Defining parameters
Level: | \( N \) | \(=\) | \( 2312 = 2^{3} \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2312.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 23 \) | ||
Sturm bound: | \(612\) | ||
Trace bound: | \(15\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2312))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 342 | 68 | 274 |
Cusp forms | 271 | 68 | 203 |
Eisenstein series | 71 | 0 | 71 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(81\) | \(14\) | \(67\) | \(64\) | \(14\) | \(50\) | \(17\) | \(0\) | \(17\) | |||
\(+\) | \(-\) | \(-\) | \(89\) | \(20\) | \(69\) | \(71\) | \(20\) | \(51\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(-\) | \(90\) | \(18\) | \(72\) | \(72\) | \(18\) | \(54\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(+\) | \(82\) | \(16\) | \(66\) | \(64\) | \(16\) | \(48\) | \(18\) | \(0\) | \(18\) | |||
Plus space | \(+\) | \(163\) | \(30\) | \(133\) | \(128\) | \(30\) | \(98\) | \(35\) | \(0\) | \(35\) | ||||
Minus space | \(-\) | \(179\) | \(38\) | \(141\) | \(143\) | \(38\) | \(105\) | \(36\) | \(0\) | \(36\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2312))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2312))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2312)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\)\(^{\oplus 2}\)