Properties

Label 2312.2.a
Level $2312$
Weight $2$
Character orbit 2312.a
Rep. character $\chi_{2312}(1,\cdot)$
Character field $\Q$
Dimension $68$
Newform subspaces $23$
Sturm bound $612$
Trace bound $15$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 23 \)
Sturm bound: \(612\)
Trace bound: \(15\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2312))\).

Total New Old
Modular forms 342 68 274
Cusp forms 271 68 203
Eisenstein series 71 0 71

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(81\)\(14\)\(67\)\(64\)\(14\)\(50\)\(17\)\(0\)\(17\)
\(+\)\(-\)\(-\)\(89\)\(20\)\(69\)\(71\)\(20\)\(51\)\(18\)\(0\)\(18\)
\(-\)\(+\)\(-\)\(90\)\(18\)\(72\)\(72\)\(18\)\(54\)\(18\)\(0\)\(18\)
\(-\)\(-\)\(+\)\(82\)\(16\)\(66\)\(64\)\(16\)\(48\)\(18\)\(0\)\(18\)
Plus space\(+\)\(163\)\(30\)\(133\)\(128\)\(30\)\(98\)\(35\)\(0\)\(35\)
Minus space\(-\)\(179\)\(38\)\(141\)\(143\)\(38\)\(105\)\(36\)\(0\)\(36\)

Trace form

\( 68 q + 2 q^{3} - 2 q^{5} + 64 q^{9} + 2 q^{11} + 4 q^{13} + 12 q^{21} - 12 q^{23} + 80 q^{25} + 20 q^{27} + 6 q^{29} + 8 q^{31} - 4 q^{35} + 2 q^{37} - 4 q^{39} - 4 q^{41} + 16 q^{43} - 10 q^{45} + 84 q^{49}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2312))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 17
2312.2.a.a 2312.a 1.a $1$ $18.461$ \(\Q\) None 136.2.a.b \(0\) \(-2\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{9}-2q^{11}-6q^{13}+4q^{19}+\cdots\)
2312.2.a.b 2312.a 1.a $1$ $18.461$ \(\Q\) None 136.2.b.a \(0\) \(-2\) \(0\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{7}+q^{9}+2q^{11}-2q^{13}+\cdots\)
2312.2.a.c 2312.a 1.a $1$ $18.461$ \(\Q\) None 136.2.b.a \(0\) \(2\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-2q^{7}+q^{9}-2q^{11}-2q^{13}+\cdots\)
2312.2.a.d 2312.a 1.a $1$ $18.461$ \(\Q\) None 136.2.a.a \(0\) \(2\) \(2\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+2q^{5}+2q^{7}+q^{9}+6q^{11}+\cdots\)
2312.2.a.e 2312.a 1.a $2$ $18.461$ \(\Q(\sqrt{13}) \) None 2312.2.a.e \(0\) \(-3\) \(1\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{3}+\beta q^{5}+\beta q^{7}+(1+3\beta )q^{9}+\cdots\)
2312.2.a.f 2312.a 1.a $2$ $18.461$ \(\Q(\sqrt{5}) \) None 2312.2.a.f \(0\) \(-1\) \(-1\) \(-5\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+(1-3\beta )q^{5}+(-3+\beta )q^{7}+\cdots\)
2312.2.a.g 2312.a 1.a $2$ $18.461$ \(\Q(\sqrt{2}) \) None 136.2.b.b \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{5}+\beta q^{7}-3q^{9}-2\beta q^{11}+2q^{13}+\cdots\)
2312.2.a.h 2312.a 1.a $2$ $18.461$ \(\Q(\sqrt{2}) \) None 136.2.k.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-3\beta q^{5}-3\beta q^{7}-q^{9}-\beta q^{11}+\cdots\)
2312.2.a.i 2312.a 1.a $2$ $18.461$ \(\Q(\sqrt{2}) \) None 136.2.k.c \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-\beta q^{5}+\beta q^{7}-q^{9}-\beta q^{11}+\cdots\)
2312.2.a.j 2312.a 1.a $2$ $18.461$ \(\Q(\sqrt{2}) \) None 136.2.k.b \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+2\beta q^{5}+2\beta q^{7}-q^{9}-\beta q^{11}+\cdots\)
2312.2.a.k 2312.a 1.a $2$ $18.461$ \(\Q(\sqrt{2}) \) None 136.2.k.d \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2\beta q^{3}+\beta q^{5}-2\beta q^{7}+5q^{9}-2\beta q^{11}+\cdots\)
2312.2.a.l 2312.a 1.a $2$ $18.461$ \(\Q(\sqrt{5}) \) None 2312.2.a.f \(0\) \(1\) \(1\) \(5\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-1+3\beta )q^{5}+(3-\beta )q^{7}+\cdots\)
2312.2.a.m 2312.a 1.a $2$ $18.461$ \(\Q(\sqrt{5}) \) None 136.2.a.c \(0\) \(2\) \(-4\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-2q^{5}+(-1-\beta )q^{7}+(3+\cdots)q^{9}+\cdots\)
2312.2.a.n 2312.a 1.a $2$ $18.461$ \(\Q(\sqrt{13}) \) None 2312.2.a.e \(0\) \(3\) \(-1\) \(-1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-\beta q^{5}-\beta q^{7}+(1+3\beta )q^{9}+\cdots\)
2312.2.a.o 2312.a 1.a $3$ $18.461$ \(\Q(\zeta_{18})^+\) None 2312.2.a.o \(0\) \(-3\) \(-6\) \(-6\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-2\beta _{1}+\beta _{2})q^{3}+(-2-\beta _{1}+\cdots)q^{5}+\cdots\)
2312.2.a.p 2312.a 1.a $3$ $18.461$ \(\Q(\zeta_{18})^+\) None 2312.2.a.p \(0\) \(-3\) \(6\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{3}+(2+\beta _{1}-\beta _{2})q^{5}+\cdots\)
2312.2.a.q 2312.a 1.a $3$ $18.461$ \(\Q(\zeta_{18})^+\) None 2312.2.a.p \(0\) \(3\) \(-6\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{3}+(-2-\beta _{1}+\beta _{2})q^{5}+\cdots\)
2312.2.a.r 2312.a 1.a $3$ $18.461$ \(\Q(\zeta_{18})^+\) None 2312.2.a.o \(0\) \(3\) \(6\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+2\beta _{1}-\beta _{2})q^{3}+(2+\beta _{1})q^{5}+(2+\cdots)q^{7}+\cdots\)
2312.2.a.s 2312.a 1.a $4$ $18.461$ \(\Q(\zeta_{16})^+\) None 136.2.n.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+\beta _{3}q^{5}+(-2\beta _{1}-\beta _{3})q^{7}+\cdots\)
2312.2.a.t 2312.a 1.a $4$ $18.461$ \(\Q(\zeta_{16})^+\) None 136.2.n.b \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{1}+\beta _{3})q^{3}+(-2\beta _{1}+\beta _{3})q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\)
2312.2.a.u 2312.a 1.a $6$ $18.461$ 6.6.3418281.1 None 2312.2.a.u \(0\) \(0\) \(-6\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-1-\beta _{3})q^{5}+(-\beta _{1}-2\beta _{2}+\cdots)q^{7}+\cdots\)
2312.2.a.v 2312.a 1.a $6$ $18.461$ 6.6.3418281.1 None 2312.2.a.u \(0\) \(0\) \(6\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(1+\beta _{3})q^{5}+(\beta _{1}+2\beta _{2}+\beta _{3}+\cdots)q^{7}+\cdots\)
2312.2.a.w 2312.a 1.a $12$ $18.461$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 136.2.n.c \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-\beta _{10}q^{5}+\beta _{6}q^{7}+(2+\beta _{3}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2312))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2312)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\)\(^{\oplus 2}\)