Properties

Label 2312.2.b.o.577.11
Level $2312$
Weight $2$
Character 2312.577
Analytic conductor $18.461$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(577,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-12,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 117x^{8} + 342x^{6} + 438x^{4} + 180x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.11
Root \(2.06104i\) of defining polynomial
Character \(\chi\) \(=\) 2312.577
Dual form 2312.2.b.o.577.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.06104i q^{3} -4.30892i q^{5} -1.72816i q^{7} -1.24788 q^{9} -4.37201i q^{11} -4.54061 q^{13} +8.88085 q^{15} +3.59851 q^{19} +3.56181 q^{21} +3.79125i q^{23} -13.5668 q^{25} +3.61119i q^{27} +0.524140i q^{29} -8.07897i q^{31} +9.01087 q^{33} -7.44650 q^{35} -2.24321i q^{37} -9.35837i q^{39} +7.65013i q^{41} -2.25102 q^{43} +5.37701i q^{45} -1.33083 q^{47} +4.01346 q^{49} -12.5721 q^{53} -18.8386 q^{55} +7.41666i q^{57} -5.17229 q^{59} +4.75321i q^{61} +2.15654i q^{63} +19.5651i q^{65} -5.10542 q^{67} -7.81391 q^{69} -12.7825i q^{71} -1.27999i q^{73} -27.9617i q^{75} -7.55553 q^{77} -0.254999i q^{79} -11.1864 q^{81} -5.55252 q^{83} -1.08027 q^{87} -0.319763 q^{89} +7.84690i q^{91} +16.6511 q^{93} -15.5057i q^{95} -6.35006i q^{97} +5.45574i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{13} + 12 q^{15} - 12 q^{19} + 12 q^{21} - 12 q^{25} + 6 q^{33} + 42 q^{35} + 6 q^{47} - 18 q^{49} - 66 q^{53} - 102 q^{55} - 18 q^{67} - 6 q^{69} + 90 q^{77} - 36 q^{81} + 24 q^{83} - 30 q^{87}+ \cdots + 60 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.06104i 1.18994i 0.803747 + 0.594971i \(0.202836\pi\)
−0.803747 + 0.594971i \(0.797164\pi\)
\(4\) 0 0
\(5\) − 4.30892i − 1.92701i −0.267696 0.963504i \(-0.586262\pi\)
0.267696 0.963504i \(-0.413738\pi\)
\(6\) 0 0
\(7\) − 1.72816i − 0.653183i −0.945166 0.326592i \(-0.894100\pi\)
0.945166 0.326592i \(-0.105900\pi\)
\(8\) 0 0
\(9\) −1.24788 −0.415960
\(10\) 0 0
\(11\) − 4.37201i − 1.31821i −0.752051 0.659105i \(-0.770935\pi\)
0.752051 0.659105i \(-0.229065\pi\)
\(12\) 0 0
\(13\) −4.54061 −1.25934 −0.629669 0.776864i \(-0.716809\pi\)
−0.629669 + 0.776864i \(0.716809\pi\)
\(14\) 0 0
\(15\) 8.88085 2.29303
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 3.59851 0.825554 0.412777 0.910832i \(-0.364559\pi\)
0.412777 + 0.910832i \(0.364559\pi\)
\(20\) 0 0
\(21\) 3.56181 0.777250
\(22\) 0 0
\(23\) 3.79125i 0.790530i 0.918567 + 0.395265i \(0.129347\pi\)
−0.918567 + 0.395265i \(0.870653\pi\)
\(24\) 0 0
\(25\) −13.5668 −2.71336
\(26\) 0 0
\(27\) 3.61119i 0.694973i
\(28\) 0 0
\(29\) 0.524140i 0.0973304i 0.998815 + 0.0486652i \(0.0154967\pi\)
−0.998815 + 0.0486652i \(0.984503\pi\)
\(30\) 0 0
\(31\) − 8.07897i − 1.45103i −0.688209 0.725513i \(-0.741603\pi\)
0.688209 0.725513i \(-0.258397\pi\)
\(32\) 0 0
\(33\) 9.01087 1.56859
\(34\) 0 0
\(35\) −7.44650 −1.25869
\(36\) 0 0
\(37\) − 2.24321i − 0.368782i −0.982853 0.184391i \(-0.940969\pi\)
0.982853 0.184391i \(-0.0590312\pi\)
\(38\) 0 0
\(39\) − 9.35837i − 1.49854i
\(40\) 0 0
\(41\) 7.65013i 1.19475i 0.801962 + 0.597375i \(0.203790\pi\)
−0.801962 + 0.597375i \(0.796210\pi\)
\(42\) 0 0
\(43\) −2.25102 −0.343277 −0.171639 0.985160i \(-0.554906\pi\)
−0.171639 + 0.985160i \(0.554906\pi\)
\(44\) 0 0
\(45\) 5.37701i 0.801558i
\(46\) 0 0
\(47\) −1.33083 −0.194121 −0.0970607 0.995278i \(-0.530944\pi\)
−0.0970607 + 0.995278i \(0.530944\pi\)
\(48\) 0 0
\(49\) 4.01346 0.573351
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.5721 −1.72691 −0.863457 0.504422i \(-0.831706\pi\)
−0.863457 + 0.504422i \(0.831706\pi\)
\(54\) 0 0
\(55\) −18.8386 −2.54020
\(56\) 0 0
\(57\) 7.41666i 0.982361i
\(58\) 0 0
\(59\) −5.17229 −0.673375 −0.336688 0.941616i \(-0.609307\pi\)
−0.336688 + 0.941616i \(0.609307\pi\)
\(60\) 0 0
\(61\) 4.75321i 0.608586i 0.952578 + 0.304293i \(0.0984202\pi\)
−0.952578 + 0.304293i \(0.901580\pi\)
\(62\) 0 0
\(63\) 2.15654i 0.271698i
\(64\) 0 0
\(65\) 19.5651i 2.42675i
\(66\) 0 0
\(67\) −5.10542 −0.623726 −0.311863 0.950127i \(-0.600953\pi\)
−0.311863 + 0.950127i \(0.600953\pi\)
\(68\) 0 0
\(69\) −7.81391 −0.940684
\(70\) 0 0
\(71\) − 12.7825i − 1.51701i −0.651669 0.758503i \(-0.725931\pi\)
0.651669 0.758503i \(-0.274069\pi\)
\(72\) 0 0
\(73\) − 1.27999i − 0.149811i −0.997191 0.0749055i \(-0.976134\pi\)
0.997191 0.0749055i \(-0.0238655\pi\)
\(74\) 0 0
\(75\) − 27.9617i − 3.22873i
\(76\) 0 0
\(77\) −7.55553 −0.861033
\(78\) 0 0
\(79\) − 0.254999i − 0.0286896i −0.999897 0.0143448i \(-0.995434\pi\)
0.999897 0.0143448i \(-0.00456625\pi\)
\(80\) 0 0
\(81\) −11.1864 −1.24294
\(82\) 0 0
\(83\) −5.55252 −0.609468 −0.304734 0.952437i \(-0.598568\pi\)
−0.304734 + 0.952437i \(0.598568\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.08027 −0.115817
\(88\) 0 0
\(89\) −0.319763 −0.0338948 −0.0169474 0.999856i \(-0.505395\pi\)
−0.0169474 + 0.999856i \(0.505395\pi\)
\(90\) 0 0
\(91\) 7.84690i 0.822579i
\(92\) 0 0
\(93\) 16.6511 1.72664
\(94\) 0 0
\(95\) − 15.5057i − 1.59085i
\(96\) 0 0
\(97\) − 6.35006i − 0.644751i −0.946612 0.322375i \(-0.895519\pi\)
0.946612 0.322375i \(-0.104481\pi\)
\(98\) 0 0
\(99\) 5.45574i 0.548322i
\(100\) 0 0
\(101\) −11.5477 −1.14904 −0.574519 0.818492i \(-0.694811\pi\)
−0.574519 + 0.818492i \(0.694811\pi\)
\(102\) 0 0
\(103\) −0.797707 −0.0786004 −0.0393002 0.999227i \(-0.512513\pi\)
−0.0393002 + 0.999227i \(0.512513\pi\)
\(104\) 0 0
\(105\) − 15.3475i − 1.49777i
\(106\) 0 0
\(107\) 3.39489i 0.328197i 0.986444 + 0.164098i \(0.0524714\pi\)
−0.986444 + 0.164098i \(0.947529\pi\)
\(108\) 0 0
\(109\) − 4.85580i − 0.465102i −0.972584 0.232551i \(-0.925293\pi\)
0.972584 0.232551i \(-0.0747072\pi\)
\(110\) 0 0
\(111\) 4.62335 0.438829
\(112\) 0 0
\(113\) 15.2696i 1.43644i 0.695816 + 0.718220i \(0.255043\pi\)
−0.695816 + 0.718220i \(0.744957\pi\)
\(114\) 0 0
\(115\) 16.3362 1.52336
\(116\) 0 0
\(117\) 5.66613 0.523834
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.11444 −0.737676
\(122\) 0 0
\(123\) −15.7672 −1.42168
\(124\) 0 0
\(125\) 36.9136i 3.30165i
\(126\) 0 0
\(127\) 12.3400 1.09500 0.547500 0.836806i \(-0.315580\pi\)
0.547500 + 0.836806i \(0.315580\pi\)
\(128\) 0 0
\(129\) − 4.63944i − 0.408480i
\(130\) 0 0
\(131\) − 1.03956i − 0.0908271i −0.998968 0.0454135i \(-0.985539\pi\)
0.998968 0.0454135i \(-0.0144606\pi\)
\(132\) 0 0
\(133\) − 6.21880i − 0.539238i
\(134\) 0 0
\(135\) 15.5603 1.33922
\(136\) 0 0
\(137\) 5.01747 0.428672 0.214336 0.976760i \(-0.431241\pi\)
0.214336 + 0.976760i \(0.431241\pi\)
\(138\) 0 0
\(139\) − 21.4471i − 1.81912i −0.415571 0.909561i \(-0.636418\pi\)
0.415571 0.909561i \(-0.363582\pi\)
\(140\) 0 0
\(141\) − 2.74289i − 0.230993i
\(142\) 0 0
\(143\) 19.8516i 1.66007i
\(144\) 0 0
\(145\) 2.25848 0.187556
\(146\) 0 0
\(147\) 8.27190i 0.682254i
\(148\) 0 0
\(149\) 0.331466 0.0271547 0.0135774 0.999908i \(-0.495678\pi\)
0.0135774 + 0.999908i \(0.495678\pi\)
\(150\) 0 0
\(151\) 18.9835 1.54486 0.772429 0.635102i \(-0.219042\pi\)
0.772429 + 0.635102i \(0.219042\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −34.8116 −2.79614
\(156\) 0 0
\(157\) 7.76102 0.619397 0.309698 0.950835i \(-0.399772\pi\)
0.309698 + 0.950835i \(0.399772\pi\)
\(158\) 0 0
\(159\) − 25.9116i − 2.05493i
\(160\) 0 0
\(161\) 6.55189 0.516361
\(162\) 0 0
\(163\) 15.5959i 1.22157i 0.791797 + 0.610784i \(0.209146\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(164\) 0 0
\(165\) − 38.8271i − 3.02269i
\(166\) 0 0
\(167\) − 20.0905i − 1.55465i −0.629101 0.777324i \(-0.716577\pi\)
0.629101 0.777324i \(-0.283423\pi\)
\(168\) 0 0
\(169\) 7.61712 0.585932
\(170\) 0 0
\(171\) −4.49051 −0.343398
\(172\) 0 0
\(173\) 6.04891i 0.459890i 0.973204 + 0.229945i \(0.0738547\pi\)
−0.973204 + 0.229945i \(0.926145\pi\)
\(174\) 0 0
\(175\) 23.4456i 1.77232i
\(176\) 0 0
\(177\) − 10.6603i − 0.801277i
\(178\) 0 0
\(179\) −18.4058 −1.37571 −0.687857 0.725846i \(-0.741448\pi\)
−0.687857 + 0.725846i \(0.741448\pi\)
\(180\) 0 0
\(181\) − 22.1983i − 1.64999i −0.565141 0.824995i \(-0.691178\pi\)
0.565141 0.824995i \(-0.308822\pi\)
\(182\) 0 0
\(183\) −9.79655 −0.724182
\(184\) 0 0
\(185\) −9.66582 −0.710645
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 6.24071 0.453945
\(190\) 0 0
\(191\) 12.4592 0.901517 0.450759 0.892646i \(-0.351154\pi\)
0.450759 + 0.892646i \(0.351154\pi\)
\(192\) 0 0
\(193\) − 4.38225i − 0.315441i −0.987484 0.157721i \(-0.949585\pi\)
0.987484 0.157721i \(-0.0504146\pi\)
\(194\) 0 0
\(195\) −40.3244 −2.88769
\(196\) 0 0
\(197\) − 18.3885i − 1.31012i −0.755575 0.655062i \(-0.772643\pi\)
0.755575 0.655062i \(-0.227357\pi\)
\(198\) 0 0
\(199\) 10.8956i 0.772371i 0.922421 + 0.386185i \(0.126207\pi\)
−0.922421 + 0.386185i \(0.873793\pi\)
\(200\) 0 0
\(201\) − 10.5225i − 0.742197i
\(202\) 0 0
\(203\) 0.905799 0.0635746
\(204\) 0 0
\(205\) 32.9638 2.30229
\(206\) 0 0
\(207\) − 4.73102i − 0.328829i
\(208\) 0 0
\(209\) − 15.7327i − 1.08825i
\(210\) 0 0
\(211\) − 22.6468i − 1.55907i −0.626360 0.779534i \(-0.715456\pi\)
0.626360 0.779534i \(-0.284544\pi\)
\(212\) 0 0
\(213\) 26.3453 1.80515
\(214\) 0 0
\(215\) 9.69946i 0.661498i
\(216\) 0 0
\(217\) −13.9618 −0.947786
\(218\) 0 0
\(219\) 2.63810 0.178266
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.83363 −0.524579 −0.262289 0.964989i \(-0.584477\pi\)
−0.262289 + 0.964989i \(0.584477\pi\)
\(224\) 0 0
\(225\) 16.9297 1.12865
\(226\) 0 0
\(227\) − 24.1208i − 1.60095i −0.599365 0.800476i \(-0.704580\pi\)
0.599365 0.800476i \(-0.295420\pi\)
\(228\) 0 0
\(229\) 6.31906 0.417575 0.208788 0.977961i \(-0.433048\pi\)
0.208788 + 0.977961i \(0.433048\pi\)
\(230\) 0 0
\(231\) − 15.5722i − 1.02458i
\(232\) 0 0
\(233\) 2.93291i 0.192141i 0.995375 + 0.0960707i \(0.0306275\pi\)
−0.995375 + 0.0960707i \(0.969373\pi\)
\(234\) 0 0
\(235\) 5.73443i 0.374073i
\(236\) 0 0
\(237\) 0.525563 0.0341390
\(238\) 0 0
\(239\) 21.6824 1.40252 0.701260 0.712905i \(-0.252621\pi\)
0.701260 + 0.712905i \(0.252621\pi\)
\(240\) 0 0
\(241\) 10.2543i 0.660539i 0.943887 + 0.330269i \(0.107140\pi\)
−0.943887 + 0.330269i \(0.892860\pi\)
\(242\) 0 0
\(243\) − 12.2221i − 0.784049i
\(244\) 0 0
\(245\) − 17.2937i − 1.10485i
\(246\) 0 0
\(247\) −16.3394 −1.03965
\(248\) 0 0
\(249\) − 11.4440i − 0.725231i
\(250\) 0 0
\(251\) 11.1362 0.702912 0.351456 0.936204i \(-0.385687\pi\)
0.351456 + 0.936204i \(0.385687\pi\)
\(252\) 0 0
\(253\) 16.5754 1.04208
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.49477 −0.217998 −0.108999 0.994042i \(-0.534764\pi\)
−0.108999 + 0.994042i \(0.534764\pi\)
\(258\) 0 0
\(259\) −3.87663 −0.240882
\(260\) 0 0
\(261\) − 0.654064i − 0.0404856i
\(262\) 0 0
\(263\) −19.3767 −1.19482 −0.597408 0.801938i \(-0.703803\pi\)
−0.597408 + 0.801938i \(0.703803\pi\)
\(264\) 0 0
\(265\) 54.1723i 3.32778i
\(266\) 0 0
\(267\) − 0.659044i − 0.0403329i
\(268\) 0 0
\(269\) 6.14643i 0.374754i 0.982288 + 0.187377i \(0.0599986\pi\)
−0.982288 + 0.187377i \(0.940001\pi\)
\(270\) 0 0
\(271\) −7.25014 −0.440415 −0.220207 0.975453i \(-0.570673\pi\)
−0.220207 + 0.975453i \(0.570673\pi\)
\(272\) 0 0
\(273\) −16.1728 −0.978820
\(274\) 0 0
\(275\) 59.3140i 3.57677i
\(276\) 0 0
\(277\) − 9.03259i − 0.542716i −0.962479 0.271358i \(-0.912527\pi\)
0.962479 0.271358i \(-0.0874727\pi\)
\(278\) 0 0
\(279\) 10.0816i 0.603569i
\(280\) 0 0
\(281\) −16.3386 −0.974682 −0.487341 0.873212i \(-0.662033\pi\)
−0.487341 + 0.873212i \(0.662033\pi\)
\(282\) 0 0
\(283\) 18.3573i 1.09123i 0.838036 + 0.545614i \(0.183704\pi\)
−0.838036 + 0.545614i \(0.816296\pi\)
\(284\) 0 0
\(285\) 31.9578 1.89302
\(286\) 0 0
\(287\) 13.2207 0.780391
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 13.0877 0.767215
\(292\) 0 0
\(293\) 6.49150 0.379237 0.189619 0.981858i \(-0.439275\pi\)
0.189619 + 0.981858i \(0.439275\pi\)
\(294\) 0 0
\(295\) 22.2870i 1.29760i
\(296\) 0 0
\(297\) 15.7881 0.916120
\(298\) 0 0
\(299\) − 17.2146i − 0.995544i
\(300\) 0 0
\(301\) 3.89012i 0.224223i
\(302\) 0 0
\(303\) − 23.8002i − 1.36729i
\(304\) 0 0
\(305\) 20.4812 1.17275
\(306\) 0 0
\(307\) 7.48527 0.427207 0.213603 0.976920i \(-0.431480\pi\)
0.213603 + 0.976920i \(0.431480\pi\)
\(308\) 0 0
\(309\) − 1.64411i − 0.0935299i
\(310\) 0 0
\(311\) 1.82828i 0.103672i 0.998656 + 0.0518362i \(0.0165074\pi\)
−0.998656 + 0.0518362i \(0.983493\pi\)
\(312\) 0 0
\(313\) 21.3969i 1.20942i 0.796444 + 0.604712i \(0.206712\pi\)
−0.796444 + 0.604712i \(0.793288\pi\)
\(314\) 0 0
\(315\) 9.29234 0.523564
\(316\) 0 0
\(317\) − 30.6537i − 1.72168i −0.508874 0.860841i \(-0.669938\pi\)
0.508874 0.860841i \(-0.330062\pi\)
\(318\) 0 0
\(319\) 2.29154 0.128302
\(320\) 0 0
\(321\) −6.99700 −0.390535
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 61.6014 3.41703
\(326\) 0 0
\(327\) 10.0080 0.553444
\(328\) 0 0
\(329\) 2.29989i 0.126797i
\(330\) 0 0
\(331\) 15.4692 0.850263 0.425132 0.905132i \(-0.360228\pi\)
0.425132 + 0.905132i \(0.360228\pi\)
\(332\) 0 0
\(333\) 2.79926i 0.153398i
\(334\) 0 0
\(335\) 21.9988i 1.20192i
\(336\) 0 0
\(337\) − 7.95343i − 0.433251i −0.976255 0.216625i \(-0.930495\pi\)
0.976255 0.216625i \(-0.0695050\pi\)
\(338\) 0 0
\(339\) −31.4712 −1.70928
\(340\) 0 0
\(341\) −35.3213 −1.91276
\(342\) 0 0
\(343\) − 19.0330i − 1.02769i
\(344\) 0 0
\(345\) 33.6695i 1.81270i
\(346\) 0 0
\(347\) 16.8002i 0.901882i 0.892554 + 0.450941i \(0.148912\pi\)
−0.892554 + 0.450941i \(0.851088\pi\)
\(348\) 0 0
\(349\) 2.52175 0.134986 0.0674932 0.997720i \(-0.478500\pi\)
0.0674932 + 0.997720i \(0.478500\pi\)
\(350\) 0 0
\(351\) − 16.3970i − 0.875206i
\(352\) 0 0
\(353\) −26.5129 −1.41114 −0.705570 0.708640i \(-0.749309\pi\)
−0.705570 + 0.708640i \(0.749309\pi\)
\(354\) 0 0
\(355\) −55.0788 −2.92328
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.75375 0.409227 0.204614 0.978843i \(-0.434406\pi\)
0.204614 + 0.978843i \(0.434406\pi\)
\(360\) 0 0
\(361\) −6.05075 −0.318460
\(362\) 0 0
\(363\) − 16.7242i − 0.877791i
\(364\) 0 0
\(365\) −5.51535 −0.288687
\(366\) 0 0
\(367\) − 9.90287i − 0.516926i −0.966021 0.258463i \(-0.916784\pi\)
0.966021 0.258463i \(-0.0832159\pi\)
\(368\) 0 0
\(369\) − 9.54645i − 0.496968i
\(370\) 0 0
\(371\) 21.7267i 1.12799i
\(372\) 0 0
\(373\) 7.07672 0.366419 0.183209 0.983074i \(-0.441351\pi\)
0.183209 + 0.983074i \(0.441351\pi\)
\(374\) 0 0
\(375\) −76.0803 −3.92877
\(376\) 0 0
\(377\) − 2.37992i − 0.122572i
\(378\) 0 0
\(379\) − 19.2860i − 0.990657i −0.868706 0.495328i \(-0.835048\pi\)
0.868706 0.495328i \(-0.164952\pi\)
\(380\) 0 0
\(381\) 25.4333i 1.30299i
\(382\) 0 0
\(383\) 0.0295394 0.00150939 0.000754697 1.00000i \(-0.499760\pi\)
0.000754697 1.00000i \(0.499760\pi\)
\(384\) 0 0
\(385\) 32.5562i 1.65922i
\(386\) 0 0
\(387\) 2.80900 0.142790
\(388\) 0 0
\(389\) −14.5600 −0.738221 −0.369110 0.929386i \(-0.620338\pi\)
−0.369110 + 0.929386i \(0.620338\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 2.14258 0.108079
\(394\) 0 0
\(395\) −1.09877 −0.0552851
\(396\) 0 0
\(397\) 6.98697i 0.350666i 0.984509 + 0.175333i \(0.0561002\pi\)
−0.984509 + 0.175333i \(0.943900\pi\)
\(398\) 0 0
\(399\) 12.8172 0.641662
\(400\) 0 0
\(401\) 4.67916i 0.233666i 0.993152 + 0.116833i \(0.0372743\pi\)
−0.993152 + 0.116833i \(0.962726\pi\)
\(402\) 0 0
\(403\) 36.6834i 1.82733i
\(404\) 0 0
\(405\) 48.2014i 2.39515i
\(406\) 0 0
\(407\) −9.80734 −0.486132
\(408\) 0 0
\(409\) 32.4205 1.60309 0.801546 0.597933i \(-0.204011\pi\)
0.801546 + 0.597933i \(0.204011\pi\)
\(410\) 0 0
\(411\) 10.3412i 0.510094i
\(412\) 0 0
\(413\) 8.93856i 0.439838i
\(414\) 0 0
\(415\) 23.9254i 1.17445i
\(416\) 0 0
\(417\) 44.2034 2.16465
\(418\) 0 0
\(419\) − 34.5535i − 1.68805i −0.536305 0.844024i \(-0.680180\pi\)
0.536305 0.844024i \(-0.319820\pi\)
\(420\) 0 0
\(421\) −19.8509 −0.967472 −0.483736 0.875214i \(-0.660720\pi\)
−0.483736 + 0.875214i \(0.660720\pi\)
\(422\) 0 0
\(423\) 1.66071 0.0807467
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8.21431 0.397518
\(428\) 0 0
\(429\) −40.9148 −1.97539
\(430\) 0 0
\(431\) 3.72269i 0.179315i 0.995973 + 0.0896577i \(0.0285773\pi\)
−0.995973 + 0.0896577i \(0.971423\pi\)
\(432\) 0 0
\(433\) −26.5298 −1.27494 −0.637471 0.770474i \(-0.720019\pi\)
−0.637471 + 0.770474i \(0.720019\pi\)
\(434\) 0 0
\(435\) 4.65481i 0.223181i
\(436\) 0 0
\(437\) 13.6428i 0.652625i
\(438\) 0 0
\(439\) 28.8706i 1.37792i 0.724800 + 0.688960i \(0.241932\pi\)
−0.724800 + 0.688960i \(0.758068\pi\)
\(440\) 0 0
\(441\) −5.00832 −0.238491
\(442\) 0 0
\(443\) 32.3742 1.53814 0.769072 0.639162i \(-0.220719\pi\)
0.769072 + 0.639162i \(0.220719\pi\)
\(444\) 0 0
\(445\) 1.37783i 0.0653156i
\(446\) 0 0
\(447\) 0.683163i 0.0323125i
\(448\) 0 0
\(449\) 17.0269i 0.803548i 0.915739 + 0.401774i \(0.131606\pi\)
−0.915739 + 0.401774i \(0.868394\pi\)
\(450\) 0 0
\(451\) 33.4464 1.57493
\(452\) 0 0
\(453\) 39.1258i 1.83829i
\(454\) 0 0
\(455\) 33.8117 1.58511
\(456\) 0 0
\(457\) −36.7651 −1.71980 −0.859900 0.510462i \(-0.829474\pi\)
−0.859900 + 0.510462i \(0.829474\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.0810 0.516092 0.258046 0.966133i \(-0.416921\pi\)
0.258046 + 0.966133i \(0.416921\pi\)
\(462\) 0 0
\(463\) −1.20500 −0.0560009 −0.0280005 0.999608i \(-0.508914\pi\)
−0.0280005 + 0.999608i \(0.508914\pi\)
\(464\) 0 0
\(465\) − 71.7481i − 3.32724i
\(466\) 0 0
\(467\) 27.5509 1.27490 0.637451 0.770491i \(-0.279989\pi\)
0.637451 + 0.770491i \(0.279989\pi\)
\(468\) 0 0
\(469\) 8.82298i 0.407408i
\(470\) 0 0
\(471\) 15.9958i 0.737046i
\(472\) 0 0
\(473\) 9.84147i 0.452511i
\(474\) 0 0
\(475\) −48.8202 −2.24002
\(476\) 0 0
\(477\) 15.6885 0.718327
\(478\) 0 0
\(479\) 20.8405i 0.952228i 0.879384 + 0.476114i \(0.157955\pi\)
−0.879384 + 0.476114i \(0.842045\pi\)
\(480\) 0 0
\(481\) 10.1855i 0.464421i
\(482\) 0 0
\(483\) 13.5037i 0.614439i
\(484\) 0 0
\(485\) −27.3619 −1.24244
\(486\) 0 0
\(487\) 11.9198i 0.540139i 0.962841 + 0.270069i \(0.0870466\pi\)
−0.962841 + 0.270069i \(0.912953\pi\)
\(488\) 0 0
\(489\) −32.1438 −1.45359
\(490\) 0 0
\(491\) 7.03674 0.317563 0.158782 0.987314i \(-0.449243\pi\)
0.158782 + 0.987314i \(0.449243\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 23.5083 1.05662
\(496\) 0 0
\(497\) −22.0903 −0.990883
\(498\) 0 0
\(499\) 11.0208i 0.493361i 0.969097 + 0.246680i \(0.0793398\pi\)
−0.969097 + 0.246680i \(0.920660\pi\)
\(500\) 0 0
\(501\) 41.4072 1.84994
\(502\) 0 0
\(503\) 10.6130i 0.473211i 0.971606 + 0.236606i \(0.0760349\pi\)
−0.971606 + 0.236606i \(0.923965\pi\)
\(504\) 0 0
\(505\) 49.7580i 2.21420i
\(506\) 0 0
\(507\) 15.6992i 0.697225i
\(508\) 0 0
\(509\) 4.40973 0.195458 0.0977289 0.995213i \(-0.468842\pi\)
0.0977289 + 0.995213i \(0.468842\pi\)
\(510\) 0 0
\(511\) −2.21202 −0.0978541
\(512\) 0 0
\(513\) 12.9949i 0.573738i
\(514\) 0 0
\(515\) 3.43726i 0.151464i
\(516\) 0 0
\(517\) 5.81839i 0.255893i
\(518\) 0 0
\(519\) −12.4670 −0.547242
\(520\) 0 0
\(521\) − 4.49769i − 0.197047i −0.995135 0.0985236i \(-0.968588\pi\)
0.995135 0.0985236i \(-0.0314120\pi\)
\(522\) 0 0
\(523\) −14.6133 −0.638994 −0.319497 0.947587i \(-0.603514\pi\)
−0.319497 + 0.947587i \(0.603514\pi\)
\(524\) 0 0
\(525\) −48.3222 −2.10896
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 8.62644 0.375062
\(530\) 0 0
\(531\) 6.45440 0.280097
\(532\) 0 0
\(533\) − 34.7363i − 1.50459i
\(534\) 0 0
\(535\) 14.6283 0.632437
\(536\) 0 0
\(537\) − 37.9351i − 1.63702i
\(538\) 0 0
\(539\) − 17.5469i − 0.755797i
\(540\) 0 0
\(541\) − 37.7172i − 1.62159i −0.585331 0.810795i \(-0.699035\pi\)
0.585331 0.810795i \(-0.300965\pi\)
\(542\) 0 0
\(543\) 45.7516 1.96339
\(544\) 0 0
\(545\) −20.9233 −0.896254
\(546\) 0 0
\(547\) − 31.7055i − 1.35563i −0.735233 0.677815i \(-0.762927\pi\)
0.735233 0.677815i \(-0.237073\pi\)
\(548\) 0 0
\(549\) − 5.93144i − 0.253148i
\(550\) 0 0
\(551\) 1.88612i 0.0803515i
\(552\) 0 0
\(553\) −0.440679 −0.0187396
\(554\) 0 0
\(555\) − 19.9216i − 0.845626i
\(556\) 0 0
\(557\) −1.35504 −0.0574148 −0.0287074 0.999588i \(-0.509139\pi\)
−0.0287074 + 0.999588i \(0.509139\pi\)
\(558\) 0 0
\(559\) 10.2210 0.432302
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 28.6570 1.20775 0.603875 0.797079i \(-0.293623\pi\)
0.603875 + 0.797079i \(0.293623\pi\)
\(564\) 0 0
\(565\) 65.7954 2.76803
\(566\) 0 0
\(567\) 19.3320i 0.811866i
\(568\) 0 0
\(569\) −11.0338 −0.462560 −0.231280 0.972887i \(-0.574291\pi\)
−0.231280 + 0.972887i \(0.574291\pi\)
\(570\) 0 0
\(571\) − 34.9151i − 1.46115i −0.682833 0.730575i \(-0.739252\pi\)
0.682833 0.730575i \(-0.260748\pi\)
\(572\) 0 0
\(573\) 25.6789i 1.07275i
\(574\) 0 0
\(575\) − 51.4350i − 2.14499i
\(576\) 0 0
\(577\) −10.4728 −0.435987 −0.217993 0.975950i \(-0.569951\pi\)
−0.217993 + 0.975950i \(0.569951\pi\)
\(578\) 0 0
\(579\) 9.03199 0.375357
\(580\) 0 0
\(581\) 9.59565i 0.398095i
\(582\) 0 0
\(583\) 54.9654i 2.27644i
\(584\) 0 0
\(585\) − 24.4149i − 1.00943i
\(586\) 0 0
\(587\) 2.37083 0.0978547 0.0489274 0.998802i \(-0.484420\pi\)
0.0489274 + 0.998802i \(0.484420\pi\)
\(588\) 0 0
\(589\) − 29.0722i − 1.19790i
\(590\) 0 0
\(591\) 37.8993 1.55897
\(592\) 0 0
\(593\) 21.9223 0.900241 0.450121 0.892968i \(-0.351381\pi\)
0.450121 + 0.892968i \(0.351381\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −22.4563 −0.919076
\(598\) 0 0
\(599\) 20.9674 0.856705 0.428353 0.903612i \(-0.359094\pi\)
0.428353 + 0.903612i \(0.359094\pi\)
\(600\) 0 0
\(601\) 29.2563i 1.19339i 0.802469 + 0.596694i \(0.203519\pi\)
−0.802469 + 0.596694i \(0.796481\pi\)
\(602\) 0 0
\(603\) 6.37095 0.259445
\(604\) 0 0
\(605\) 34.9645i 1.42151i
\(606\) 0 0
\(607\) − 41.8212i − 1.69747i −0.528820 0.848734i \(-0.677365\pi\)
0.528820 0.848734i \(-0.322635\pi\)
\(608\) 0 0
\(609\) 1.86689i 0.0756500i
\(610\) 0 0
\(611\) 6.04277 0.244464
\(612\) 0 0
\(613\) −10.9602 −0.442679 −0.221340 0.975197i \(-0.571043\pi\)
−0.221340 + 0.975197i \(0.571043\pi\)
\(614\) 0 0
\(615\) 67.9397i 2.73959i
\(616\) 0 0
\(617\) 23.9663i 0.964846i 0.875938 + 0.482423i \(0.160243\pi\)
−0.875938 + 0.482423i \(0.839757\pi\)
\(618\) 0 0
\(619\) − 2.07982i − 0.0835950i −0.999126 0.0417975i \(-0.986692\pi\)
0.999126 0.0417975i \(-0.0133084\pi\)
\(620\) 0 0
\(621\) −13.6909 −0.549397
\(622\) 0 0
\(623\) 0.552602i 0.0221395i
\(624\) 0 0
\(625\) 91.2236 3.64894
\(626\) 0 0
\(627\) 32.4257 1.29496
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 21.5809 0.859121 0.429561 0.903038i \(-0.358668\pi\)
0.429561 + 0.903038i \(0.358668\pi\)
\(632\) 0 0
\(633\) 46.6759 1.85520
\(634\) 0 0
\(635\) − 53.1721i − 2.11007i
\(636\) 0 0
\(637\) −18.2235 −0.722043
\(638\) 0 0
\(639\) 15.9511i 0.631014i
\(640\) 0 0
\(641\) − 44.1031i − 1.74197i −0.491310 0.870985i \(-0.663482\pi\)
0.491310 0.870985i \(-0.336518\pi\)
\(642\) 0 0
\(643\) − 19.1552i − 0.755406i −0.925927 0.377703i \(-0.876714\pi\)
0.925927 0.377703i \(-0.123286\pi\)
\(644\) 0 0
\(645\) −19.9910 −0.787143
\(646\) 0 0
\(647\) 0.248644 0.00977521 0.00488761 0.999988i \(-0.498444\pi\)
0.00488761 + 0.999988i \(0.498444\pi\)
\(648\) 0 0
\(649\) 22.6133i 0.887650i
\(650\) 0 0
\(651\) − 28.7757i − 1.12781i
\(652\) 0 0
\(653\) 23.4225i 0.916592i 0.888800 + 0.458296i \(0.151540\pi\)
−0.888800 + 0.458296i \(0.848460\pi\)
\(654\) 0 0
\(655\) −4.47939 −0.175024
\(656\) 0 0
\(657\) 1.59727i 0.0623154i
\(658\) 0 0
\(659\) −44.0140 −1.71454 −0.857271 0.514865i \(-0.827842\pi\)
−0.857271 + 0.514865i \(0.827842\pi\)
\(660\) 0 0
\(661\) 51.2354 1.99283 0.996414 0.0846129i \(-0.0269654\pi\)
0.996414 + 0.0846129i \(0.0269654\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −26.7963 −1.03912
\(666\) 0 0
\(667\) −1.98715 −0.0769426
\(668\) 0 0
\(669\) − 16.1454i − 0.624218i
\(670\) 0 0
\(671\) 20.7811 0.802244
\(672\) 0 0
\(673\) − 17.6970i − 0.682170i −0.940032 0.341085i \(-0.889206\pi\)
0.940032 0.341085i \(-0.110794\pi\)
\(674\) 0 0
\(675\) − 48.9922i − 1.88571i
\(676\) 0 0
\(677\) − 40.6685i − 1.56302i −0.623895 0.781508i \(-0.714451\pi\)
0.623895 0.781508i \(-0.285549\pi\)
\(678\) 0 0
\(679\) −10.9739 −0.421140
\(680\) 0 0
\(681\) 49.7138 1.90504
\(682\) 0 0
\(683\) − 7.35573i − 0.281459i −0.990048 0.140730i \(-0.955055\pi\)
0.990048 0.140730i \(-0.0449448\pi\)
\(684\) 0 0
\(685\) − 21.6199i − 0.826053i
\(686\) 0 0
\(687\) 13.0238i 0.496890i
\(688\) 0 0
\(689\) 57.0851 2.17477
\(690\) 0 0
\(691\) − 8.82190i − 0.335601i −0.985821 0.167800i \(-0.946334\pi\)
0.985821 0.167800i \(-0.0536664\pi\)
\(692\) 0 0
\(693\) 9.42840 0.358155
\(694\) 0 0
\(695\) −92.4139 −3.50546
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −6.04484 −0.228637
\(700\) 0 0
\(701\) −35.1943 −1.32927 −0.664636 0.747168i \(-0.731413\pi\)
−0.664636 + 0.747168i \(0.731413\pi\)
\(702\) 0 0
\(703\) − 8.07221i − 0.304449i
\(704\) 0 0
\(705\) −11.8189 −0.445125
\(706\) 0 0
\(707\) 19.9563i 0.750532i
\(708\) 0 0
\(709\) 23.1526i 0.869515i 0.900547 + 0.434758i \(0.143166\pi\)
−0.900547 + 0.434758i \(0.856834\pi\)
\(710\) 0 0
\(711\) 0.318208i 0.0119337i
\(712\) 0 0
\(713\) 30.6294 1.14708
\(714\) 0 0
\(715\) 85.5388 3.19897
\(716\) 0 0
\(717\) 44.6883i 1.66892i
\(718\) 0 0
\(719\) 12.9885i 0.484391i 0.970228 + 0.242195i \(0.0778675\pi\)
−0.970228 + 0.242195i \(0.922133\pi\)
\(720\) 0 0
\(721\) 1.37857i 0.0513405i
\(722\) 0 0
\(723\) −21.1346 −0.786003
\(724\) 0 0
\(725\) − 7.11089i − 0.264092i
\(726\) 0 0
\(727\) 47.1886 1.75013 0.875065 0.484005i \(-0.160818\pi\)
0.875065 + 0.484005i \(0.160818\pi\)
\(728\) 0 0
\(729\) −8.36906 −0.309965
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −42.3967 −1.56596 −0.782979 0.622048i \(-0.786301\pi\)
−0.782979 + 0.622048i \(0.786301\pi\)
\(734\) 0 0
\(735\) 35.6429 1.31471
\(736\) 0 0
\(737\) 22.3209i 0.822202i
\(738\) 0 0
\(739\) −42.3605 −1.55826 −0.779128 0.626865i \(-0.784338\pi\)
−0.779128 + 0.626865i \(0.784338\pi\)
\(740\) 0 0
\(741\) − 33.6762i − 1.23712i
\(742\) 0 0
\(743\) − 44.7922i − 1.64327i −0.570017 0.821633i \(-0.693063\pi\)
0.570017 0.821633i \(-0.306937\pi\)
\(744\) 0 0
\(745\) − 1.42826i − 0.0523273i
\(746\) 0 0
\(747\) 6.92888 0.253514
\(748\) 0 0
\(749\) 5.86692 0.214373
\(750\) 0 0
\(751\) − 26.5191i − 0.967695i −0.875152 0.483848i \(-0.839239\pi\)
0.875152 0.483848i \(-0.160761\pi\)
\(752\) 0 0
\(753\) 22.9522i 0.836424i
\(754\) 0 0
\(755\) − 81.7984i − 2.97695i
\(756\) 0 0
\(757\) 8.89891 0.323436 0.161718 0.986837i \(-0.448296\pi\)
0.161718 + 0.986837i \(0.448296\pi\)
\(758\) 0 0
\(759\) 34.1625i 1.24002i
\(760\) 0 0
\(761\) 21.0320 0.762411 0.381205 0.924490i \(-0.375509\pi\)
0.381205 + 0.924490i \(0.375509\pi\)
\(762\) 0 0
\(763\) −8.39161 −0.303797
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.4854 0.848007
\(768\) 0 0
\(769\) 29.9495 1.08001 0.540003 0.841663i \(-0.318423\pi\)
0.540003 + 0.841663i \(0.318423\pi\)
\(770\) 0 0
\(771\) − 7.20285i − 0.259404i
\(772\) 0 0
\(773\) −22.8927 −0.823391 −0.411696 0.911321i \(-0.635063\pi\)
−0.411696 + 0.911321i \(0.635063\pi\)
\(774\) 0 0
\(775\) 109.606i 3.93715i
\(776\) 0 0
\(777\) − 7.98989i − 0.286636i
\(778\) 0 0
\(779\) 27.5291i 0.986331i
\(780\) 0 0
\(781\) −55.8853 −1.99973
\(782\) 0 0
\(783\) −1.89277 −0.0676420
\(784\) 0 0
\(785\) − 33.4416i − 1.19358i
\(786\) 0 0
\(787\) − 20.0028i − 0.713025i −0.934291 0.356512i \(-0.883966\pi\)
0.934291 0.356512i \(-0.116034\pi\)
\(788\) 0 0
\(789\) − 39.9360i − 1.42176i
\(790\) 0 0
\(791\) 26.3883 0.938259
\(792\) 0 0
\(793\) − 21.5825i − 0.766416i
\(794\) 0 0
\(795\) −111.651 −3.95986
\(796\) 0 0
\(797\) −2.69761 −0.0955544 −0.0477772 0.998858i \(-0.515214\pi\)
−0.0477772 + 0.998858i \(0.515214\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0.399026 0.0140989
\(802\) 0 0
\(803\) −5.59611 −0.197482
\(804\) 0 0
\(805\) − 28.2315i − 0.995031i
\(806\) 0 0
\(807\) −12.6680 −0.445936
\(808\) 0 0
\(809\) − 35.6394i − 1.25302i −0.779415 0.626508i \(-0.784484\pi\)
0.779415 0.626508i \(-0.215516\pi\)
\(810\) 0 0
\(811\) 47.4491i 1.66616i 0.553150 + 0.833082i \(0.313426\pi\)
−0.553150 + 0.833082i \(0.686574\pi\)
\(812\) 0 0
\(813\) − 14.9428i − 0.524068i
\(814\) 0 0
\(815\) 67.2017 2.35397
\(816\) 0 0
\(817\) −8.10031 −0.283394
\(818\) 0 0
\(819\) − 9.79199i − 0.342160i
\(820\) 0 0
\(821\) 8.29133i 0.289370i 0.989478 + 0.144685i \(0.0462168\pi\)
−0.989478 + 0.144685i \(0.953783\pi\)
\(822\) 0 0
\(823\) 0.376105i 0.0131102i 0.999979 + 0.00655510i \(0.00208657\pi\)
−0.999979 + 0.00655510i \(0.997913\pi\)
\(824\) 0 0
\(825\) −122.249 −4.25615
\(826\) 0 0
\(827\) − 37.7588i − 1.31300i −0.754325 0.656501i \(-0.772036\pi\)
0.754325 0.656501i \(-0.227964\pi\)
\(828\) 0 0
\(829\) 7.52348 0.261301 0.130651 0.991428i \(-0.458293\pi\)
0.130651 + 0.991428i \(0.458293\pi\)
\(830\) 0 0
\(831\) 18.6165 0.645800
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −86.5682 −2.99582
\(836\) 0 0
\(837\) 29.1747 1.00842
\(838\) 0 0
\(839\) − 3.51515i − 0.121356i −0.998157 0.0606782i \(-0.980674\pi\)
0.998157 0.0606782i \(-0.0193263\pi\)
\(840\) 0 0
\(841\) 28.7253 0.990527
\(842\) 0 0
\(843\) − 33.6746i − 1.15981i
\(844\) 0 0
\(845\) − 32.8215i − 1.12910i
\(846\) 0 0
\(847\) 14.0231i 0.481838i
\(848\) 0 0
\(849\) −37.8351 −1.29850
\(850\) 0 0
\(851\) 8.50457 0.291533
\(852\) 0 0
\(853\) − 30.3585i − 1.03945i −0.854332 0.519727i \(-0.826034\pi\)
0.854332 0.519727i \(-0.173966\pi\)
\(854\) 0 0
\(855\) 19.3492i 0.661729i
\(856\) 0 0
\(857\) − 9.81494i − 0.335272i −0.985849 0.167636i \(-0.946387\pi\)
0.985849 0.167636i \(-0.0536133\pi\)
\(858\) 0 0
\(859\) 57.8752 1.97468 0.987339 0.158627i \(-0.0507067\pi\)
0.987339 + 0.158627i \(0.0507067\pi\)
\(860\) 0 0
\(861\) 27.2483i 0.928620i
\(862\) 0 0
\(863\) −25.3357 −0.862439 −0.431219 0.902247i \(-0.641916\pi\)
−0.431219 + 0.902247i \(0.641916\pi\)
\(864\) 0 0
\(865\) 26.0643 0.886212
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.11486 −0.0378189
\(870\) 0 0
\(871\) 23.1817 0.785482
\(872\) 0 0
\(873\) 7.92411i 0.268190i
\(874\) 0 0
\(875\) 63.7926 2.15658
\(876\) 0 0
\(877\) − 22.2380i − 0.750923i −0.926838 0.375461i \(-0.877484\pi\)
0.926838 0.375461i \(-0.122516\pi\)
\(878\) 0 0
\(879\) 13.3792i 0.451270i
\(880\) 0 0
\(881\) − 4.30054i − 0.144889i −0.997372 0.0724445i \(-0.976920\pi\)
0.997372 0.0724445i \(-0.0230800\pi\)
\(882\) 0 0
\(883\) 49.5321 1.66689 0.833444 0.552603i \(-0.186366\pi\)
0.833444 + 0.552603i \(0.186366\pi\)
\(884\) 0 0
\(885\) −45.9344 −1.54407
\(886\) 0 0
\(887\) 2.87025i 0.0963735i 0.998838 + 0.0481868i \(0.0153443\pi\)
−0.998838 + 0.0481868i \(0.984656\pi\)
\(888\) 0 0
\(889\) − 21.3255i − 0.715236i
\(890\) 0 0
\(891\) 48.9072i 1.63845i
\(892\) 0 0
\(893\) −4.78900 −0.160258
\(894\) 0 0
\(895\) 79.3091i 2.65101i
\(896\) 0 0
\(897\) 35.4799 1.18464
\(898\) 0 0
\(899\) 4.23451 0.141229
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −8.01769 −0.266812
\(904\) 0 0
\(905\) −95.6508 −3.17954
\(906\) 0 0
\(907\) − 11.1662i − 0.370767i −0.982666 0.185383i \(-0.940647\pi\)
0.982666 0.185383i \(-0.0593527\pi\)
\(908\) 0 0
\(909\) 14.4101 0.477954
\(910\) 0 0
\(911\) − 6.43009i − 0.213038i −0.994311 0.106519i \(-0.966029\pi\)
0.994311 0.106519i \(-0.0339706\pi\)
\(912\) 0 0
\(913\) 24.2757i 0.803407i
\(914\) 0 0
\(915\) 42.2125i 1.39550i
\(916\) 0 0
\(917\) −1.79653 −0.0593267
\(918\) 0 0
\(919\) −15.7732 −0.520308 −0.260154 0.965567i \(-0.583773\pi\)
−0.260154 + 0.965567i \(0.583773\pi\)
\(920\) 0 0
\(921\) 15.4274i 0.508351i
\(922\) 0 0
\(923\) 58.0404i 1.91042i
\(924\) 0 0
\(925\) 30.4332i 1.00064i
\(926\) 0 0
\(927\) 0.995443 0.0326946
\(928\) 0 0
\(929\) 26.7689i 0.878260i 0.898423 + 0.439130i \(0.144713\pi\)
−0.898423 + 0.439130i \(0.855287\pi\)
\(930\) 0 0
\(931\) 14.4425 0.473333
\(932\) 0 0
\(933\) −3.76816 −0.123364
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 54.2504 1.77228 0.886142 0.463414i \(-0.153376\pi\)
0.886142 + 0.463414i \(0.153376\pi\)
\(938\) 0 0
\(939\) −44.0998 −1.43914
\(940\) 0 0
\(941\) 42.1735i 1.37482i 0.726272 + 0.687408i \(0.241251\pi\)
−0.726272 + 0.687408i \(0.758749\pi\)
\(942\) 0 0
\(943\) −29.0036 −0.944486
\(944\) 0 0
\(945\) − 26.8907i − 0.874755i
\(946\) 0 0
\(947\) − 0.685721i − 0.0222829i −0.999938 0.0111415i \(-0.996453\pi\)
0.999938 0.0111415i \(-0.00354651\pi\)
\(948\) 0 0
\(949\) 5.81191i 0.188663i
\(950\) 0 0
\(951\) 63.1784 2.04870
\(952\) 0 0
\(953\) −49.5946 −1.60653 −0.803263 0.595625i \(-0.796904\pi\)
−0.803263 + 0.595625i \(0.796904\pi\)
\(954\) 0 0
\(955\) − 53.6858i − 1.73723i
\(956\) 0 0
\(957\) 4.72296i 0.152672i
\(958\) 0 0
\(959\) − 8.67100i − 0.280001i
\(960\) 0 0
\(961\) −34.2697 −1.10548
\(962\) 0 0
\(963\) − 4.23642i − 0.136517i
\(964\) 0 0
\(965\) −18.8828 −0.607858
\(966\) 0 0
\(967\) 34.9795 1.12487 0.562433 0.826843i \(-0.309865\pi\)
0.562433 + 0.826843i \(0.309865\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 43.2937 1.38936 0.694681 0.719318i \(-0.255546\pi\)
0.694681 + 0.719318i \(0.255546\pi\)
\(972\) 0 0
\(973\) −37.0641 −1.18822
\(974\) 0 0
\(975\) 126.963i 4.06607i
\(976\) 0 0
\(977\) 53.5695 1.71384 0.856920 0.515449i \(-0.172375\pi\)
0.856920 + 0.515449i \(0.172375\pi\)
\(978\) 0 0
\(979\) 1.39801i 0.0446805i
\(980\) 0 0
\(981\) 6.05946i 0.193464i
\(982\) 0 0
\(983\) − 0.928232i − 0.0296060i −0.999890 0.0148030i \(-0.995288\pi\)
0.999890 0.0148030i \(-0.00471211\pi\)
\(984\) 0 0
\(985\) −79.2344 −2.52462
\(986\) 0 0
\(987\) −4.74015 −0.150881
\(988\) 0 0
\(989\) − 8.53417i − 0.271371i
\(990\) 0 0
\(991\) − 29.2729i − 0.929885i −0.885341 0.464943i \(-0.846075\pi\)
0.885341 0.464943i \(-0.153925\pi\)
\(992\) 0 0
\(993\) 31.8826i 1.01176i
\(994\) 0 0
\(995\) 46.9484 1.48836
\(996\) 0 0
\(997\) 42.2269i 1.33734i 0.743560 + 0.668669i \(0.233136\pi\)
−0.743560 + 0.668669i \(0.766864\pi\)
\(998\) 0 0
\(999\) 8.10066 0.256293
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.b.o.577.11 12
17.4 even 4 2312.2.a.u.1.6 6
17.13 even 4 2312.2.a.v.1.1 yes 6
17.16 even 2 inner 2312.2.b.o.577.2 12
68.47 odd 4 4624.2.a.bs.1.6 6
68.55 odd 4 4624.2.a.br.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.u.1.6 6 17.4 even 4
2312.2.a.v.1.1 yes 6 17.13 even 4
2312.2.b.o.577.2 12 17.16 even 2 inner
2312.2.b.o.577.11 12 1.1 even 1 trivial
4624.2.a.br.1.1 6 68.55 odd 4
4624.2.a.bs.1.6 6 68.47 odd 4