Properties

Label 2-2312-1.1-c1-0-56
Degree $2$
Conductor $2312$
Sign $-1$
Analytic cond. $18.4614$
Root an. cond. $4.29667$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.06·3-s − 4.30·5-s + 1.72·7-s + 1.24·9-s + 4.37·11-s − 4.54·13-s − 8.88·15-s − 3.59·19-s + 3.56·21-s − 3.79·23-s + 13.5·25-s − 3.61·27-s + 0.524·29-s − 8.07·31-s + 9.01·33-s − 7.44·35-s − 2.24·37-s − 9.35·39-s − 7.65·41-s + 2.25·43-s − 5.37·45-s − 1.33·47-s − 4.01·49-s + 12.5·53-s − 18.8·55-s − 7.41·57-s + 5.17·59-s + ⋯
L(s)  = 1  + 1.18·3-s − 1.92·5-s + 0.653·7-s + 0.415·9-s + 1.31·11-s − 1.25·13-s − 2.29·15-s − 0.825·19-s + 0.777·21-s − 0.790·23-s + 2.71·25-s − 0.694·27-s + 0.0973·29-s − 1.45·31-s + 1.56·33-s − 1.25·35-s − 0.368·37-s − 1.49·39-s − 1.19·41-s + 0.343·43-s − 0.801·45-s − 0.194·47-s − 0.573·49-s + 1.72·53-s − 2.54·55-s − 0.982·57-s + 0.673·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2312\)    =    \(2^{3} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(18.4614\)
Root analytic conductor: \(4.29667\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 2.06T + 3T^{2} \)
5 \( 1 + 4.30T + 5T^{2} \)
7 \( 1 - 1.72T + 7T^{2} \)
11 \( 1 - 4.37T + 11T^{2} \)
13 \( 1 + 4.54T + 13T^{2} \)
19 \( 1 + 3.59T + 19T^{2} \)
23 \( 1 + 3.79T + 23T^{2} \)
29 \( 1 - 0.524T + 29T^{2} \)
31 \( 1 + 8.07T + 31T^{2} \)
37 \( 1 + 2.24T + 37T^{2} \)
41 \( 1 + 7.65T + 41T^{2} \)
43 \( 1 - 2.25T + 43T^{2} \)
47 \( 1 + 1.33T + 47T^{2} \)
53 \( 1 - 12.5T + 53T^{2} \)
59 \( 1 - 5.17T + 59T^{2} \)
61 \( 1 + 4.75T + 61T^{2} \)
67 \( 1 + 5.10T + 67T^{2} \)
71 \( 1 + 12.7T + 71T^{2} \)
73 \( 1 + 1.27T + 73T^{2} \)
79 \( 1 - 0.254T + 79T^{2} \)
83 \( 1 - 5.55T + 83T^{2} \)
89 \( 1 + 0.319T + 89T^{2} \)
97 \( 1 + 6.35T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.689211944887846131219500952397, −7.82498674564057730880113886613, −7.42454299887001941975714601317, −6.65117832654923771195443155062, −5.16708306871987119543500293178, −4.14900495616819107987452149138, −3.86431537755821520782565674489, −2.86933436892113972060670066697, −1.73538439103182756789332786346, 0, 1.73538439103182756789332786346, 2.86933436892113972060670066697, 3.86431537755821520782565674489, 4.14900495616819107987452149138, 5.16708306871987119543500293178, 6.65117832654923771195443155062, 7.42454299887001941975714601317, 7.82498674564057730880113886613, 8.689211944887846131219500952397

Graph of the $Z$-function along the critical line