Properties

Label 2325.2.c.l
Level $2325$
Weight $2$
Character orbit 2325.c
Analytic conductor $18.565$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2325,2,Mod(1024,2325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2325.1024");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 465)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{5} + \beta_{3}) q^{2} - \beta_{3} q^{3} + ( - \beta_{2} - \beta_1 - 2) q^{4} + (\beta_1 + 1) q^{6} + ( - \beta_{5} + 2 \beta_{4}) q^{7} + (3 \beta_{4} - 4 \beta_{3}) q^{8} - q^{9} - 2 \beta_{2} q^{11}+ \cdots + 2 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{4} + 6 q^{6} - 6 q^{9} + 4 q^{11} - 12 q^{14} + 10 q^{16} + 16 q^{19} + 4 q^{21} - 18 q^{24} - 28 q^{26} - 32 q^{29} - 6 q^{31} + 12 q^{34} + 10 q^{36} + 12 q^{39} + 8 q^{41} + 28 q^{44} + 16 q^{46}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 8\nu^{4} - 4\nu^{3} - \nu^{2} + 2\nu + 38 ) / 23 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{5} + 17\nu^{4} - 20\nu^{3} - 5\nu^{2} + 10\nu + 29 ) / 23 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{5} - 10\nu^{4} + 5\nu^{3} + 30\nu^{2} + 32\nu - 13 ) / 23 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -11\nu^{5} + 19\nu^{4} - 21\nu^{3} - 11\nu^{2} - 70\nu + 27 ) / 23 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -14\nu^{5} + 20\nu^{4} - 10\nu^{3} - 37\nu^{2} - 64\nu + 26 ) / 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} - \beta_{4} + 2\beta_{3} - \beta_{2} + 2\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{2} + 5\beta _1 - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -8\beta_{5} + 3\beta_{4} - 9\beta_{3} - 3\beta_{2} + 8\beta _1 - 9 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2325\mathbb{Z}\right)^\times\).

\(n\) \(652\) \(776\) \(1801\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1024.1
0.403032 0.403032i
−0.854638 + 0.854638i
1.45161 + 1.45161i
1.45161 1.45161i
−0.854638 0.854638i
0.403032 + 0.403032i
2.67513i 1.00000i −5.15633 0 2.67513 1.28726i 8.44358i −1.00000 0
1024.2 1.53919i 1.00000i −0.369102 0 1.53919 4.87936i 2.51026i −1.00000 0
1024.3 1.21432i 1.00000i 0.525428 0 −1.21432 1.59210i 3.06668i −1.00000 0
1024.4 1.21432i 1.00000i 0.525428 0 −1.21432 1.59210i 3.06668i −1.00000 0
1024.5 1.53919i 1.00000i −0.369102 0 1.53919 4.87936i 2.51026i −1.00000 0
1024.6 2.67513i 1.00000i −5.15633 0 2.67513 1.28726i 8.44358i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1024.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2325.2.c.l 6
5.b even 2 1 inner 2325.2.c.l 6
5.c odd 4 1 465.2.a.g 3
5.c odd 4 1 2325.2.a.p 3
15.e even 4 1 1395.2.a.h 3
15.e even 4 1 6975.2.a.bi 3
20.e even 4 1 7440.2.a.bm 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.2.a.g 3 5.c odd 4 1
1395.2.a.h 3 15.e even 4 1
2325.2.a.p 3 5.c odd 4 1
2325.2.c.l 6 1.a even 1 1 trivial
2325.2.c.l 6 5.b even 2 1 inner
6975.2.a.bi 3 15.e even 4 1
7440.2.a.bm 3 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2325, [\chi])\):

\( T_{2}^{6} + 11T_{2}^{4} + 31T_{2}^{2} + 25 \) Copy content Toggle raw display
\( T_{7}^{6} + 28T_{7}^{4} + 104T_{7}^{2} + 100 \) Copy content Toggle raw display
\( T_{11}^{3} - 2T_{11}^{2} - 12T_{11} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 11 T^{4} + \cdots + 25 \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 28 T^{4} + \cdots + 100 \) Copy content Toggle raw display
$11$ \( (T^{3} - 2 T^{2} - 12 T + 8)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 20 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{6} + 24 T^{4} + \cdots + 400 \) Copy content Toggle raw display
$19$ \( (T^{3} - 8 T^{2} + 32)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 76 T^{4} + \cdots + 5776 \) Copy content Toggle raw display
$29$ \( (T^{3} + 16 T^{2} + \cdots + 10)^{2} \) Copy content Toggle raw display
$31$ \( (T + 1)^{6} \) Copy content Toggle raw display
$37$ \( T^{6} + 64 T^{4} + \cdots + 5476 \) Copy content Toggle raw display
$41$ \( (T^{3} - 4 T^{2} - 88 T - 16)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 124 T^{4} + \cdots + 40000 \) Copy content Toggle raw display
$47$ \( T^{6} + 380 T^{4} + \cdots + 1926544 \) Copy content Toggle raw display
$53$ \( T^{6} + 208 T^{4} + \cdots + 10000 \) Copy content Toggle raw display
$59$ \( (T^{3} - 26 T^{2} + \cdots - 466)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 18 T^{2} + \cdots - 296)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 272 T^{4} + \cdots + 75076 \) Copy content Toggle raw display
$71$ \( (T^{3} - 4 T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 272 T^{4} + \cdots + 17956 \) Copy content Toggle raw display
$79$ \( (T^{3} + 4 T^{2} + \cdots + 500)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 188 T^{4} + \cdots + 150544 \) Copy content Toggle raw display
$89$ \( (T^{3} - 6 T^{2} - 18 T + 50)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 544 T^{4} + \cdots + 2930944 \) Copy content Toggle raw display
show more
show less