Properties

Label 2312.2.a.u.1.6
Level $2312$
Weight $2$
Character 2312.1
Self dual yes
Analytic conductor $18.461$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(1,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-6,0,-3,0,0,0,6,0,-6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4614129473\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.3418281.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} - 4x^{3} + 18x^{2} + 12x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.06104\) of defining polynomial
Character \(\chi\) \(=\) 2312.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.06104 q^{3} -4.30892 q^{5} +1.72816 q^{7} +1.24788 q^{9} +4.37201 q^{11} -4.54061 q^{13} -8.88085 q^{15} -3.59851 q^{19} +3.56181 q^{21} -3.79125 q^{23} +13.5668 q^{25} -3.61119 q^{27} +0.524140 q^{29} -8.07897 q^{31} +9.01087 q^{33} -7.44650 q^{35} -2.24321 q^{37} -9.35837 q^{39} -7.65013 q^{41} +2.25102 q^{43} -5.37701 q^{45} -1.33083 q^{47} -4.01346 q^{49} +12.5721 q^{53} -18.8386 q^{55} -7.41666 q^{57} +5.17229 q^{59} -4.75321 q^{61} +2.15654 q^{63} +19.5651 q^{65} -5.10542 q^{67} -7.81391 q^{69} -12.7825 q^{71} -1.27999 q^{73} +27.9617 q^{75} +7.55553 q^{77} +0.254999 q^{79} -11.1864 q^{81} +5.55252 q^{83} +1.08027 q^{87} -0.319763 q^{89} -7.84690 q^{91} -16.6511 q^{93} +15.5057 q^{95} -6.35006 q^{97} +5.45574 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{5} - 3 q^{7} + 6 q^{11} - 6 q^{13} - 6 q^{15} + 6 q^{19} + 6 q^{21} - 9 q^{23} + 6 q^{25} - 12 q^{27} - 27 q^{29} - 9 q^{31} + 3 q^{33} + 21 q^{35} - 15 q^{37} + 12 q^{39} - 21 q^{41} - 24 q^{45}+ \cdots + 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.06104 1.18994 0.594971 0.803747i \(-0.297164\pi\)
0.594971 + 0.803747i \(0.297164\pi\)
\(4\) 0 0
\(5\) −4.30892 −1.92701 −0.963504 0.267696i \(-0.913738\pi\)
−0.963504 + 0.267696i \(0.913738\pi\)
\(6\) 0 0
\(7\) 1.72816 0.653183 0.326592 0.945166i \(-0.394100\pi\)
0.326592 + 0.945166i \(0.394100\pi\)
\(8\) 0 0
\(9\) 1.24788 0.415960
\(10\) 0 0
\(11\) 4.37201 1.31821 0.659105 0.752051i \(-0.270935\pi\)
0.659105 + 0.752051i \(0.270935\pi\)
\(12\) 0 0
\(13\) −4.54061 −1.25934 −0.629669 0.776864i \(-0.716809\pi\)
−0.629669 + 0.776864i \(0.716809\pi\)
\(14\) 0 0
\(15\) −8.88085 −2.29303
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −3.59851 −0.825554 −0.412777 0.910832i \(-0.635441\pi\)
−0.412777 + 0.910832i \(0.635441\pi\)
\(20\) 0 0
\(21\) 3.56181 0.777250
\(22\) 0 0
\(23\) −3.79125 −0.790530 −0.395265 0.918567i \(-0.629347\pi\)
−0.395265 + 0.918567i \(0.629347\pi\)
\(24\) 0 0
\(25\) 13.5668 2.71336
\(26\) 0 0
\(27\) −3.61119 −0.694973
\(28\) 0 0
\(29\) 0.524140 0.0973304 0.0486652 0.998815i \(-0.484503\pi\)
0.0486652 + 0.998815i \(0.484503\pi\)
\(30\) 0 0
\(31\) −8.07897 −1.45103 −0.725513 0.688209i \(-0.758397\pi\)
−0.725513 + 0.688209i \(0.758397\pi\)
\(32\) 0 0
\(33\) 9.01087 1.56859
\(34\) 0 0
\(35\) −7.44650 −1.25869
\(36\) 0 0
\(37\) −2.24321 −0.368782 −0.184391 0.982853i \(-0.559031\pi\)
−0.184391 + 0.982853i \(0.559031\pi\)
\(38\) 0 0
\(39\) −9.35837 −1.49854
\(40\) 0 0
\(41\) −7.65013 −1.19475 −0.597375 0.801962i \(-0.703790\pi\)
−0.597375 + 0.801962i \(0.703790\pi\)
\(42\) 0 0
\(43\) 2.25102 0.343277 0.171639 0.985160i \(-0.445094\pi\)
0.171639 + 0.985160i \(0.445094\pi\)
\(44\) 0 0
\(45\) −5.37701 −0.801558
\(46\) 0 0
\(47\) −1.33083 −0.194121 −0.0970607 0.995278i \(-0.530944\pi\)
−0.0970607 + 0.995278i \(0.530944\pi\)
\(48\) 0 0
\(49\) −4.01346 −0.573351
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.5721 1.72691 0.863457 0.504422i \(-0.168294\pi\)
0.863457 + 0.504422i \(0.168294\pi\)
\(54\) 0 0
\(55\) −18.8386 −2.54020
\(56\) 0 0
\(57\) −7.41666 −0.982361
\(58\) 0 0
\(59\) 5.17229 0.673375 0.336688 0.941616i \(-0.390693\pi\)
0.336688 + 0.941616i \(0.390693\pi\)
\(60\) 0 0
\(61\) −4.75321 −0.608586 −0.304293 0.952578i \(-0.598420\pi\)
−0.304293 + 0.952578i \(0.598420\pi\)
\(62\) 0 0
\(63\) 2.15654 0.271698
\(64\) 0 0
\(65\) 19.5651 2.42675
\(66\) 0 0
\(67\) −5.10542 −0.623726 −0.311863 0.950127i \(-0.600953\pi\)
−0.311863 + 0.950127i \(0.600953\pi\)
\(68\) 0 0
\(69\) −7.81391 −0.940684
\(70\) 0 0
\(71\) −12.7825 −1.51701 −0.758503 0.651669i \(-0.774069\pi\)
−0.758503 + 0.651669i \(0.774069\pi\)
\(72\) 0 0
\(73\) −1.27999 −0.149811 −0.0749055 0.997191i \(-0.523866\pi\)
−0.0749055 + 0.997191i \(0.523866\pi\)
\(74\) 0 0
\(75\) 27.9617 3.22873
\(76\) 0 0
\(77\) 7.55553 0.861033
\(78\) 0 0
\(79\) 0.254999 0.0286896 0.0143448 0.999897i \(-0.495434\pi\)
0.0143448 + 0.999897i \(0.495434\pi\)
\(80\) 0 0
\(81\) −11.1864 −1.24294
\(82\) 0 0
\(83\) 5.55252 0.609468 0.304734 0.952437i \(-0.401432\pi\)
0.304734 + 0.952437i \(0.401432\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.08027 0.115817
\(88\) 0 0
\(89\) −0.319763 −0.0338948 −0.0169474 0.999856i \(-0.505395\pi\)
−0.0169474 + 0.999856i \(0.505395\pi\)
\(90\) 0 0
\(91\) −7.84690 −0.822579
\(92\) 0 0
\(93\) −16.6511 −1.72664
\(94\) 0 0
\(95\) 15.5057 1.59085
\(96\) 0 0
\(97\) −6.35006 −0.644751 −0.322375 0.946612i \(-0.604481\pi\)
−0.322375 + 0.946612i \(0.604481\pi\)
\(98\) 0 0
\(99\) 5.45574 0.548322
\(100\) 0 0
\(101\) −11.5477 −1.14904 −0.574519 0.818492i \(-0.694811\pi\)
−0.574519 + 0.818492i \(0.694811\pi\)
\(102\) 0 0
\(103\) −0.797707 −0.0786004 −0.0393002 0.999227i \(-0.512513\pi\)
−0.0393002 + 0.999227i \(0.512513\pi\)
\(104\) 0 0
\(105\) −15.3475 −1.49777
\(106\) 0 0
\(107\) 3.39489 0.328197 0.164098 0.986444i \(-0.447529\pi\)
0.164098 + 0.986444i \(0.447529\pi\)
\(108\) 0 0
\(109\) 4.85580 0.465102 0.232551 0.972584i \(-0.425293\pi\)
0.232551 + 0.972584i \(0.425293\pi\)
\(110\) 0 0
\(111\) −4.62335 −0.438829
\(112\) 0 0
\(113\) −15.2696 −1.43644 −0.718220 0.695816i \(-0.755043\pi\)
−0.718220 + 0.695816i \(0.755043\pi\)
\(114\) 0 0
\(115\) 16.3362 1.52336
\(116\) 0 0
\(117\) −5.66613 −0.523834
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.11444 0.737676
\(122\) 0 0
\(123\) −15.7672 −1.42168
\(124\) 0 0
\(125\) −36.9136 −3.30165
\(126\) 0 0
\(127\) −12.3400 −1.09500 −0.547500 0.836806i \(-0.684420\pi\)
−0.547500 + 0.836806i \(0.684420\pi\)
\(128\) 0 0
\(129\) 4.63944 0.408480
\(130\) 0 0
\(131\) −1.03956 −0.0908271 −0.0454135 0.998968i \(-0.514461\pi\)
−0.0454135 + 0.998968i \(0.514461\pi\)
\(132\) 0 0
\(133\) −6.21880 −0.539238
\(134\) 0 0
\(135\) 15.5603 1.33922
\(136\) 0 0
\(137\) 5.01747 0.428672 0.214336 0.976760i \(-0.431241\pi\)
0.214336 + 0.976760i \(0.431241\pi\)
\(138\) 0 0
\(139\) −21.4471 −1.81912 −0.909561 0.415571i \(-0.863582\pi\)
−0.909561 + 0.415571i \(0.863582\pi\)
\(140\) 0 0
\(141\) −2.74289 −0.230993
\(142\) 0 0
\(143\) −19.8516 −1.66007
\(144\) 0 0
\(145\) −2.25848 −0.187556
\(146\) 0 0
\(147\) −8.27190 −0.682254
\(148\) 0 0
\(149\) 0.331466 0.0271547 0.0135774 0.999908i \(-0.495678\pi\)
0.0135774 + 0.999908i \(0.495678\pi\)
\(150\) 0 0
\(151\) −18.9835 −1.54486 −0.772429 0.635102i \(-0.780958\pi\)
−0.772429 + 0.635102i \(0.780958\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 34.8116 2.79614
\(156\) 0 0
\(157\) 7.76102 0.619397 0.309698 0.950835i \(-0.399772\pi\)
0.309698 + 0.950835i \(0.399772\pi\)
\(158\) 0 0
\(159\) 25.9116 2.05493
\(160\) 0 0
\(161\) −6.55189 −0.516361
\(162\) 0 0
\(163\) −15.5959 −1.22157 −0.610784 0.791797i \(-0.709146\pi\)
−0.610784 + 0.791797i \(0.709146\pi\)
\(164\) 0 0
\(165\) −38.8271 −3.02269
\(166\) 0 0
\(167\) −20.0905 −1.55465 −0.777324 0.629101i \(-0.783423\pi\)
−0.777324 + 0.629101i \(0.783423\pi\)
\(168\) 0 0
\(169\) 7.61712 0.585932
\(170\) 0 0
\(171\) −4.49051 −0.343398
\(172\) 0 0
\(173\) 6.04891 0.459890 0.229945 0.973204i \(-0.426145\pi\)
0.229945 + 0.973204i \(0.426145\pi\)
\(174\) 0 0
\(175\) 23.4456 1.77232
\(176\) 0 0
\(177\) 10.6603 0.801277
\(178\) 0 0
\(179\) 18.4058 1.37571 0.687857 0.725846i \(-0.258552\pi\)
0.687857 + 0.725846i \(0.258552\pi\)
\(180\) 0 0
\(181\) 22.1983 1.64999 0.824995 0.565141i \(-0.191178\pi\)
0.824995 + 0.565141i \(0.191178\pi\)
\(182\) 0 0
\(183\) −9.79655 −0.724182
\(184\) 0 0
\(185\) 9.66582 0.710645
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −6.24071 −0.453945
\(190\) 0 0
\(191\) 12.4592 0.901517 0.450759 0.892646i \(-0.351154\pi\)
0.450759 + 0.892646i \(0.351154\pi\)
\(192\) 0 0
\(193\) 4.38225 0.315441 0.157721 0.987484i \(-0.449585\pi\)
0.157721 + 0.987484i \(0.449585\pi\)
\(194\) 0 0
\(195\) 40.3244 2.88769
\(196\) 0 0
\(197\) 18.3885 1.31012 0.655062 0.755575i \(-0.272643\pi\)
0.655062 + 0.755575i \(0.272643\pi\)
\(198\) 0 0
\(199\) 10.8956 0.772371 0.386185 0.922421i \(-0.373793\pi\)
0.386185 + 0.922421i \(0.373793\pi\)
\(200\) 0 0
\(201\) −10.5225 −0.742197
\(202\) 0 0
\(203\) 0.905799 0.0635746
\(204\) 0 0
\(205\) 32.9638 2.30229
\(206\) 0 0
\(207\) −4.73102 −0.328829
\(208\) 0 0
\(209\) −15.7327 −1.08825
\(210\) 0 0
\(211\) 22.6468 1.55907 0.779534 0.626360i \(-0.215456\pi\)
0.779534 + 0.626360i \(0.215456\pi\)
\(212\) 0 0
\(213\) −26.3453 −1.80515
\(214\) 0 0
\(215\) −9.69946 −0.661498
\(216\) 0 0
\(217\) −13.9618 −0.947786
\(218\) 0 0
\(219\) −2.63810 −0.178266
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 7.83363 0.524579 0.262289 0.964989i \(-0.415523\pi\)
0.262289 + 0.964989i \(0.415523\pi\)
\(224\) 0 0
\(225\) 16.9297 1.12865
\(226\) 0 0
\(227\) 24.1208 1.60095 0.800476 0.599365i \(-0.204580\pi\)
0.800476 + 0.599365i \(0.204580\pi\)
\(228\) 0 0
\(229\) −6.31906 −0.417575 −0.208788 0.977961i \(-0.566952\pi\)
−0.208788 + 0.977961i \(0.566952\pi\)
\(230\) 0 0
\(231\) 15.5722 1.02458
\(232\) 0 0
\(233\) 2.93291 0.192141 0.0960707 0.995375i \(-0.469373\pi\)
0.0960707 + 0.995375i \(0.469373\pi\)
\(234\) 0 0
\(235\) 5.73443 0.374073
\(236\) 0 0
\(237\) 0.525563 0.0341390
\(238\) 0 0
\(239\) 21.6824 1.40252 0.701260 0.712905i \(-0.252621\pi\)
0.701260 + 0.712905i \(0.252621\pi\)
\(240\) 0 0
\(241\) 10.2543 0.660539 0.330269 0.943887i \(-0.392860\pi\)
0.330269 + 0.943887i \(0.392860\pi\)
\(242\) 0 0
\(243\) −12.2221 −0.784049
\(244\) 0 0
\(245\) 17.2937 1.10485
\(246\) 0 0
\(247\) 16.3394 1.03965
\(248\) 0 0
\(249\) 11.4440 0.725231
\(250\) 0 0
\(251\) 11.1362 0.702912 0.351456 0.936204i \(-0.385687\pi\)
0.351456 + 0.936204i \(0.385687\pi\)
\(252\) 0 0
\(253\) −16.5754 −1.04208
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.49477 0.217998 0.108999 0.994042i \(-0.465236\pi\)
0.108999 + 0.994042i \(0.465236\pi\)
\(258\) 0 0
\(259\) −3.87663 −0.240882
\(260\) 0 0
\(261\) 0.654064 0.0404856
\(262\) 0 0
\(263\) 19.3767 1.19482 0.597408 0.801938i \(-0.296197\pi\)
0.597408 + 0.801938i \(0.296197\pi\)
\(264\) 0 0
\(265\) −54.1723 −3.32778
\(266\) 0 0
\(267\) −0.659044 −0.0403329
\(268\) 0 0
\(269\) 6.14643 0.374754 0.187377 0.982288i \(-0.440001\pi\)
0.187377 + 0.982288i \(0.440001\pi\)
\(270\) 0 0
\(271\) −7.25014 −0.440415 −0.220207 0.975453i \(-0.570673\pi\)
−0.220207 + 0.975453i \(0.570673\pi\)
\(272\) 0 0
\(273\) −16.1728 −0.978820
\(274\) 0 0
\(275\) 59.3140 3.57677
\(276\) 0 0
\(277\) −9.03259 −0.542716 −0.271358 0.962479i \(-0.587473\pi\)
−0.271358 + 0.962479i \(0.587473\pi\)
\(278\) 0 0
\(279\) −10.0816 −0.603569
\(280\) 0 0
\(281\) 16.3386 0.974682 0.487341 0.873212i \(-0.337967\pi\)
0.487341 + 0.873212i \(0.337967\pi\)
\(282\) 0 0
\(283\) −18.3573 −1.09123 −0.545614 0.838036i \(-0.683704\pi\)
−0.545614 + 0.838036i \(0.683704\pi\)
\(284\) 0 0
\(285\) 31.9578 1.89302
\(286\) 0 0
\(287\) −13.2207 −0.780391
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −13.0877 −0.767215
\(292\) 0 0
\(293\) 6.49150 0.379237 0.189619 0.981858i \(-0.439275\pi\)
0.189619 + 0.981858i \(0.439275\pi\)
\(294\) 0 0
\(295\) −22.2870 −1.29760
\(296\) 0 0
\(297\) −15.7881 −0.916120
\(298\) 0 0
\(299\) 17.2146 0.995544
\(300\) 0 0
\(301\) 3.89012 0.224223
\(302\) 0 0
\(303\) −23.8002 −1.36729
\(304\) 0 0
\(305\) 20.4812 1.17275
\(306\) 0 0
\(307\) 7.48527 0.427207 0.213603 0.976920i \(-0.431480\pi\)
0.213603 + 0.976920i \(0.431480\pi\)
\(308\) 0 0
\(309\) −1.64411 −0.0935299
\(310\) 0 0
\(311\) 1.82828 0.103672 0.0518362 0.998656i \(-0.483493\pi\)
0.0518362 + 0.998656i \(0.483493\pi\)
\(312\) 0 0
\(313\) −21.3969 −1.20942 −0.604712 0.796444i \(-0.706712\pi\)
−0.604712 + 0.796444i \(0.706712\pi\)
\(314\) 0 0
\(315\) −9.29234 −0.523564
\(316\) 0 0
\(317\) 30.6537 1.72168 0.860841 0.508874i \(-0.169938\pi\)
0.860841 + 0.508874i \(0.169938\pi\)
\(318\) 0 0
\(319\) 2.29154 0.128302
\(320\) 0 0
\(321\) 6.99700 0.390535
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −61.6014 −3.41703
\(326\) 0 0
\(327\) 10.0080 0.553444
\(328\) 0 0
\(329\) −2.29989 −0.126797
\(330\) 0 0
\(331\) −15.4692 −0.850263 −0.425132 0.905132i \(-0.639772\pi\)
−0.425132 + 0.905132i \(0.639772\pi\)
\(332\) 0 0
\(333\) −2.79926 −0.153398
\(334\) 0 0
\(335\) 21.9988 1.20192
\(336\) 0 0
\(337\) −7.95343 −0.433251 −0.216625 0.976255i \(-0.569505\pi\)
−0.216625 + 0.976255i \(0.569505\pi\)
\(338\) 0 0
\(339\) −31.4712 −1.70928
\(340\) 0 0
\(341\) −35.3213 −1.91276
\(342\) 0 0
\(343\) −19.0330 −1.02769
\(344\) 0 0
\(345\) 33.6695 1.81270
\(346\) 0 0
\(347\) −16.8002 −0.901882 −0.450941 0.892554i \(-0.648912\pi\)
−0.450941 + 0.892554i \(0.648912\pi\)
\(348\) 0 0
\(349\) −2.52175 −0.134986 −0.0674932 0.997720i \(-0.521500\pi\)
−0.0674932 + 0.997720i \(0.521500\pi\)
\(350\) 0 0
\(351\) 16.3970 0.875206
\(352\) 0 0
\(353\) −26.5129 −1.41114 −0.705570 0.708640i \(-0.749309\pi\)
−0.705570 + 0.708640i \(0.749309\pi\)
\(354\) 0 0
\(355\) 55.0788 2.92328
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.75375 −0.409227 −0.204614 0.978843i \(-0.565594\pi\)
−0.204614 + 0.978843i \(0.565594\pi\)
\(360\) 0 0
\(361\) −6.05075 −0.318460
\(362\) 0 0
\(363\) 16.7242 0.877791
\(364\) 0 0
\(365\) 5.51535 0.288687
\(366\) 0 0
\(367\) 9.90287 0.516926 0.258463 0.966021i \(-0.416784\pi\)
0.258463 + 0.966021i \(0.416784\pi\)
\(368\) 0 0
\(369\) −9.54645 −0.496968
\(370\) 0 0
\(371\) 21.7267 1.12799
\(372\) 0 0
\(373\) 7.07672 0.366419 0.183209 0.983074i \(-0.441351\pi\)
0.183209 + 0.983074i \(0.441351\pi\)
\(374\) 0 0
\(375\) −76.0803 −3.92877
\(376\) 0 0
\(377\) −2.37992 −0.122572
\(378\) 0 0
\(379\) −19.2860 −0.990657 −0.495328 0.868706i \(-0.664952\pi\)
−0.495328 + 0.868706i \(0.664952\pi\)
\(380\) 0 0
\(381\) −25.4333 −1.30299
\(382\) 0 0
\(383\) −0.0295394 −0.00150939 −0.000754697 1.00000i \(-0.500240\pi\)
−0.000754697 1.00000i \(0.500240\pi\)
\(384\) 0 0
\(385\) −32.5562 −1.65922
\(386\) 0 0
\(387\) 2.80900 0.142790
\(388\) 0 0
\(389\) 14.5600 0.738221 0.369110 0.929386i \(-0.379662\pi\)
0.369110 + 0.929386i \(0.379662\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −2.14258 −0.108079
\(394\) 0 0
\(395\) −1.09877 −0.0552851
\(396\) 0 0
\(397\) −6.98697 −0.350666 −0.175333 0.984509i \(-0.556100\pi\)
−0.175333 + 0.984509i \(0.556100\pi\)
\(398\) 0 0
\(399\) −12.8172 −0.641662
\(400\) 0 0
\(401\) −4.67916 −0.233666 −0.116833 0.993152i \(-0.537274\pi\)
−0.116833 + 0.993152i \(0.537274\pi\)
\(402\) 0 0
\(403\) 36.6834 1.82733
\(404\) 0 0
\(405\) 48.2014 2.39515
\(406\) 0 0
\(407\) −9.80734 −0.486132
\(408\) 0 0
\(409\) 32.4205 1.60309 0.801546 0.597933i \(-0.204011\pi\)
0.801546 + 0.597933i \(0.204011\pi\)
\(410\) 0 0
\(411\) 10.3412 0.510094
\(412\) 0 0
\(413\) 8.93856 0.439838
\(414\) 0 0
\(415\) −23.9254 −1.17445
\(416\) 0 0
\(417\) −44.2034 −2.16465
\(418\) 0 0
\(419\) 34.5535 1.68805 0.844024 0.536305i \(-0.180180\pi\)
0.844024 + 0.536305i \(0.180180\pi\)
\(420\) 0 0
\(421\) −19.8509 −0.967472 −0.483736 0.875214i \(-0.660720\pi\)
−0.483736 + 0.875214i \(0.660720\pi\)
\(422\) 0 0
\(423\) −1.66071 −0.0807467
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −8.21431 −0.397518
\(428\) 0 0
\(429\) −40.9148 −1.97539
\(430\) 0 0
\(431\) −3.72269 −0.179315 −0.0896577 0.995973i \(-0.528577\pi\)
−0.0896577 + 0.995973i \(0.528577\pi\)
\(432\) 0 0
\(433\) 26.5298 1.27494 0.637471 0.770474i \(-0.279981\pi\)
0.637471 + 0.770474i \(0.279981\pi\)
\(434\) 0 0
\(435\) −4.65481 −0.223181
\(436\) 0 0
\(437\) 13.6428 0.652625
\(438\) 0 0
\(439\) 28.8706 1.37792 0.688960 0.724800i \(-0.258068\pi\)
0.688960 + 0.724800i \(0.258068\pi\)
\(440\) 0 0
\(441\) −5.00832 −0.238491
\(442\) 0 0
\(443\) 32.3742 1.53814 0.769072 0.639162i \(-0.220719\pi\)
0.769072 + 0.639162i \(0.220719\pi\)
\(444\) 0 0
\(445\) 1.37783 0.0653156
\(446\) 0 0
\(447\) 0.683163 0.0323125
\(448\) 0 0
\(449\) −17.0269 −0.803548 −0.401774 0.915739i \(-0.631606\pi\)
−0.401774 + 0.915739i \(0.631606\pi\)
\(450\) 0 0
\(451\) −33.4464 −1.57493
\(452\) 0 0
\(453\) −39.1258 −1.83829
\(454\) 0 0
\(455\) 33.8117 1.58511
\(456\) 0 0
\(457\) 36.7651 1.71980 0.859900 0.510462i \(-0.170526\pi\)
0.859900 + 0.510462i \(0.170526\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11.0810 −0.516092 −0.258046 0.966133i \(-0.583079\pi\)
−0.258046 + 0.966133i \(0.583079\pi\)
\(462\) 0 0
\(463\) −1.20500 −0.0560009 −0.0280005 0.999608i \(-0.508914\pi\)
−0.0280005 + 0.999608i \(0.508914\pi\)
\(464\) 0 0
\(465\) 71.7481 3.32724
\(466\) 0 0
\(467\) −27.5509 −1.27490 −0.637451 0.770491i \(-0.720011\pi\)
−0.637451 + 0.770491i \(0.720011\pi\)
\(468\) 0 0
\(469\) −8.82298 −0.407408
\(470\) 0 0
\(471\) 15.9958 0.737046
\(472\) 0 0
\(473\) 9.84147 0.452511
\(474\) 0 0
\(475\) −48.8202 −2.24002
\(476\) 0 0
\(477\) 15.6885 0.718327
\(478\) 0 0
\(479\) 20.8405 0.952228 0.476114 0.879384i \(-0.342045\pi\)
0.476114 + 0.879384i \(0.342045\pi\)
\(480\) 0 0
\(481\) 10.1855 0.464421
\(482\) 0 0
\(483\) −13.5037 −0.614439
\(484\) 0 0
\(485\) 27.3619 1.24244
\(486\) 0 0
\(487\) −11.9198 −0.540139 −0.270069 0.962841i \(-0.587047\pi\)
−0.270069 + 0.962841i \(0.587047\pi\)
\(488\) 0 0
\(489\) −32.1438 −1.45359
\(490\) 0 0
\(491\) −7.03674 −0.317563 −0.158782 0.987314i \(-0.550757\pi\)
−0.158782 + 0.987314i \(0.550757\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −23.5083 −1.05662
\(496\) 0 0
\(497\) −22.0903 −0.990883
\(498\) 0 0
\(499\) −11.0208 −0.493361 −0.246680 0.969097i \(-0.579340\pi\)
−0.246680 + 0.969097i \(0.579340\pi\)
\(500\) 0 0
\(501\) −41.4072 −1.84994
\(502\) 0 0
\(503\) −10.6130 −0.473211 −0.236606 0.971606i \(-0.576035\pi\)
−0.236606 + 0.971606i \(0.576035\pi\)
\(504\) 0 0
\(505\) 49.7580 2.21420
\(506\) 0 0
\(507\) 15.6992 0.697225
\(508\) 0 0
\(509\) 4.40973 0.195458 0.0977289 0.995213i \(-0.468842\pi\)
0.0977289 + 0.995213i \(0.468842\pi\)
\(510\) 0 0
\(511\) −2.21202 −0.0978541
\(512\) 0 0
\(513\) 12.9949 0.573738
\(514\) 0 0
\(515\) 3.43726 0.151464
\(516\) 0 0
\(517\) −5.81839 −0.255893
\(518\) 0 0
\(519\) 12.4670 0.547242
\(520\) 0 0
\(521\) 4.49769 0.197047 0.0985236 0.995135i \(-0.468588\pi\)
0.0985236 + 0.995135i \(0.468588\pi\)
\(522\) 0 0
\(523\) −14.6133 −0.638994 −0.319497 0.947587i \(-0.603514\pi\)
−0.319497 + 0.947587i \(0.603514\pi\)
\(524\) 0 0
\(525\) 48.3222 2.10896
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −8.62644 −0.375062
\(530\) 0 0
\(531\) 6.45440 0.280097
\(532\) 0 0
\(533\) 34.7363 1.50459
\(534\) 0 0
\(535\) −14.6283 −0.632437
\(536\) 0 0
\(537\) 37.9351 1.63702
\(538\) 0 0
\(539\) −17.5469 −0.755797
\(540\) 0 0
\(541\) −37.7172 −1.62159 −0.810795 0.585331i \(-0.800965\pi\)
−0.810795 + 0.585331i \(0.800965\pi\)
\(542\) 0 0
\(543\) 45.7516 1.96339
\(544\) 0 0
\(545\) −20.9233 −0.896254
\(546\) 0 0
\(547\) −31.7055 −1.35563 −0.677815 0.735233i \(-0.737073\pi\)
−0.677815 + 0.735233i \(0.737073\pi\)
\(548\) 0 0
\(549\) −5.93144 −0.253148
\(550\) 0 0
\(551\) −1.88612 −0.0803515
\(552\) 0 0
\(553\) 0.440679 0.0187396
\(554\) 0 0
\(555\) 19.9216 0.845626
\(556\) 0 0
\(557\) −1.35504 −0.0574148 −0.0287074 0.999588i \(-0.509139\pi\)
−0.0287074 + 0.999588i \(0.509139\pi\)
\(558\) 0 0
\(559\) −10.2210 −0.432302
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.6570 −1.20775 −0.603875 0.797079i \(-0.706377\pi\)
−0.603875 + 0.797079i \(0.706377\pi\)
\(564\) 0 0
\(565\) 65.7954 2.76803
\(566\) 0 0
\(567\) −19.3320 −0.811866
\(568\) 0 0
\(569\) 11.0338 0.462560 0.231280 0.972887i \(-0.425709\pi\)
0.231280 + 0.972887i \(0.425709\pi\)
\(570\) 0 0
\(571\) 34.9151 1.46115 0.730575 0.682833i \(-0.239252\pi\)
0.730575 + 0.682833i \(0.239252\pi\)
\(572\) 0 0
\(573\) 25.6789 1.07275
\(574\) 0 0
\(575\) −51.4350 −2.14499
\(576\) 0 0
\(577\) −10.4728 −0.435987 −0.217993 0.975950i \(-0.569951\pi\)
−0.217993 + 0.975950i \(0.569951\pi\)
\(578\) 0 0
\(579\) 9.03199 0.375357
\(580\) 0 0
\(581\) 9.59565 0.398095
\(582\) 0 0
\(583\) 54.9654 2.27644
\(584\) 0 0
\(585\) 24.4149 1.00943
\(586\) 0 0
\(587\) −2.37083 −0.0978547 −0.0489274 0.998802i \(-0.515580\pi\)
−0.0489274 + 0.998802i \(0.515580\pi\)
\(588\) 0 0
\(589\) 29.0722 1.19790
\(590\) 0 0
\(591\) 37.8993 1.55897
\(592\) 0 0
\(593\) −21.9223 −0.900241 −0.450121 0.892968i \(-0.648619\pi\)
−0.450121 + 0.892968i \(0.648619\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 22.4563 0.919076
\(598\) 0 0
\(599\) 20.9674 0.856705 0.428353 0.903612i \(-0.359094\pi\)
0.428353 + 0.903612i \(0.359094\pi\)
\(600\) 0 0
\(601\) −29.2563 −1.19339 −0.596694 0.802469i \(-0.703519\pi\)
−0.596694 + 0.802469i \(0.703519\pi\)
\(602\) 0 0
\(603\) −6.37095 −0.259445
\(604\) 0 0
\(605\) −34.9645 −1.42151
\(606\) 0 0
\(607\) −41.8212 −1.69747 −0.848734 0.528820i \(-0.822635\pi\)
−0.848734 + 0.528820i \(0.822635\pi\)
\(608\) 0 0
\(609\) 1.86689 0.0756500
\(610\) 0 0
\(611\) 6.04277 0.244464
\(612\) 0 0
\(613\) −10.9602 −0.442679 −0.221340 0.975197i \(-0.571043\pi\)
−0.221340 + 0.975197i \(0.571043\pi\)
\(614\) 0 0
\(615\) 67.9397 2.73959
\(616\) 0 0
\(617\) 23.9663 0.964846 0.482423 0.875938i \(-0.339757\pi\)
0.482423 + 0.875938i \(0.339757\pi\)
\(618\) 0 0
\(619\) 2.07982 0.0835950 0.0417975 0.999126i \(-0.486692\pi\)
0.0417975 + 0.999126i \(0.486692\pi\)
\(620\) 0 0
\(621\) 13.6909 0.549397
\(622\) 0 0
\(623\) −0.552602 −0.0221395
\(624\) 0 0
\(625\) 91.2236 3.64894
\(626\) 0 0
\(627\) −32.4257 −1.29496
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −21.5809 −0.859121 −0.429561 0.903038i \(-0.641332\pi\)
−0.429561 + 0.903038i \(0.641332\pi\)
\(632\) 0 0
\(633\) 46.6759 1.85520
\(634\) 0 0
\(635\) 53.1721 2.11007
\(636\) 0 0
\(637\) 18.2235 0.722043
\(638\) 0 0
\(639\) −15.9511 −0.631014
\(640\) 0 0
\(641\) −44.1031 −1.74197 −0.870985 0.491310i \(-0.836518\pi\)
−0.870985 + 0.491310i \(0.836518\pi\)
\(642\) 0 0
\(643\) −19.1552 −0.755406 −0.377703 0.925927i \(-0.623286\pi\)
−0.377703 + 0.925927i \(0.623286\pi\)
\(644\) 0 0
\(645\) −19.9910 −0.787143
\(646\) 0 0
\(647\) 0.248644 0.00977521 0.00488761 0.999988i \(-0.498444\pi\)
0.00488761 + 0.999988i \(0.498444\pi\)
\(648\) 0 0
\(649\) 22.6133 0.887650
\(650\) 0 0
\(651\) −28.7757 −1.12781
\(652\) 0 0
\(653\) −23.4225 −0.916592 −0.458296 0.888800i \(-0.651540\pi\)
−0.458296 + 0.888800i \(0.651540\pi\)
\(654\) 0 0
\(655\) 4.47939 0.175024
\(656\) 0 0
\(657\) −1.59727 −0.0623154
\(658\) 0 0
\(659\) −44.0140 −1.71454 −0.857271 0.514865i \(-0.827842\pi\)
−0.857271 + 0.514865i \(0.827842\pi\)
\(660\) 0 0
\(661\) −51.2354 −1.99283 −0.996414 0.0846129i \(-0.973035\pi\)
−0.996414 + 0.0846129i \(0.973035\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 26.7963 1.03912
\(666\) 0 0
\(667\) −1.98715 −0.0769426
\(668\) 0 0
\(669\) 16.1454 0.624218
\(670\) 0 0
\(671\) −20.7811 −0.802244
\(672\) 0 0
\(673\) 17.6970 0.682170 0.341085 0.940032i \(-0.389206\pi\)
0.341085 + 0.940032i \(0.389206\pi\)
\(674\) 0 0
\(675\) −48.9922 −1.88571
\(676\) 0 0
\(677\) −40.6685 −1.56302 −0.781508 0.623895i \(-0.785549\pi\)
−0.781508 + 0.623895i \(0.785549\pi\)
\(678\) 0 0
\(679\) −10.9739 −0.421140
\(680\) 0 0
\(681\) 49.7138 1.90504
\(682\) 0 0
\(683\) −7.35573 −0.281459 −0.140730 0.990048i \(-0.544945\pi\)
−0.140730 + 0.990048i \(0.544945\pi\)
\(684\) 0 0
\(685\) −21.6199 −0.826053
\(686\) 0 0
\(687\) −13.0238 −0.496890
\(688\) 0 0
\(689\) −57.0851 −2.17477
\(690\) 0 0
\(691\) 8.82190 0.335601 0.167800 0.985821i \(-0.446334\pi\)
0.167800 + 0.985821i \(0.446334\pi\)
\(692\) 0 0
\(693\) 9.42840 0.358155
\(694\) 0 0
\(695\) 92.4139 3.50546
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 6.04484 0.228637
\(700\) 0 0
\(701\) −35.1943 −1.32927 −0.664636 0.747168i \(-0.731413\pi\)
−0.664636 + 0.747168i \(0.731413\pi\)
\(702\) 0 0
\(703\) 8.07221 0.304449
\(704\) 0 0
\(705\) 11.8189 0.445125
\(706\) 0 0
\(707\) −19.9563 −0.750532
\(708\) 0 0
\(709\) 23.1526 0.869515 0.434758 0.900547i \(-0.356834\pi\)
0.434758 + 0.900547i \(0.356834\pi\)
\(710\) 0 0
\(711\) 0.318208 0.0119337
\(712\) 0 0
\(713\) 30.6294 1.14708
\(714\) 0 0
\(715\) 85.5388 3.19897
\(716\) 0 0
\(717\) 44.6883 1.66892
\(718\) 0 0
\(719\) 12.9885 0.484391 0.242195 0.970228i \(-0.422133\pi\)
0.242195 + 0.970228i \(0.422133\pi\)
\(720\) 0 0
\(721\) −1.37857 −0.0513405
\(722\) 0 0
\(723\) 21.1346 0.786003
\(724\) 0 0
\(725\) 7.11089 0.264092
\(726\) 0 0
\(727\) 47.1886 1.75013 0.875065 0.484005i \(-0.160818\pi\)
0.875065 + 0.484005i \(0.160818\pi\)
\(728\) 0 0
\(729\) 8.36906 0.309965
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 42.3967 1.56596 0.782979 0.622048i \(-0.213699\pi\)
0.782979 + 0.622048i \(0.213699\pi\)
\(734\) 0 0
\(735\) 35.6429 1.31471
\(736\) 0 0
\(737\) −22.3209 −0.822202
\(738\) 0 0
\(739\) 42.3605 1.55826 0.779128 0.626865i \(-0.215662\pi\)
0.779128 + 0.626865i \(0.215662\pi\)
\(740\) 0 0
\(741\) 33.6762 1.23712
\(742\) 0 0
\(743\) −44.7922 −1.64327 −0.821633 0.570017i \(-0.806937\pi\)
−0.821633 + 0.570017i \(0.806937\pi\)
\(744\) 0 0
\(745\) −1.42826 −0.0523273
\(746\) 0 0
\(747\) 6.92888 0.253514
\(748\) 0 0
\(749\) 5.86692 0.214373
\(750\) 0 0
\(751\) −26.5191 −0.967695 −0.483848 0.875152i \(-0.660761\pi\)
−0.483848 + 0.875152i \(0.660761\pi\)
\(752\) 0 0
\(753\) 22.9522 0.836424
\(754\) 0 0
\(755\) 81.7984 2.97695
\(756\) 0 0
\(757\) −8.89891 −0.323436 −0.161718 0.986837i \(-0.551704\pi\)
−0.161718 + 0.986837i \(0.551704\pi\)
\(758\) 0 0
\(759\) −34.1625 −1.24002
\(760\) 0 0
\(761\) 21.0320 0.762411 0.381205 0.924490i \(-0.375509\pi\)
0.381205 + 0.924490i \(0.375509\pi\)
\(762\) 0 0
\(763\) 8.39161 0.303797
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.4854 −0.848007
\(768\) 0 0
\(769\) 29.9495 1.08001 0.540003 0.841663i \(-0.318423\pi\)
0.540003 + 0.841663i \(0.318423\pi\)
\(770\) 0 0
\(771\) 7.20285 0.259404
\(772\) 0 0
\(773\) 22.8927 0.823391 0.411696 0.911321i \(-0.364937\pi\)
0.411696 + 0.911321i \(0.364937\pi\)
\(774\) 0 0
\(775\) −109.606 −3.93715
\(776\) 0 0
\(777\) −7.98989 −0.286636
\(778\) 0 0
\(779\) 27.5291 0.986331
\(780\) 0 0
\(781\) −55.8853 −1.99973
\(782\) 0 0
\(783\) −1.89277 −0.0676420
\(784\) 0 0
\(785\) −33.4416 −1.19358
\(786\) 0 0
\(787\) −20.0028 −0.713025 −0.356512 0.934291i \(-0.616034\pi\)
−0.356512 + 0.934291i \(0.616034\pi\)
\(788\) 0 0
\(789\) 39.9360 1.42176
\(790\) 0 0
\(791\) −26.3883 −0.938259
\(792\) 0 0
\(793\) 21.5825 0.766416
\(794\) 0 0
\(795\) −111.651 −3.95986
\(796\) 0 0
\(797\) 2.69761 0.0955544 0.0477772 0.998858i \(-0.484786\pi\)
0.0477772 + 0.998858i \(0.484786\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −0.399026 −0.0140989
\(802\) 0 0
\(803\) −5.59611 −0.197482
\(804\) 0 0
\(805\) 28.2315 0.995031
\(806\) 0 0
\(807\) 12.6680 0.445936
\(808\) 0 0
\(809\) 35.6394 1.25302 0.626508 0.779415i \(-0.284484\pi\)
0.626508 + 0.779415i \(0.284484\pi\)
\(810\) 0 0
\(811\) 47.4491 1.66616 0.833082 0.553150i \(-0.186574\pi\)
0.833082 + 0.553150i \(0.186574\pi\)
\(812\) 0 0
\(813\) −14.9428 −0.524068
\(814\) 0 0
\(815\) 67.2017 2.35397
\(816\) 0 0
\(817\) −8.10031 −0.283394
\(818\) 0 0
\(819\) −9.79199 −0.342160
\(820\) 0 0
\(821\) 8.29133 0.289370 0.144685 0.989478i \(-0.453783\pi\)
0.144685 + 0.989478i \(0.453783\pi\)
\(822\) 0 0
\(823\) −0.376105 −0.0131102 −0.00655510 0.999979i \(-0.502087\pi\)
−0.00655510 + 0.999979i \(0.502087\pi\)
\(824\) 0 0
\(825\) 122.249 4.25615
\(826\) 0 0
\(827\) 37.7588 1.31300 0.656501 0.754325i \(-0.272036\pi\)
0.656501 + 0.754325i \(0.272036\pi\)
\(828\) 0 0
\(829\) 7.52348 0.261301 0.130651 0.991428i \(-0.458293\pi\)
0.130651 + 0.991428i \(0.458293\pi\)
\(830\) 0 0
\(831\) −18.6165 −0.645800
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 86.5682 2.99582
\(836\) 0 0
\(837\) 29.1747 1.00842
\(838\) 0 0
\(839\) 3.51515 0.121356 0.0606782 0.998157i \(-0.480674\pi\)
0.0606782 + 0.998157i \(0.480674\pi\)
\(840\) 0 0
\(841\) −28.7253 −0.990527
\(842\) 0 0
\(843\) 33.6746 1.15981
\(844\) 0 0
\(845\) −32.8215 −1.12910
\(846\) 0 0
\(847\) 14.0231 0.481838
\(848\) 0 0
\(849\) −37.8351 −1.29850
\(850\) 0 0
\(851\) 8.50457 0.291533
\(852\) 0 0
\(853\) −30.3585 −1.03945 −0.519727 0.854332i \(-0.673966\pi\)
−0.519727 + 0.854332i \(0.673966\pi\)
\(854\) 0 0
\(855\) 19.3492 0.661729
\(856\) 0 0
\(857\) 9.81494 0.335272 0.167636 0.985849i \(-0.446387\pi\)
0.167636 + 0.985849i \(0.446387\pi\)
\(858\) 0 0
\(859\) −57.8752 −1.97468 −0.987339 0.158627i \(-0.949293\pi\)
−0.987339 + 0.158627i \(0.949293\pi\)
\(860\) 0 0
\(861\) −27.2483 −0.928620
\(862\) 0 0
\(863\) −25.3357 −0.862439 −0.431219 0.902247i \(-0.641916\pi\)
−0.431219 + 0.902247i \(0.641916\pi\)
\(864\) 0 0
\(865\) −26.0643 −0.886212
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.11486 0.0378189
\(870\) 0 0
\(871\) 23.1817 0.785482
\(872\) 0 0
\(873\) −7.92411 −0.268190
\(874\) 0 0
\(875\) −63.7926 −2.15658
\(876\) 0 0
\(877\) 22.2380 0.750923 0.375461 0.926838i \(-0.377484\pi\)
0.375461 + 0.926838i \(0.377484\pi\)
\(878\) 0 0
\(879\) 13.3792 0.451270
\(880\) 0 0
\(881\) −4.30054 −0.144889 −0.0724445 0.997372i \(-0.523080\pi\)
−0.0724445 + 0.997372i \(0.523080\pi\)
\(882\) 0 0
\(883\) 49.5321 1.66689 0.833444 0.552603i \(-0.186366\pi\)
0.833444 + 0.552603i \(0.186366\pi\)
\(884\) 0 0
\(885\) −45.9344 −1.54407
\(886\) 0 0
\(887\) 2.87025 0.0963735 0.0481868 0.998838i \(-0.484656\pi\)
0.0481868 + 0.998838i \(0.484656\pi\)
\(888\) 0 0
\(889\) −21.3255 −0.715236
\(890\) 0 0
\(891\) −48.9072 −1.63845
\(892\) 0 0
\(893\) 4.78900 0.160258
\(894\) 0 0
\(895\) −79.3091 −2.65101
\(896\) 0 0
\(897\) 35.4799 1.18464
\(898\) 0 0
\(899\) −4.23451 −0.141229
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 8.01769 0.266812
\(904\) 0 0
\(905\) −95.6508 −3.17954
\(906\) 0 0
\(907\) 11.1662 0.370767 0.185383 0.982666i \(-0.440647\pi\)
0.185383 + 0.982666i \(0.440647\pi\)
\(908\) 0 0
\(909\) −14.4101 −0.477954
\(910\) 0 0
\(911\) 6.43009 0.213038 0.106519 0.994311i \(-0.466029\pi\)
0.106519 + 0.994311i \(0.466029\pi\)
\(912\) 0 0
\(913\) 24.2757 0.803407
\(914\) 0 0
\(915\) 42.2125 1.39550
\(916\) 0 0
\(917\) −1.79653 −0.0593267
\(918\) 0 0
\(919\) −15.7732 −0.520308 −0.260154 0.965567i \(-0.583773\pi\)
−0.260154 + 0.965567i \(0.583773\pi\)
\(920\) 0 0
\(921\) 15.4274 0.508351
\(922\) 0 0
\(923\) 58.0404 1.91042
\(924\) 0 0
\(925\) −30.4332 −1.00064
\(926\) 0 0
\(927\) −0.995443 −0.0326946
\(928\) 0 0
\(929\) −26.7689 −0.878260 −0.439130 0.898423i \(-0.644713\pi\)
−0.439130 + 0.898423i \(0.644713\pi\)
\(930\) 0 0
\(931\) 14.4425 0.473333
\(932\) 0 0
\(933\) 3.76816 0.123364
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −54.2504 −1.77228 −0.886142 0.463414i \(-0.846624\pi\)
−0.886142 + 0.463414i \(0.846624\pi\)
\(938\) 0 0
\(939\) −44.0998 −1.43914
\(940\) 0 0
\(941\) −42.1735 −1.37482 −0.687408 0.726272i \(-0.741251\pi\)
−0.687408 + 0.726272i \(0.741251\pi\)
\(942\) 0 0
\(943\) 29.0036 0.944486
\(944\) 0 0
\(945\) 26.8907 0.874755
\(946\) 0 0
\(947\) −0.685721 −0.0222829 −0.0111415 0.999938i \(-0.503547\pi\)
−0.0111415 + 0.999938i \(0.503547\pi\)
\(948\) 0 0
\(949\) 5.81191 0.188663
\(950\) 0 0
\(951\) 63.1784 2.04870
\(952\) 0 0
\(953\) −49.5946 −1.60653 −0.803263 0.595625i \(-0.796904\pi\)
−0.803263 + 0.595625i \(0.796904\pi\)
\(954\) 0 0
\(955\) −53.6858 −1.73723
\(956\) 0 0
\(957\) 4.72296 0.152672
\(958\) 0 0
\(959\) 8.67100 0.280001
\(960\) 0 0
\(961\) 34.2697 1.10548
\(962\) 0 0
\(963\) 4.23642 0.136517
\(964\) 0 0
\(965\) −18.8828 −0.607858
\(966\) 0 0
\(967\) −34.9795 −1.12487 −0.562433 0.826843i \(-0.690135\pi\)
−0.562433 + 0.826843i \(0.690135\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −43.2937 −1.38936 −0.694681 0.719318i \(-0.744454\pi\)
−0.694681 + 0.719318i \(0.744454\pi\)
\(972\) 0 0
\(973\) −37.0641 −1.18822
\(974\) 0 0
\(975\) −126.963 −4.06607
\(976\) 0 0
\(977\) −53.5695 −1.71384 −0.856920 0.515449i \(-0.827625\pi\)
−0.856920 + 0.515449i \(0.827625\pi\)
\(978\) 0 0
\(979\) −1.39801 −0.0446805
\(980\) 0 0
\(981\) 6.05946 0.193464
\(982\) 0 0
\(983\) −0.928232 −0.0296060 −0.0148030 0.999890i \(-0.504712\pi\)
−0.0148030 + 0.999890i \(0.504712\pi\)
\(984\) 0 0
\(985\) −79.2344 −2.52462
\(986\) 0 0
\(987\) −4.74015 −0.150881
\(988\) 0 0
\(989\) −8.53417 −0.271371
\(990\) 0 0
\(991\) −29.2729 −0.929885 −0.464943 0.885341i \(-0.653925\pi\)
−0.464943 + 0.885341i \(0.653925\pi\)
\(992\) 0 0
\(993\) −31.8826 −1.01176
\(994\) 0 0
\(995\) −46.9484 −1.48836
\(996\) 0 0
\(997\) −42.2269 −1.33734 −0.668669 0.743560i \(-0.733136\pi\)
−0.668669 + 0.743560i \(0.733136\pi\)
\(998\) 0 0
\(999\) 8.10066 0.256293
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.a.u.1.6 6
4.3 odd 2 4624.2.a.br.1.1 6
17.4 even 4 2312.2.b.o.577.2 12
17.13 even 4 2312.2.b.o.577.11 12
17.16 even 2 2312.2.a.v.1.1 yes 6
68.67 odd 2 4624.2.a.bs.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.u.1.6 6 1.1 even 1 trivial
2312.2.a.v.1.1 yes 6 17.16 even 2
2312.2.b.o.577.2 12 17.4 even 4
2312.2.b.o.577.11 12 17.13 even 4
4624.2.a.br.1.1 6 4.3 odd 2
4624.2.a.bs.1.6 6 68.67 odd 2