\)
\(72\) −3.06668 −0.361411
\(73\) 1.65233 0.193390 0.0966951 0.995314i \(-0.469173\pi\)
0.0966951 + 0.995314i \(0.469173\pi\)
\(74\) 5.87310 0.682734
\(75\) 0 0
\(76\) −0.949145 −0.108874
\(77\) 0.990632 0.112893
\(78\) 0.260253 0.0294678
\(79\) −5.19850 −0.584877 −0.292438 0.956284i \(-0.594467\pi\)
−0.292438 + 0.956284i \(0.594467\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −9.08250 −1.00299
\(83\) 5.65878 0.621132 0.310566 0.950552i \(-0.399481\pi\)
0.310566 + 0.950552i \(0.399481\pi\)
\(84\) 0.836535 0.0912735
\(85\) 0 0
\(86\) −10.0000 −1.07833
\(87\) −9.73975 −1.04421
\(88\) −1.90813 −0.203408
\(89\) −1.93332 −0.204932 −0.102466 0.994737i \(-0.532673\pi\)
−0.102466 + 0.994737i \(0.532673\pi\)
\(90\) 0 0
\(91\) −0.341219 −0.0357695
\(92\) 3.62714 0.378155
\(93\) 1.00000 0.103695
\(94\) −13.9224 −1.43599
\(95\) 0 0
\(96\) −2.88739 −0.294693
\(97\) −6.91750 −0.702366 −0.351183 0.936307i \(-0.614220\pi\)
−0.351183 + 0.936307i \(0.614220\pi\)
\(98\) −5.42219 −0.547723
\(99\) 0.622216 0.0625350
\(100\) 0 0
\(101\) −9.28592 −0.923983 −0.461992 0.886884i \(-0.652865\pi\)
−0.461992 + 0.886884i \(0.652865\pi\)
\(102\) 4.28100 0.423882
\(103\) −0.274543 −0.0270515 −0.0135258 0.999909i \(-0.504306\pi\)
−0.0135258 + 0.999909i \(0.504306\pi\)
\(104\) 0.657249 0.0644486
\(105\) 0 0
\(106\) −16.7096 −1.62298
\(107\) 8.18913 0.791673 0.395837 0.918321i \(-0.370455\pi\)
0.395837 + 0.918321i \(0.370455\pi\)
\(108\) 0.525428 0.0505593
\(109\) −9.13828 −0.875288 −0.437644 0.899148i \(-0.644187\pi\)
−0.437644 + 0.899148i \(0.644187\pi\)
\(110\) 0 0
\(111\) −4.83654 −0.459064
\(112\) −4.25581 −0.402136
\(113\) −7.67307 −0.721822 −0.360911 0.932600i \(-0.617534\pi\)
−0.360911 + 0.932600i \(0.617534\pi\)
\(114\) −2.19358 −0.205447
\(115\) 0 0
\(116\) −5.11753 −0.475151
\(117\) −0.214320 −0.0198139
\(118\) −5.17331 −0.476242
\(119\) −5.61285 −0.514529
\(120\) 0 0
\(121\) −10.6128 −0.964804
\(122\) 3.46965 0.314127
\(123\) 7.47949 0.674403
\(124\) 0.525428 0.0471848
\(125\) 0 0
\(126\) 1.93332 0.172234
\(127\) −13.6731 −1.21329 −0.606644 0.794973i \(-0.707485\pi\)
−0.606644 + 0.794973i \(0.707485\pi\)
\(128\) 4.97481 0.439715
\(129\) 8.23506 0.725057
\(130\) 0 0
\(131\) −22.2701 −1.94575 −0.972874 0.231337i \(-0.925690\pi\)
−0.972874 + 0.231337i \(0.925690\pi\)
\(132\) 0.326929 0.0284555
\(133\) 2.87601 0.249382
\(134\) 2.52696 0.218296
\(135\) 0 0
\(136\) 10.8113 0.927065
\(137\) 18.1891 1.55400 0.777001 0.629499i \(-0.216740\pi\)
0.777001 + 0.629499i \(0.216740\pi\)
\(138\) 8.38271 0.713583
\(139\) −4.13335 −0.350586 −0.175293 0.984516i \(-0.556087\pi\)
−0.175293 + 0.984516i \(0.556087\pi\)
\(140\) 0 0
\(141\) 11.4652 0.965544
\(142\) 1.59210 0.133606
\(143\) −0.133353 −0.0111515
\(144\) −2.67307 −0.222756
\(145\) 0 0
\(146\) 2.00645 0.166055
\(147\) 4.46520 0.368284
\(148\) −2.54125 −0.208889
\(149\) 6.23506 0.510796 0.255398 0.966836i \(-0.417793\pi\)
0.255398 + 0.966836i \(0.417793\pi\)
\(150\) 0 0
\(151\) 8.38271 0.682175 0.341087 0.940032i \(-0.389205\pi\)
0.341087 + 0.940032i \(0.389205\pi\)
\(152\) −5.53972 −0.449330
\(153\) −3.52543 −0.285014
\(154\) 1.20294 0.0969360
\(155\) 0 0
\(156\) −0.112610 −0.00901598
\(157\) 10.2351 0.816847 0.408423 0.912793i \(-0.366079\pi\)
0.408423 + 0.912793i \(0.366079\pi\)
\(158\) −6.31264 −0.502207
\(159\) 13.7605 1.09128
\(160\) 0 0
\(161\) −10.9906 −0.866183
\(162\) 1.21432 0.0954060
\(163\) −5.82717 −0.456419 −0.228209 0.973612i \(-0.573287\pi\)
−0.228209 + 0.973612i \(0.573287\pi\)
\(164\) 3.92993 0.306876
\(165\) 0 0
\(166\) 6.87157 0.533337
\(167\) −23.1842 −1.79405 −0.897024 0.441982i \(-0.854276\pi\)
−0.897024 + 0.441982i \(0.854276\pi\)
\(168\) 4.88247 0.376691
\(169\) −12.9541 −0.996467
\(170\) 0 0
\(171\) 1.80642 0.138141
\(172\) 4.32693 0.329925
\(173\) −1.57136 −0.119468 −0.0597342 0.998214i \(-0.519025\pi\)
−0.0597342 + 0.998214i \(0.519025\pi\)
\(174\) −11.8272 −0.896615
\(175\) 0 0
\(176\) −1.66323 −0.125370
\(177\) 4.26025 0.320220
\(178\) −2.34767 −0.175966
\(179\) 1.53972 0.115084 0.0575420 0.998343i \(-0.481674\pi\)
0.0575420 + 0.998343i \(0.481674\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −0.414349 −0.0307136
\(183\) −2.85728 −0.211216
\(184\) 21.1699 1.56067
\(185\) 0 0
\(186\) 1.21432 0.0890382
\(187\) −2.19358 −0.160410
\(188\) 6.02413 0.439355
\(189\) −1.59210 −0.115809
\(190\) 0 0
\(191\) 9.11753 0.659721 0.329861 0.944030i \(-0.392998\pi\)
0.329861 + 0.944030i \(0.392998\pi\)
\(192\) −8.85236 −0.638864
\(193\) 4.72393 0.340036 0.170018 0.985441i \(-0.445617\pi\)
0.170018 + 0.985441i \(0.445617\pi\)
\(194\) −8.40006 −0.603089
\(195\) 0 0
\(196\) 2.34614 0.167582
\(197\) −15.7003 −1.11860 −0.559299 0.828966i \(-0.688930\pi\)
−0.559299 + 0.828966i \(0.688930\pi\)
\(198\) 0.755569 0.0536959
\(199\) 6.28100 0.445248 0.222624 0.974904i \(-0.428538\pi\)
0.222624 + 0.974904i \(0.428538\pi\)
\(200\) 0 0
\(201\) −2.08097 −0.146780
\(202\) −11.2761 −0.793382
\(203\) 15.5067 1.08836
\(204\) −1.85236 −0.129691
\(205\) 0 0
\(206\) −0.333383 −0.0232279
\(207\) −6.90321 −0.479806
\(208\) 0.572892 0.0397229
\(209\) 1.12399 0.0777477
\(210\) 0 0
\(211\) 19.4795 1.34102 0.670512 0.741899i \(-0.266075\pi\)
0.670512 + 0.741899i \(0.266075\pi\)
\(212\) 7.23014 0.496568
\(213\) −1.31111 −0.0898356
\(214\) 9.94422 0.679773
\(215\) 0 0
\(216\) 3.06668 0.208661
\(217\) −1.59210 −0.108079
\(218\) −11.0968 −0.751569
\(219\) −1.65233 −0.111654
\(220\) 0 0
\(221\) 0.755569 0.0508251
\(222\) −5.87310 −0.394177
\(223\) 15.4193 1.03255 0.516275 0.856423i \(-0.327318\pi\)
0.516275 + 0.856423i \(0.327318\pi\)
\(224\) 4.59703 0.307152
\(225\) 0 0
\(226\) −9.31756 −0.619795
\(227\) 12.8430 0.852419 0.426210 0.904624i \(-0.359849\pi\)
0.426210 + 0.904624i \(0.359849\pi\)
\(228\) 0.949145 0.0628587
\(229\) −3.08250 −0.203697 −0.101849 0.994800i \(-0.532476\pi\)
−0.101849 + 0.994800i \(0.532476\pi\)
\(230\) 0 0
\(231\) −0.990632 −0.0651788
\(232\) −29.8687 −1.96097
\(233\) −8.76986 −0.574533 −0.287266 0.957851i \(-0.592746\pi\)
−0.287266 + 0.957851i \(0.592746\pi\)
\(234\) −0.260253 −0.0170133
\(235\) 0 0
\(236\) 2.23845 0.145711
\(237\) 5.19850 0.337679
\(238\) −6.81579 −0.441802
\(239\) 3.12399 0.202074 0.101037 0.994883i \(-0.467784\pi\)
0.101037 + 0.994883i \(0.467784\pi\)
\(240\) 0 0
\(241\) 29.5625 1.90429 0.952143 0.305653i \(-0.0988747\pi\)
0.952143 + 0.305653i \(0.0988747\pi\)
\(242\) −12.8874 −0.828433
\(243\) −1.00000 −0.0641500
\(244\) −1.50129 −0.0961104
\(245\) 0 0
\(246\) 9.08250 0.579079
\(247\) −0.387152 −0.0246339
\(248\) 3.06668 0.194734
\(249\) −5.65878 −0.358611
\(250\) 0 0
\(251\) 21.4193 1.35197 0.675986 0.736914i \(-0.263718\pi\)
0.675986 + 0.736914i \(0.263718\pi\)
\(252\) −0.836535 −0.0526968
\(253\) −4.29529 −0.270042
\(254\) −16.6035 −1.04179
\(255\) 0 0
\(256\) −11.6637 −0.728981
\(257\) 17.6271 1.09955 0.549775 0.835313i \(-0.314713\pi\)
0.549775 + 0.835313i \(0.314713\pi\)
\(258\) 10.0000 0.622573
\(259\) 7.70027 0.478471
\(260\) 0 0
\(261\) 9.73975 0.602875
\(262\) −27.0430 −1.67072
\(263\) 14.7052 0.906761 0.453380 0.891317i \(-0.350218\pi\)
0.453380 + 0.891317i \(0.350218\pi\)
\(264\) 1.90813 0.117438
\(265\) 0 0
\(266\) 3.49240 0.214133
\(267\) 1.93332 0.118317
\(268\) −1.09340 −0.0667899
\(269\) 1.35260 0.0824692 0.0412346 0.999149i \(-0.486871\pi\)
0.0412346 + 0.999149i \(0.486871\pi\)
\(270\) 0 0
\(271\) 12.1334 0.737049 0.368524 0.929618i \(-0.379863\pi\)
0.368524 + 0.929618i \(0.379863\pi\)
\(272\) 9.42372 0.571397
\(273\) 0.341219 0.0206515
\(274\) 22.0874 1.33435
\(275\) 0 0
\(276\) −3.62714 −0.218328
\(277\) −18.9382 −1.13789 −0.568944 0.822376i \(-0.692648\pi\)
−0.568944 + 0.822376i \(0.692648\pi\)
\(278\) −5.01921 −0.301032
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 12.9175 0.770594 0.385297 0.922793i \(-0.374099\pi\)
0.385297 + 0.922793i \(0.374099\pi\)
\(282\) 13.9224 0.829068
\(283\) −26.5827 −1.58018 −0.790090 0.612991i \(-0.789966\pi\)
−0.790090 + 0.612991i \(0.789966\pi\)
\(284\) −0.688892 −0.0408782
\(285\) 0 0
\(286\) −0.161933 −0.00957532
\(287\) −11.9081 −0.702915
\(288\) 2.88739 0.170141
\(289\) −4.57136 −0.268904
\(290\) 0 0
\(291\) 6.91750 0.405511
\(292\) −0.868178 −0.0508063
\(293\) 7.99555 0.467105 0.233553 0.972344i \(-0.424965\pi\)
0.233553 + 0.972344i \(0.424965\pi\)
\(294\) 5.42219 0.316228
\(295\) 0 0
\(296\) −14.8321 −0.862098
\(297\) −0.622216 −0.0361046
\(298\) 7.57136 0.438597
\(299\) 1.47949 0.0855614
\(300\) 0 0
\(301\) −13.1111 −0.755710
\(302\) 10.1793 0.585752
\(303\) 9.28592 0.533462
\(304\) −4.82870 −0.276945
\(305\) 0 0
\(306\) −4.28100 −0.244728
\(307\) 17.3669 0.991180 0.495590 0.868556i \(-0.334952\pi\)
0.495590 + 0.868556i \(0.334952\pi\)
\(308\) −0.520505 −0.0296585
\(309\) 0.274543 0.0156182
\(310\) 0 0
\(311\) −27.5877 −1.56435 −0.782176 0.623057i \(-0.785890\pi\)
−0.782176 + 0.623057i \(0.785890\pi\)
\(312\) −0.657249 −0.0372094
\(313\) 13.7255 0.775809 0.387904 0.921700i \(-0.373199\pi\)
0.387904 + 0.921700i \(0.373199\pi\)
\(314\) 12.4286 0.701389
\(315\) 0 0
\(316\) 2.73143 0.153655
\(317\) 24.9447 1.40103 0.700517 0.713636i \(-0.252953\pi\)
0.700517 + 0.713636i \(0.252953\pi\)
\(318\) 16.7096 0.937030
\(319\) 6.06022 0.339307
\(320\) 0 0
\(321\) −8.18913 −0.457073
\(322\) −13.3461 −0.743751
\(323\) −6.36842 −0.354348
\(324\) −0.525428 −0.0291904
\(325\) 0 0
\(326\) −7.07604 −0.391906
\(327\) 9.13828 0.505348
\(328\) 22.9372 1.26649
\(329\) −18.2538 −1.00636
\(330\) 0 0
\(331\) 19.1798 1.05422 0.527108 0.849799i \(-0.323276\pi\)
0.527108 + 0.849799i \(0.323276\pi\)
\(332\) −2.97328 −0.163180
\(333\) 4.83654 0.265041
\(334\) −28.1530 −1.54047
\(335\) 0 0
\(336\) 4.25581 0.232173
\(337\) 25.3067 1.37854 0.689271 0.724504i \(-0.257931\pi\)
0.689271 + 0.724504i \(0.257931\pi\)
\(338\) −15.7304 −0.855620
\(339\) 7.67307 0.416744
\(340\) 0 0
\(341\) −0.622216 −0.0336949
\(342\) 2.19358 0.118615
\(343\) −18.2538 −0.985613
\(344\) 25.2543 1.36162
\(345\) 0 0
\(346\) −1.90813 −0.102582
\(347\) −19.0638 −1.02340 −0.511698 0.859165i \(-0.670983\pi\)
−0.511698 + 0.859165i \(0.670983\pi\)
\(348\) 5.11753 0.274328
\(349\) −1.23014 −0.0658479 −0.0329240 0.999458i \(-0.510482\pi\)
−0.0329240 + 0.999458i \(0.510482\pi\)
\(350\) 0 0
\(351\) 0.214320 0.0114395
\(352\) 1.79658 0.0957580
\(353\) −4.50315 −0.239679 −0.119839 0.992793i \(-0.538238\pi\)
−0.119839 + 0.992793i \(0.538238\pi\)
\(354\) 5.17331 0.274958
\(355\) 0 0
\(356\) 1.01582 0.0538384
\(357\) 5.61285 0.297063
\(358\) 1.86971 0.0988172
\(359\) 18.9240 0.998768 0.499384 0.866381i \(-0.333560\pi\)
0.499384 + 0.866381i \(0.333560\pi\)
\(360\) 0 0
\(361\) −15.7368 −0.828254
\(362\) 2.42864 0.127646
\(363\) 10.6128 0.557030
\(364\) 0.179286 0.00939714
\(365\) 0 0
\(366\) −3.46965 −0.181362
\(367\) 9.71456 0.507096 0.253548 0.967323i \(-0.418402\pi\)
0.253548 + 0.967323i \(0.418402\pi\)
\(368\) 18.4528 0.961917
\(369\) −7.47949 −0.389367
\(370\) 0 0
\(371\) −21.9081 −1.13741
\(372\) −0.525428 −0.0272421
\(373\) 35.1941 1.82228 0.911139 0.412098i \(-0.135204\pi\)
0.911139 + 0.412098i \(0.135204\pi\)
\(374\) −2.66370 −0.137737
\(375\) 0 0
\(376\) 35.1601 1.81324
\(377\) −2.08742 −0.107508
\(378\) −1.93332 −0.0994394
\(379\) −22.6637 −1.16416 −0.582078 0.813133i \(-0.697760\pi\)
−0.582078 + 0.813133i \(0.697760\pi\)
\(380\) 0 0
\(381\) 13.6731 0.700493
\(382\) 11.0716 0.566472
\(383\) −28.7926 −1.47123 −0.735617 0.677398i \(-0.763108\pi\)
−0.735617 + 0.677398i \(0.763108\pi\)
\(384\) −4.97481 −0.253870
\(385\) 0 0
\(386\) 5.73636 0.291973
\(387\) −8.23506 −0.418612
\(388\) 3.63465 0.184521
\(389\) −25.0672 −1.27096 −0.635478 0.772119i \(-0.719197\pi\)
−0.635478 + 0.772119i \(0.719197\pi\)
\(390\) 0 0
\(391\) 24.3368 1.23076
\(392\) 13.6933 0.691618
\(393\) 22.2701 1.12338
\(394\) −19.0651 −0.960488
\(395\) 0 0
\(396\) −0.326929 −0.0164288
\(397\) 29.0509 1.45802 0.729010 0.684503i \(-0.239981\pi\)
0.729010 + 0.684503i \(0.239981\pi\)
\(398\) 7.62714 0.382314
\(399\) −2.87601 −0.143981
\(400\) 0 0
\(401\) 11.2607 0.562334 0.281167 0.959659i \(-0.409279\pi\)
0.281167 + 0.959659i \(0.409279\pi\)
\(402\) −2.52696 −0.126033
\(403\) 0.214320 0.0106760
\(404\) 4.87908 0.242743
\(405\) 0 0
\(406\) 18.8301 0.934521
\(407\) 3.00937 0.149169
\(408\) −10.8113 −0.535241
\(409\) −25.6128 −1.26647 −0.633237 0.773958i \(-0.718274\pi\)
−0.633237 + 0.773958i \(0.718274\pi\)
\(410\) 0 0
\(411\) −18.1891 −0.897204
\(412\) 0.144252 0.00710680
\(413\) −6.78277 −0.333758
\(414\) −8.38271 −0.411988
\(415\) 0 0
\(416\) −0.618825 −0.0303404
\(417\) 4.13335 0.202411
\(418\) 1.36488 0.0667583
\(419\) −4.36196 −0.213096 −0.106548 0.994308i \(-0.533980\pi\)
−0.106548 + 0.994308i \(0.533980\pi\)
\(420\) 0 0
\(421\) 5.77923 0.281662 0.140831 0.990034i \(-0.455023\pi\)
0.140831 + 0.990034i \(0.455023\pi\)
\(422\) 23.6543 1.15148
\(423\) −11.4652 −0.557457
\(424\) 42.1990 2.04936
\(425\) 0 0
\(426\) −1.59210 −0.0771377
\(427\) 4.54909 0.220146
\(428\) −4.30279 −0.207983
\(429\) 0.133353 0.00643835
\(430\) 0 0
\(431\) −4.62867 −0.222955 −0.111478 0.993767i \(-0.535558\pi\)
−0.111478 + 0.993767i \(0.535558\pi\)
\(432\) 2.67307 0.128608
\(433\) −6.81780 −0.327643 −0.163821 0.986490i \(-0.552382\pi\)
−0.163821 + 0.986490i \(0.552382\pi\)
\(434\) −1.93332 −0.0928025
\(435\) 0 0
\(436\) 4.80150 0.229950
\(437\) −12.4701 −0.596527
\(438\) −2.00645 −0.0958721
\(439\) 9.71456 0.463651 0.231825 0.972757i \(-0.425530\pi\)
0.231825 + 0.972757i \(0.425530\pi\)
\(440\) 0 0
\(441\) −4.46520 −0.212629
\(442\) 0.917502 0.0436411
\(443\) −31.1481 −1.47989 −0.739946 0.672666i \(-0.765149\pi\)
−0.739946 + 0.672666i \(0.765149\pi\)
\(444\) 2.54125 0.120602
\(445\) 0 0
\(446\) 18.7239 0.886604
\(447\) −6.23506 −0.294908
\(448\) 14.0939 0.665873
\(449\) 28.1180 1.32697 0.663485 0.748189i \(-0.269076\pi\)
0.663485 + 0.748189i \(0.269076\pi\)
\(450\) 0 0
\(451\) −4.65386 −0.219142
\(452\) 4.03164 0.189633
\(453\) −8.38271 −0.393854
\(454\) 15.5955 0.731933
\(455\) 0 0
\(456\) 5.53972 0.259421
\(457\) 41.4400 1.93848 0.969241 0.246113i \(-0.0791535\pi\)
0.969241 + 0.246113i \(0.0791535\pi\)
\(458\) −3.74314 −0.174905
\(459\) 3.52543 0.164553
\(460\) 0 0
\(461\) 10.3432 0.481732 0.240866 0.970558i \(-0.422569\pi\)
0.240866 + 0.970558i \(0.422569\pi\)
\(462\) −1.20294 −0.0559660
\(463\) −13.3047 −0.618320 −0.309160 0.951010i \(-0.600048\pi\)
−0.309160 + 0.951010i \(0.600048\pi\)
\(464\) −26.0350 −1.20865
\(465\) 0 0
\(466\) −10.6494 −0.493325
\(467\) 6.22077 0.287863 0.143932 0.989588i \(-0.454025\pi\)
0.143932 + 0.989588i \(0.454025\pi\)
\(468\) 0.112610 0.00520538
\(469\) 3.31312 0.152985
\(470\) 0 0
\(471\) −10.2351 −0.471607
\(472\) 13.0648 0.601357
\(473\) −5.12399 −0.235601
\(474\) 6.31264 0.289949
\(475\) 0 0
\(476\) 2.94914 0.135174
\(477\) −13.7605 −0.630050
\(478\) 3.79352 0.173511
\(479\) −24.8825 −1.13691 −0.568454 0.822715i \(-0.692458\pi\)
−0.568454 + 0.822715i \(0.692458\pi\)
\(480\) 0 0
\(481\) −1.03657 −0.0472633
\(482\) 35.8983 1.63512
\(483\) 10.9906 0.500091
\(484\) 5.57628 0.253467
\(485\) 0 0
\(486\) −1.21432 −0.0550827
\(487\) 9.84791 0.446251 0.223126 0.974790i \(-0.428374\pi\)
0.223126 + 0.974790i \(0.428374\pi\)
\(488\) −8.76235 −0.396653
\(489\) 5.82717 0.263514
\(490\) 0 0
\(491\) −9.84791 −0.444430 −0.222215 0.974998i \(-0.571329\pi\)
−0.222215 + 0.974998i \(0.571329\pi\)
\(492\) −3.92993 −0.177175
\(493\) −34.3368 −1.54645
\(494\) −0.470127 −0.0211520
\(495\) 0 0
\(496\) 2.67307 0.120024
\(497\) 2.08742 0.0936336
\(498\) −6.87157 −0.307922
\(499\) 0.653858 0.0292707 0.0146354 0.999893i \(-0.495341\pi\)
0.0146354 + 0.999893i \(0.495341\pi\)
\(500\) 0 0
\(501\) 23.1842 1.03579
\(502\) 26.0098 1.16088
\(503\) −13.9541 −0.622181 −0.311091 0.950380i \(-0.600694\pi\)
−0.311091 + 0.950380i \(0.600694\pi\)
\(504\) −4.88247 −0.217482
\(505\) 0 0
\(506\) −5.21585 −0.231873
\(507\) 12.9541 0.575310
\(508\) 7.18421 0.318748
\(509\) −42.7116 −1.89316 −0.946580 0.322469i \(-0.895487\pi\)
−0.946580 + 0.322469i \(0.895487\pi\)
\(510\) 0 0
\(511\) 2.63068 0.116374
\(512\) −24.1131 −1.06566
\(513\) −1.80642 −0.0797556
\(514\) 21.4050 0.944133
\(515\) 0 0
\(516\) −4.32693 −0.190482
\(517\) −7.13383 −0.313745
\(518\) 9.35059 0.410841
\(519\) 1.57136 0.0689751
\(520\) 0 0
\(521\) −12.6035 −0.552168 −0.276084 0.961133i \(-0.589037\pi\)
−0.276084 + 0.961133i \(0.589037\pi\)
\(522\) 11.8272 0.517661
\(523\) 29.8479 1.30516 0.652579 0.757721i \(-0.273687\pi\)
0.652579 + 0.757721i \(0.273687\pi\)
\(524\) 11.7013 0.511175
\(525\) 0 0
\(526\) 17.8568 0.778594
\(527\) 3.52543 0.153570
\(528\) 1.66323 0.0723826
\(529\) 24.6543 1.07193
\(530\) 0 0
\(531\) −4.26025 −0.184879
\(532\) −1.51114 −0.0655161
\(533\) 1.60300 0.0694338
\(534\) 2.34767 0.101594
\(535\) 0 0
\(536\) −6.38165 −0.275645
\(537\) −1.53972 −0.0664437
\(538\) 1.64248 0.0708125
\(539\) −2.77832 −0.119671
\(540\) 0 0
\(541\) −13.9541 −0.599932 −0.299966 0.953950i \(-0.596975\pi\)
−0.299966 + 0.953950i \(0.596975\pi\)
\(542\) 14.7338 0.632870
\(543\) −2.00000 −0.0858282
\(544\) −10.1793 −0.436433
\(545\) 0 0
\(546\) 0.414349 0.0177325
\(547\) −5.74419 −0.245604 −0.122802 0.992431i \(-0.539188\pi\)
−0.122802 + 0.992431i \(0.539188\pi\)
\(548\) −9.55707 −0.408258
\(549\) 2.85728 0.121946
\(550\) 0 0
\(551\) 17.5941 0.749534
\(552\) −21.1699 −0.901052
\(553\) −8.27655 −0.351955
\(554\) −22.9971 −0.977053
\(555\) 0 0
\(556\) 2.17178 0.0921039
\(557\) 14.7511 0.625025 0.312513 0.949914i \(-0.398829\pi\)
0.312513 + 0.949914i \(0.398829\pi\)
\(558\) −1.21432 −0.0514063
\(559\) 1.76494 0.0746489
\(560\) 0 0
\(561\) 2.19358 0.0926129
\(562\) 15.6860 0.661673
\(563\) −32.9260 −1.38766 −0.693832 0.720137i \(-0.744079\pi\)
−0.693832 + 0.720137i \(0.744079\pi\)
\(564\) −6.02413 −0.253662
\(565\) 0 0
\(566\) −32.2799 −1.35683
\(567\) 1.59210 0.0668621
\(568\) −4.02074 −0.168707
\(569\) −3.07604 −0.128954 −0.0644772 0.997919i \(-0.520538\pi\)
−0.0644772 + 0.997919i \(0.520538\pi\)
\(570\) 0 0
\(571\) 4.52051 0.189177 0.0945886 0.995516i \(-0.469846\pi\)
0.0945886 + 0.995516i \(0.469846\pi\)
\(572\) 0.0700674 0.00292966
\(573\) −9.11753 −0.380890
\(574\) −14.4603 −0.603561
\(575\) 0 0
\(576\) 8.85236 0.368848
\(577\) 30.6923 1.27774 0.638868 0.769316i \(-0.279403\pi\)
0.638868 + 0.769316i \(0.279403\pi\)
\(578\) −5.55109 −0.230895
\(579\) −4.72393 −0.196320
\(580\) 0 0
\(581\) 9.00937 0.373772
\(582\) 8.40006 0.348194
\(583\) −8.56199 −0.354602
\(584\) −5.06715 −0.209680
\(585\) 0 0
\(586\) 9.70916 0.401082
\(587\) −14.8256 −0.611919 −0.305960 0.952044i \(-0.598977\pi\)
−0.305960 + 0.952044i \(0.598977\pi\)
\(588\) −2.34614 −0.0967532
\(589\) −1.80642 −0.0744324
\(590\) 0 0
\(591\) 15.7003 0.645823
\(592\) −12.9284 −0.531354
\(593\) −23.9684 −0.984262 −0.492131 0.870521i \(-0.663782\pi\)
−0.492131 + 0.870521i \(0.663782\pi\)
\(594\) −0.755569 −0.0310014
\(595\) 0 0
\(596\) −3.27607 −0.134193
\(597\) −6.28100 −0.257064
\(598\) 1.79658 0.0734676
\(599\) −39.1086 −1.59794 −0.798968 0.601374i \(-0.794620\pi\)
−0.798968 + 0.601374i \(0.794620\pi\)
\(600\) 0 0
\(601\) 22.3082 0.909970 0.454985 0.890499i \(-0.349645\pi\)
0.454985 + 0.890499i \(0.349645\pi\)
\(602\) −15.9210 −0.648893
\(603\) 2.08097 0.0847435
\(604\) −4.40451 −0.179217
\(605\) 0 0
\(606\) 11.2761 0.458059
\(607\) −2.82669 −0.114732 −0.0573659 0.998353i \(-0.518270\pi\)
−0.0573659 + 0.998353i \(0.518270\pi\)
\(608\) 5.21585 0.211531
\(609\) −15.5067 −0.628363
\(610\) 0 0
\(611\) 2.45722 0.0994085
\(612\) 1.85236 0.0748771
\(613\) 36.6844 1.48167 0.740835 0.671687i \(-0.234430\pi\)
0.740835 + 0.671687i \(0.234430\pi\)
\(614\) 21.0890 0.851081
\(615\) 0 0
\(616\) −3.03795 −0.122402
\(617\) −1.46659 −0.0590426 −0.0295213 0.999564i \(-0.509398\pi\)
−0.0295213 + 0.999564i \(0.509398\pi\)
\(618\) 0.333383 0.0134106
\(619\) −15.9541 −0.641248 −0.320624 0.947207i \(-0.603893\pi\)
−0.320624 + 0.947207i \(0.603893\pi\)
\(620\) 0 0
\(621\) 6.90321 0.277016
\(622\) −33.5002 −1.34324
\(623\) −3.07805 −0.123320
\(624\) −0.572892 −0.0229340
\(625\) 0 0
\(626\) 16.6671 0.666151
\(627\) −1.12399 −0.0448876
\(628\) −5.37778 −0.214597
\(629\) −17.0509 −0.679862
\(630\) 0 0
\(631\) −32.0830 −1.27720 −0.638602 0.769538i \(-0.720487\pi\)
−0.638602 + 0.769538i \(0.720487\pi\)
\(632\) 15.9421 0.634143
\(633\) −19.4795 −0.774240
\(634\) 30.2908 1.20300
\(635\) 0 0
\(636\) −7.23014 −0.286694
\(637\) 0.956981 0.0379170
\(638\) 7.35905 0.291348
\(639\) 1.31111 0.0518666
\(640\) 0 0
\(641\) −14.8923 −0.588211 −0.294105 0.955773i \(-0.595022\pi\)
−0.294105 + 0.955773i \(0.595022\pi\)
\(642\) −9.94422 −0.392467
\(643\) −12.5205 −0.493761 −0.246880 0.969046i \(-0.579405\pi\)
−0.246880 + 0.969046i \(0.579405\pi\)
\(644\) 5.77478 0.227558
\(645\) 0 0
\(646\) −7.73329 −0.304262
\(647\) −45.6227 −1.79361 −0.896807 0.442423i \(-0.854119\pi\)
−0.896807 + 0.442423i \(0.854119\pi\)
\(648\) −3.06668 −0.120470
\(649\) −2.65080 −0.104053
\(650\) 0 0
\(651\) 1.59210 0.0623995
\(652\) 3.06175 0.119908
\(653\) 18.7797 0.734907 0.367453 0.930042i \(-0.380230\pi\)
0.367453 + 0.930042i \(0.380230\pi\)
\(654\) 11.0968 0.433919
\(655\) 0 0
\(656\) 19.9932 0.780604
\(657\) 1.65233 0.0644634
\(658\) −22.1659 −0.864119
\(659\) −28.9240 −1.12672 −0.563359 0.826212i \(-0.690491\pi\)
−0.563359 + 0.826212i \(0.690491\pi\)
\(660\) 0 0
\(661\) −24.3269 −0.946208 −0.473104 0.881007i \(-0.656866\pi\)
−0.473104 + 0.881007i \(0.656866\pi\)
\(662\) 23.2904 0.905206
\(663\) −0.755569 −0.0293439
\(664\) −17.3536 −0.673452
\(665\) 0 0
\(666\) 5.87310 0.227578
\(667\) −67.2355 −2.60337
\(668\) 12.1816 0.471321
\(669\) −15.4193 −0.596143
\(670\) 0 0
\(671\) 1.77784 0.0686329
\(672\) −4.59703 −0.177334
\(673\) 36.5511 1.40894 0.704471 0.709733i \(-0.251185\pi\)
0.704471 + 0.709733i \(0.251185\pi\)
\(674\) 30.7304 1.18369
\(675\) 0 0
\(676\) 6.80642 0.261786
\(677\) 32.1575 1.23591 0.617956 0.786212i \(-0.287961\pi\)
0.617956 + 0.786212i \(0.287961\pi\)
\(678\) 9.31756 0.357839
\(679\) −11.0134 −0.422655
\(680\) 0 0
\(681\) −12.8430 −0.492144
\(682\) −0.755569 −0.0289322
\(683\) 38.2623 1.46406 0.732032 0.681270i \(-0.238572\pi\)
0.732032 + 0.681270i \(0.238572\pi\)
\(684\) −0.949145 −0.0362915
\(685\) 0 0
\(686\) −22.1659 −0.846300
\(687\) 3.08250 0.117605
\(688\) 22.0129 0.839234
\(689\) 2.94914 0.112353
\(690\) 0 0
\(691\) −12.3082 −0.468226 −0.234113 0.972209i \(-0.575219\pi\)
−0.234113 + 0.972209i \(0.575219\pi\)
\(692\) 0.825636 0.0313860
\(693\) 0.990632 0.0376310
\(694\) −23.1495 −0.878743
\(695\) 0 0
\(696\) 29.8687 1.13217
\(697\) 26.3684 0.998775
\(698\) −1.49378 −0.0565406
\(699\) 8.76986 0.331707
\(700\) 0 0
\(701\) 31.5210 1.19053 0.595266 0.803529i \(-0.297047\pi\)
0.595266 + 0.803529i \(0.297047\pi\)
\(702\) 0.260253 0.00982261
\(703\) 8.73683 0.329516
\(704\) 5.50807 0.207593
\(705\) 0 0
\(706\) −5.46827 −0.205801
\(707\) −14.7841 −0.556015
\(708\) −2.23845 −0.0841263
\(709\) −7.51114 −0.282087 −0.141043 0.990003i \(-0.545046\pi\)
−0.141043 + 0.990003i \(0.545046\pi\)
\(710\) 0 0
\(711\) −5.19850 −0.194959
\(712\) 5.92888 0.222194
\(713\) 6.90321 0.258527
\(714\) 6.81579 0.255075
\(715\) 0 0
\(716\) −0.809010 −0.0302341
\(717\) −3.12399 −0.116667
\(718\) 22.9797 0.857596
\(719\) 32.3180 1.20526 0.602630 0.798021i \(-0.294120\pi\)
0.602630 + 0.798021i \(0.294120\pi\)
\(720\) 0 0
\(721\) −0.437101 −0.0162785
\(722\) −19.1095 −0.711184
\(723\) −29.5625 −1.09944
\(724\) −1.05086 −0.0390547
\(725\) 0 0
\(726\) 12.8874 0.478296
\(727\) −6.12245 −0.227069 −0.113535 0.993534i \(-0.536217\pi\)
−0.113535 + 0.993534i \(0.536217\pi\)
\(728\) 1.04641 0.0387825
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 29.0321 1.07379
\(732\) 1.50129 0.0554894
\(733\) 30.9403 1.14280 0.571402 0.820670i \(-0.306400\pi\)
0.571402 + 0.820670i \(0.306400\pi\)
\(734\) 11.7966 0.435420
\(735\) 0 0
\(736\) −19.9323 −0.734713
\(737\) 1.29481 0.0476949
\(738\) −9.08250 −0.334331
\(739\) −12.6780 −0.466368 −0.233184 0.972433i \(-0.574914\pi\)
−0.233184 + 0.972433i \(0.574914\pi\)
\(740\) 0 0
\(741\) 0.387152 0.0142224
\(742\) −26.6035 −0.976644
\(743\) −38.4385 −1.41017 −0.705086 0.709122i \(-0.749091\pi\)
−0.705086 + 0.709122i \(0.749091\pi\)
\(744\) −3.06668 −0.112430
\(745\) 0 0
\(746\) 42.7368 1.56471
\(747\) 5.65878 0.207044
\(748\) 1.15257 0.0421420
\(749\) 13.0379 0.476396
\(750\) 0 0
\(751\) −13.4608 −0.491190 −0.245595 0.969373i \(-0.578983\pi\)
−0.245595 + 0.969373i \(0.578983\pi\)
\(752\) 30.6473 1.11759
\(753\) −21.4193 −0.780562
\(754\) −2.53480 −0.0923118
\(755\) 0 0
\(756\) 0.836535 0.0304245
\(757\) 20.5511 0.746942 0.373471 0.927642i \(-0.378168\pi\)
0.373471 + 0.927642i \(0.378168\pi\)
\(758\) −27.5210 −0.999607
\(759\) 4.29529 0.155909
\(760\) 0 0
\(761\) 42.3432 1.53494 0.767470 0.641084i \(-0.221515\pi\)
0.767470 + 0.641084i \(0.221515\pi\)
\(762\) 16.6035 0.601481
\(763\) −14.5491 −0.526712
\(764\) −4.79060 −0.173318
\(765\) 0 0
\(766\) −34.9634 −1.26328
\(767\) 0.913056 0.0329686
\(768\) 11.6637 0.420878
\(769\) 40.5388 1.46187 0.730933 0.682449i \(-0.239085\pi\)
0.730933 + 0.682449i \(0.239085\pi\)
\(770\) 0 0
\(771\) −17.6271 −0.634826
\(772\) −2.48208 −0.0893320
\(773\) −26.2810 −0.945262 −0.472631 0.881260i \(-0.656696\pi\)
−0.472631 + 0.881260i \(0.656696\pi\)
\(774\) −10.0000 −0.359443
\(775\) 0 0
\(776\) 21.2137 0.761529
\(777\) −7.70027 −0.276246
\(778\) −30.4395 −1.09131
\(779\) −13.5111 −0.484087
\(780\) 0 0
\(781\) 0.815792 0.0291913
\(782\) 29.5526 1.05680
\(783\) −9.73975 −0.348070
\(784\) 11.9358 0.426279
\(785\) 0 0
\(786\) 27.0430 0.964593
\(787\) 0.755569 0.0269331 0.0134666 0.999909i \(-0.495713\pi\)
0.0134666 + 0.999909i \(0.495713\pi\)
\(788\) 8.24935 0.293871
\(789\) −14.7052 −0.523519
\(790\) 0 0
\(791\) −12.2163 −0.434363
\(792\) −1.90813 −0.0678026
\(793\) −0.612371 −0.0217459
\(794\) 35.2770 1.25193
\(795\) 0 0
\(796\) −3.30021 −0.116973
\(797\) −1.89384 −0.0670834 −0.0335417 0.999437i \(-0.510679\pi\)
−0.0335417 + 0.999437i \(0.510679\pi\)
\(798\) −3.49240 −0.123630
\(799\) 40.4197 1.42995
\(800\) 0 0
\(801\) −1.93332 −0.0683106
\(802\) 13.6741 0.482850
\(803\) 1.02810 0.0362810
\(804\) 1.09340 0.0385611
\(805\) 0 0
\(806\) 0.260253 0.00916701
\(807\) −1.35260 −0.0476136
\(808\) 28.4769 1.00181
\(809\) −28.6671 −1.00788 −0.503941 0.863738i \(-0.668117\pi\)
−0.503941 + 0.863738i \(0.668117\pi\)
\(810\) 0 0
\(811\) −38.0228 −1.33516 −0.667580 0.744538i \(-0.732670\pi\)
−0.667580 + 0.744538i \(0.732670\pi\)
\(812\) −8.14764 −0.285926
\(813\) −12.1334 −0.425535
\(814\) 3.65433 0.128084
\(815\) 0 0
\(816\) −9.42372 −0.329896
\(817\) −14.8760 −0.520446
\(818\) −31.1022 −1.08746
\(819\) −0.341219 −0.0119232
\(820\) 0 0
\(821\) −27.2321 −0.950409 −0.475204 0.879876i \(-0.657626\pi\)
−0.475204 + 0.879876i \(0.657626\pi\)
\(822\) −22.0874 −0.770387
\(823\) −14.5749 −0.508049 −0.254025 0.967198i \(-0.581754\pi\)
−0.254025 + 0.967198i \(0.581754\pi\)
\(824\) 0.841934 0.0293302
\(825\) 0 0
\(826\) −8.23645 −0.286583
\(827\) −35.0781 −1.21978 −0.609892 0.792485i \(-0.708787\pi\)
−0.609892 + 0.792485i \(0.708787\pi\)
\(828\) 3.62714 0.126052
\(829\) 18.9077 0.656690 0.328345 0.944558i \(-0.393509\pi\)
0.328345 + 0.944558i \(0.393509\pi\)
\(830\) 0 0
\(831\) 18.9382 0.656960
\(832\) −1.89723 −0.0657748
\(833\) 15.7418 0.545419
\(834\) 5.01921 0.173801
\(835\) 0 0
\(836\) −0.590573 −0.0204254
\(837\) 1.00000 0.0345651
\(838\) −5.29682 −0.182976
\(839\) −39.5274 −1.36464 −0.682319 0.731054i \(-0.739029\pi\)
−0.682319 + 0.731054i \(0.739029\pi\)
\(840\) 0 0
\(841\) 65.8627 2.27113
\(842\) 7.01783 0.241850
\(843\) −12.9175 −0.444902
\(844\) −10.2351 −0.352305
\(845\) 0 0
\(846\) −13.9224 −0.478663
\(847\) −16.8968 −0.580579
\(848\) 36.7828 1.26313
\(849\) 26.5827 0.912317
\(850\) 0 0
\(851\) −33.3876 −1.14451
\(852\) 0.688892 0.0236011
\(853\) −41.8894 −1.43427 −0.717133 0.696937i \(-0.754546\pi\)
−0.717133 + 0.696937i \(0.754546\pi\)
\(854\) 5.52404 0.189029
\(855\) 0 0
\(856\) −25.1134 −0.858359
\(857\) −43.2859 −1.47862 −0.739309 0.673366i \(-0.764848\pi\)
−0.739309 + 0.673366i \(0.764848\pi\)
\(858\) 0.161933 0.00552831
\(859\) −49.6513 −1.69408 −0.847040 0.531530i \(-0.821617\pi\)
−0.847040 + 0.531530i \(0.821617\pi\)
\(860\) 0 0
\(861\) 11.9081 0.405828
\(862\) −5.62068 −0.191441
\(863\) 31.6958 1.07894 0.539469 0.842005i \(-0.318625\pi\)
0.539469 + 0.842005i \(0.318625\pi\)
\(864\) −2.88739 −0.0982310
\(865\) 0 0
\(866\) −8.27899 −0.281331
\(867\) 4.57136 0.155252
\(868\) 0.836535 0.0283939
\(869\) −3.23459 −0.109726
\(870\) 0 0
\(871\) −0.445992 −0.0151119
\(872\) 28.0241 0.949017
\(873\) −6.91750 −0.234122
\(874\) −15.1427 −0.512210
\(875\) 0 0
\(876\) 0.868178 0.0293330
\(877\) 24.0000 0.810422 0.405211 0.914223i \(-0.367198\pi\)
0.405211 + 0.914223i \(0.367198\pi\)
\(878\) 11.7966 0.398115
\(879\) −7.99555 −0.269683
\(880\) 0 0
\(881\) −45.6577 −1.53825 −0.769124 0.639100i \(-0.779307\pi\)
−0.769124 + 0.639100i \(0.779307\pi\)
\(882\) −5.42219 −0.182574
\(883\) −7.63158 −0.256823 −0.128412 0.991721i \(-0.540988\pi\)
−0.128412 + 0.991721i \(0.540988\pi\)
\(884\) −0.396997 −0.0133524
\(885\) 0 0
\(886\) −37.8238 −1.27071
\(887\) −13.9541 −0.468532 −0.234266 0.972173i \(-0.575269\pi\)
−0.234266 + 0.972173i \(0.575269\pi\)
\(888\) 14.8321 0.497732
\(889\) −21.7690 −0.730107
\(890\) 0 0
\(891\) 0.622216 0.0208450
\(892\) −8.10171 −0.271265
\(893\) −20.7110 −0.693068
\(894\) −7.57136 −0.253224
\(895\) 0 0
\(896\) 7.92042 0.264603
\(897\) −1.47949 −0.0493989
\(898\) 34.1443 1.13941
\(899\) −9.73975 −0.324839
\(900\) 0 0
\(901\) 48.5116 1.61616
\(902\) −5.65127 −0.188167
\(903\) 13.1111 0.436309
\(904\) 23.5308 0.782624
\(905\) 0 0
\(906\) −10.1793 −0.338184
\(907\) −50.6242 −1.68095 −0.840475 0.541851i \(-0.817724\pi\)
−0.840475 + 0.541851i \(0.817724\pi\)
\(908\) −6.74806 −0.223942
\(909\) −9.28592 −0.307994
\(910\) 0 0
\(911\) 40.5847 1.34463 0.672316 0.740264i \(-0.265300\pi\)
0.672316 + 0.740264i \(0.265300\pi\)
\(912\) 4.82870 0.159894
\(913\) 3.52098 0.116527
\(914\) 50.3214 1.66448
\(915\) 0 0
\(916\) 1.61963 0.0535141
\(917\) −35.4563 −1.17087
\(918\) 4.28100 0.141294
\(919\) 53.3274 1.75911 0.879554 0.475798i \(-0.157841\pi\)
0.879554 + 0.475798i \(0.157841\pi\)
\(920\) 0 0
\(921\) −17.3669 −0.572258
\(922\) 12.5600 0.413641
\(923\) −0.280996 −0.00924911
\(924\) 0.520505 0.0171234
\(925\) 0 0
\(926\) −16.1561 −0.530923
\(927\) −0.274543 −0.00901717
\(928\) 28.1225 0.923165
\(929\) 4.67905 0.153515 0.0767573 0.997050i \(-0.475543\pi\)
0.0767573 + 0.997050i \(0.475543\pi\)
\(930\) 0 0
\(931\) −8.06605 −0.264354
\(932\) 4.60793 0.150938
\(933\) 27.5877 0.903179
\(934\) 7.55401 0.247175
\(935\) 0 0
\(936\) 0.657249 0.0214829
\(937\) 19.8952 0.649949 0.324974 0.945723i \(-0.394644\pi\)
0.324974 + 0.945723i \(0.394644\pi\)
\(938\) 4.02318 0.131362
\(939\) −13.7255 −0.447913
\(940\) 0 0
\(941\) −1.27946 −0.0417094 −0.0208547 0.999783i \(-0.506639\pi\)
−0.0208547 + 0.999783i \(0.506639\pi\)
\(942\) −12.4286 −0.404947
\(943\) 51.6325 1.68139
\(944\) 11.3880 0.370646
\(945\) 0 0
\(946\) −6.22216 −0.202300
\(947\) 35.6686 1.15907 0.579537 0.814946i \(-0.303233\pi\)
0.579537 + 0.814946i \(0.303233\pi\)
\(948\) −2.73143 −0.0887129
\(949\) −0.354126 −0.0114954
\(950\) 0 0
\(951\) −24.9447 −0.808887
\(952\) 17.2128 0.557870
\(953\) −39.7832 −1.28871 −0.644353 0.764728i \(-0.722873\pi\)
−0.644353 + 0.764728i \(0.722873\pi\)
\(954\) −16.7096 −0.540994
\(955\) 0 0
\(956\) −1.64143 −0.0530876
\(957\) −6.06022 −0.195899
\(958\) −30.2153 −0.976211
\(959\) 28.9590 0.935135
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −1.25872 −0.0405828
\(963\) 8.18913 0.263891
\(964\) −15.5329 −0.500282
\(965\) 0 0
\(966\) 13.3461 0.429405
\(967\) 52.9304 1.70213 0.851064 0.525063i \(-0.175958\pi\)
0.851064 + 0.525063i \(0.175958\pi\)
\(968\) 32.5462 1.04607
\(969\) 6.36842 0.204583
\(970\) 0 0
\(971\) −54.9624 −1.76383 −0.881913 0.471412i \(-0.843745\pi\)
−0.881913 + 0.471412i \(0.843745\pi\)
\(972\) 0.525428 0.0168531
\(973\) −6.58073 −0.210968
\(974\) 11.9585 0.383175
\(975\) 0 0
\(976\) −7.63771 −0.244477
\(977\) −2.97773 −0.0952659 −0.0476329 0.998865i \(-0.515168\pi\)
−0.0476329 + 0.998865i \(0.515168\pi\)
\(978\) 7.07604 0.226267
\(979\) −1.20294 −0.0384463
\(980\) 0 0
\(981\) −9.13828 −0.291763
\(982\) −11.9585 −0.381611
\(983\) 26.9876 0.860770 0.430385 0.902645i \(-0.358378\pi\)
0.430385 + 0.902645i \(0.358378\pi\)
\(984\) −22.9372 −0.731211
\(985\) 0 0
\(986\) −41.6958 −1.32787
\(987\) 18.2538 0.581025
\(988\) 0.203420 0.00647167
\(989\) 56.8484 1.80767
\(990\) 0 0
\(991\) 0.520505 0.0165344 0.00826720 0.999966i \(-0.497368\pi\)
0.00826720 + 0.999966i \(0.497368\pi\)
\(992\) −2.88739 −0.0916747
\(993\) −19.1798 −0.608651
\(994\) 2.53480 0.0803988
\(995\) 0 0
\(996\) 2.97328 0.0942120
\(997\) 25.2128 0.798497 0.399249 0.916843i \(-0.369271\pi\)
0.399249 + 0.916843i \(0.369271\pi\)
\(998\) 0.793993 0.0251334
\(999\) −4.83654 −0.153021
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.a.p.1.3 3
3.2 odd 2 6975.2.a.bi.1.1 3
5.2 odd 4 2325.2.c.l.1024.4 6
5.3 odd 4 2325.2.c.l.1024.3 6
5.4 even 2 465.2.a.g.1.1 3
15.14 odd 2 1395.2.a.h.1.3 3
20.19 odd 2 7440.2.a.bm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.g.1.1 3 5.4 even 2
1395.2.a.h.1.3 3 15.14 odd 2
2325.2.a.p.1.3 3 1.1 even 1 trivial
2325.2.c.l.1024.3 6 5.3 odd 4
2325.2.c.l.1024.4 6 5.2 odd 4
6975.2.a.bi.1.1 3 3.2 odd 2
7440.2.a.bm.1.3 3 20.19 odd 2