Properties

Label 230.6.b.a.139.23
Level $230$
Weight $6$
Character 230.139
Analytic conductor $36.888$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [230,6,Mod(139,230)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("230.139"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(230, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 230.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8882785570\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.23
Character \(\chi\) \(=\) 230.139
Dual form 230.6.b.a.139.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} +13.9839i q^{3} -16.0000 q^{4} +(-7.76744 + 55.3594i) q^{5} -55.9357 q^{6} +114.735i q^{7} -64.0000i q^{8} +47.4501 q^{9} +(-221.438 - 31.0698i) q^{10} -208.757 q^{11} -223.743i q^{12} +757.151i q^{13} -458.938 q^{14} +(-774.142 - 108.619i) q^{15} +256.000 q^{16} +1028.75i q^{17} +189.800i q^{18} -1923.29 q^{19} +(124.279 - 885.751i) q^{20} -1604.44 q^{21} -835.026i q^{22} +529.000i q^{23} +894.971 q^{24} +(-3004.33 - 860.003i) q^{25} -3028.60 q^{26} +4061.63i q^{27} -1835.75i q^{28} +4599.22 q^{29} +(434.477 - 3096.57i) q^{30} +6063.57 q^{31} +1024.00i q^{32} -2919.23i q^{33} -4115.01 q^{34} +(-6351.64 - 891.194i) q^{35} -759.201 q^{36} -10846.8i q^{37} -7693.15i q^{38} -10587.9 q^{39} +(3543.00 + 497.116i) q^{40} -3496.19 q^{41} -6417.75i q^{42} +6231.87i q^{43} +3340.11 q^{44} +(-368.566 + 2626.81i) q^{45} -2116.00 q^{46} +3096.80i q^{47} +3579.88i q^{48} +3642.99 q^{49} +(3440.01 - 12017.3i) q^{50} -14386.0 q^{51} -12114.4i q^{52} -10267.9i q^{53} -16246.5 q^{54} +(1621.51 - 11556.6i) q^{55} +7343.01 q^{56} -26895.1i q^{57} +18396.9i q^{58} -5297.34 q^{59} +(12386.3 + 1737.91i) q^{60} +54433.0 q^{61} +24254.3i q^{62} +5444.16i q^{63} -4096.00 q^{64} +(-41915.5 - 5881.13i) q^{65} +11676.9 q^{66} -39973.0i q^{67} -16460.0i q^{68} -7397.49 q^{69} +(3564.78 - 25406.6i) q^{70} -4371.19 q^{71} -3036.80i q^{72} +25765.2i q^{73} +43387.2 q^{74} +(12026.2 - 42012.4i) q^{75} +30772.6 q^{76} -23951.6i q^{77} -42351.8i q^{78} +44456.9 q^{79} +(-1988.47 + 14172.0i) q^{80} -45267.1 q^{81} -13984.7i q^{82} -102141. i q^{83} +25671.0 q^{84} +(-56951.1 - 7990.77i) q^{85} -24927.5 q^{86} +64315.1i q^{87} +13360.4i q^{88} +113318. q^{89} +(-10507.2 - 1474.26i) q^{90} -86871.4 q^{91} -8464.00i q^{92} +84792.4i q^{93} -12387.2 q^{94} +(14939.0 - 106472. i) q^{95} -14319.5 q^{96} -10460.6i q^{97} +14571.9i q^{98} -9905.51 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q - 416 q^{4} - 30 q^{5} - 72 q^{6} - 1400 q^{9} + 80 q^{10} - 1314 q^{11} + 808 q^{14} + 1280 q^{15} + 6656 q^{16} + 6630 q^{19} + 480 q^{20} - 10060 q^{21} + 1152 q^{24} - 10470 q^{25} - 376 q^{26}+ \cdots + 523850 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 13.9839i 0.897069i 0.893766 + 0.448534i \(0.148054\pi\)
−0.893766 + 0.448534i \(0.851946\pi\)
\(4\) −16.0000 −0.500000
\(5\) −7.76744 + 55.3594i −0.138948 + 0.990300i
\(6\) −55.9357 −0.634323
\(7\) 114.735i 0.885012i 0.896766 + 0.442506i \(0.145910\pi\)
−0.896766 + 0.442506i \(0.854090\pi\)
\(8\) 64.0000i 0.353553i
\(9\) 47.4501 0.195268
\(10\) −221.438 31.0698i −0.700248 0.0982513i
\(11\) −208.757 −0.520186 −0.260093 0.965584i \(-0.583753\pi\)
−0.260093 + 0.965584i \(0.583753\pi\)
\(12\) 223.743i 0.448534i
\(13\) 757.151i 1.24258i 0.783581 + 0.621290i \(0.213391\pi\)
−0.783581 + 0.621290i \(0.786609\pi\)
\(14\) −458.938 −0.625798
\(15\) −774.142 108.619i −0.888367 0.124646i
\(16\) 256.000 0.250000
\(17\) 1028.75i 0.863353i 0.902028 + 0.431677i \(0.142078\pi\)
−0.902028 + 0.431677i \(0.857922\pi\)
\(18\) 189.800i 0.138075i
\(19\) −1923.29 −1.22225 −0.611126 0.791534i \(-0.709283\pi\)
−0.611126 + 0.791534i \(0.709283\pi\)
\(20\) 124.279 885.751i 0.0694741 0.495150i
\(21\) −1604.44 −0.793916
\(22\) 835.026i 0.367827i
\(23\) 529.000i 0.208514i
\(24\) 894.971 0.317162
\(25\) −3004.33 860.003i −0.961387 0.275201i
\(26\) −3028.60 −0.878636
\(27\) 4061.63i 1.07224i
\(28\) 1835.75i 0.442506i
\(29\) 4599.22 1.01552 0.507761 0.861498i \(-0.330473\pi\)
0.507761 + 0.861498i \(0.330473\pi\)
\(30\) 434.477 3096.57i 0.0881381 0.628170i
\(31\) 6063.57 1.13325 0.566623 0.823977i \(-0.308250\pi\)
0.566623 + 0.823977i \(0.308250\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 2919.23i 0.466642i
\(34\) −4115.01 −0.610483
\(35\) −6351.64 891.194i −0.876427 0.122971i
\(36\) −759.201 −0.0976339
\(37\) 10846.8i 1.30256i −0.758839 0.651279i \(-0.774233\pi\)
0.758839 0.651279i \(-0.225767\pi\)
\(38\) 7693.15i 0.864262i
\(39\) −10587.9 −1.11468
\(40\) 3543.00 + 497.116i 0.350124 + 0.0491256i
\(41\) −3496.19 −0.324814 −0.162407 0.986724i \(-0.551926\pi\)
−0.162407 + 0.986724i \(0.551926\pi\)
\(42\) 6417.75i 0.561384i
\(43\) 6231.87i 0.513982i 0.966414 + 0.256991i \(0.0827310\pi\)
−0.966414 + 0.256991i \(0.917269\pi\)
\(44\) 3340.11 0.260093
\(45\) −368.566 + 2626.81i −0.0271321 + 0.193374i
\(46\) −2116.00 −0.147442
\(47\) 3096.80i 0.204488i 0.994759 + 0.102244i \(0.0326023\pi\)
−0.994759 + 0.102244i \(0.967398\pi\)
\(48\) 3579.88i 0.224267i
\(49\) 3642.99 0.216754
\(50\) 3440.01 12017.3i 0.194596 0.679803i
\(51\) −14386.0 −0.774487
\(52\) 12114.4i 0.621290i
\(53\) 10267.9i 0.502102i −0.967974 0.251051i \(-0.919224\pi\)
0.967974 0.251051i \(-0.0807762\pi\)
\(54\) −16246.5 −0.758186
\(55\) 1621.51 11556.6i 0.0722789 0.515140i
\(56\) 7343.01 0.312899
\(57\) 26895.1i 1.09644i
\(58\) 18396.9i 0.718082i
\(59\) −5297.34 −0.198120 −0.0990599 0.995081i \(-0.531584\pi\)
−0.0990599 + 0.995081i \(0.531584\pi\)
\(60\) 12386.3 + 1737.91i 0.444183 + 0.0623231i
\(61\) 54433.0 1.87300 0.936500 0.350667i \(-0.114045\pi\)
0.936500 + 0.350667i \(0.114045\pi\)
\(62\) 24254.3i 0.801326i
\(63\) 5444.16i 0.172814i
\(64\) −4096.00 −0.125000
\(65\) −41915.5 5881.13i −1.23053 0.172654i
\(66\) 11676.9 0.329966
\(67\) 39973.0i 1.08788i −0.839125 0.543938i \(-0.816933\pi\)
0.839125 0.543938i \(-0.183067\pi\)
\(68\) 16460.0i 0.431677i
\(69\) −7397.49 −0.187052
\(70\) 3564.78 25406.6i 0.0869535 0.619727i
\(71\) −4371.19 −0.102909 −0.0514546 0.998675i \(-0.516386\pi\)
−0.0514546 + 0.998675i \(0.516386\pi\)
\(72\) 3036.80i 0.0690376i
\(73\) 25765.2i 0.565882i 0.959137 + 0.282941i \(0.0913101\pi\)
−0.959137 + 0.282941i \(0.908690\pi\)
\(74\) 43387.2 0.921047
\(75\) 12026.2 42012.4i 0.246874 0.862430i
\(76\) 30772.6 0.611126
\(77\) 23951.6i 0.460371i
\(78\) 42351.8i 0.788197i
\(79\) 44456.9 0.801441 0.400721 0.916200i \(-0.368760\pi\)
0.400721 + 0.916200i \(0.368760\pi\)
\(80\) −1988.47 + 14172.0i −0.0347371 + 0.247575i
\(81\) −45267.1 −0.766603
\(82\) 13984.7i 0.229678i
\(83\) 102141.i 1.62743i −0.581261 0.813717i \(-0.697440\pi\)
0.581261 0.813717i \(-0.302560\pi\)
\(84\) 25671.0 0.396958
\(85\) −56951.1 7990.77i −0.854978 0.119961i
\(86\) −24927.5 −0.363440
\(87\) 64315.1i 0.910993i
\(88\) 13360.4i 0.183913i
\(89\) 113318. 1.51643 0.758215 0.652005i \(-0.226072\pi\)
0.758215 + 0.652005i \(0.226072\pi\)
\(90\) −10507.2 1474.26i −0.136736 0.0191853i
\(91\) −86871.4 −1.09970
\(92\) 8464.00i 0.104257i
\(93\) 84792.4i 1.01660i
\(94\) −12387.2 −0.144595
\(95\) 14939.0 106472.i 0.169830 1.21039i
\(96\) −14319.5 −0.158581
\(97\) 10460.6i 0.112882i −0.998406 0.0564411i \(-0.982025\pi\)
0.998406 0.0564411i \(-0.0179753\pi\)
\(98\) 14571.9i 0.153268i
\(99\) −9905.51 −0.101576
\(100\) 48069.3 + 13760.0i 0.480693 + 0.137600i
\(101\) −125463. −1.22381 −0.611904 0.790932i \(-0.709596\pi\)
−0.611904 + 0.790932i \(0.709596\pi\)
\(102\) 57543.9i 0.547645i
\(103\) 141707.i 1.31613i −0.752961 0.658065i \(-0.771375\pi\)
0.752961 0.658065i \(-0.228625\pi\)
\(104\) 48457.7 0.439318
\(105\) 12462.4 88820.8i 0.110313 0.786215i
\(106\) 41071.6 0.355040
\(107\) 136989.i 1.15671i 0.815785 + 0.578356i \(0.196305\pi\)
−0.815785 + 0.578356i \(0.803695\pi\)
\(108\) 64986.1i 0.536119i
\(109\) −120603. −0.972283 −0.486141 0.873880i \(-0.661596\pi\)
−0.486141 + 0.873880i \(0.661596\pi\)
\(110\) 46226.6 + 6486.02i 0.364259 + 0.0511089i
\(111\) 151681. 1.16848
\(112\) 29372.0i 0.221253i
\(113\) 217455.i 1.60204i 0.598637 + 0.801021i \(0.295709\pi\)
−0.598637 + 0.801021i \(0.704291\pi\)
\(114\) 107580. 0.775302
\(115\) −29285.1 4108.98i −0.206492 0.0289727i
\(116\) −73587.5 −0.507761
\(117\) 35926.9i 0.242636i
\(118\) 21189.4i 0.140092i
\(119\) −118033. −0.764078
\(120\) −6951.63 + 49545.1i −0.0440691 + 0.314085i
\(121\) −117472. −0.729407
\(122\) 217732.i 1.32441i
\(123\) 48890.4i 0.291381i
\(124\) −97017.1 −0.566623
\(125\) 70945.3 159638.i 0.406114 0.913822i
\(126\) −21776.6 −0.122198
\(127\) 151854.i 0.835444i 0.908575 + 0.417722i \(0.137171\pi\)
−0.908575 + 0.417722i \(0.862829\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −87146.0 −0.461077
\(130\) 23524.5 167662.i 0.122085 0.870113i
\(131\) 27895.6 0.142023 0.0710114 0.997476i \(-0.477377\pi\)
0.0710114 + 0.997476i \(0.477377\pi\)
\(132\) 46707.8i 0.233321i
\(133\) 220668.i 1.08171i
\(134\) 159892. 0.769245
\(135\) −224850. 31548.5i −1.06184 0.148986i
\(136\) 65840.1 0.305241
\(137\) 107380.i 0.488790i −0.969676 0.244395i \(-0.921411\pi\)
0.969676 0.244395i \(-0.0785893\pi\)
\(138\) 29590.0i 0.132266i
\(139\) −191263. −0.839642 −0.419821 0.907607i \(-0.637907\pi\)
−0.419821 + 0.907607i \(0.637907\pi\)
\(140\) 101626. + 14259.1i 0.438213 + 0.0614854i
\(141\) −43305.4 −0.183440
\(142\) 17484.8i 0.0727678i
\(143\) 158060.i 0.646372i
\(144\) 12147.2 0.0488169
\(145\) −35724.2 + 254610.i −0.141105 + 1.00567i
\(146\) −103061. −0.400139
\(147\) 50943.2i 0.194443i
\(148\) 173549.i 0.651279i
\(149\) 370689. 1.36787 0.683934 0.729544i \(-0.260268\pi\)
0.683934 + 0.729544i \(0.260268\pi\)
\(150\) 168049. + 48104.8i 0.609830 + 0.174566i
\(151\) −292983. −1.04568 −0.522841 0.852430i \(-0.675128\pi\)
−0.522841 + 0.852430i \(0.675128\pi\)
\(152\) 123090.i 0.432131i
\(153\) 48814.4i 0.168585i
\(154\) 95806.4 0.325531
\(155\) −47098.4 + 335676.i −0.157463 + 1.12225i
\(156\) 169407. 0.557340
\(157\) 380286.i 1.23129i 0.788023 + 0.615646i \(0.211105\pi\)
−0.788023 + 0.615646i \(0.788895\pi\)
\(158\) 177828.i 0.566705i
\(159\) 143585. 0.450420
\(160\) −56688.1 7953.86i −0.175062 0.0245628i
\(161\) −60694.6 −0.184538
\(162\) 181068.i 0.542070i
\(163\) 515812.i 1.52062i 0.649558 + 0.760312i \(0.274954\pi\)
−0.649558 + 0.760312i \(0.725046\pi\)
\(164\) 55939.0 0.162407
\(165\) 161607. + 22675.0i 0.462116 + 0.0648392i
\(166\) 408563. 1.15077
\(167\) 376329.i 1.04418i 0.852890 + 0.522091i \(0.174848\pi\)
−0.852890 + 0.522091i \(0.825152\pi\)
\(168\) 102684.i 0.280692i
\(169\) −201985. −0.544004
\(170\) 31963.1 227805.i 0.0848255 0.604561i
\(171\) −91260.2 −0.238666
\(172\) 99710.0i 0.256991i
\(173\) 20689.1i 0.0525564i 0.999655 + 0.0262782i \(0.00836558\pi\)
−0.999655 + 0.0262782i \(0.991634\pi\)
\(174\) −257260. −0.644169
\(175\) 98672.0 344701.i 0.243556 0.850839i
\(176\) −53441.7 −0.130046
\(177\) 74077.6i 0.177727i
\(178\) 453270.i 1.07228i
\(179\) 334571. 0.780470 0.390235 0.920715i \(-0.372394\pi\)
0.390235 + 0.920715i \(0.372394\pi\)
\(180\) 5897.05 42028.9i 0.0135661 0.0966868i
\(181\) −725066. −1.64506 −0.822529 0.568723i \(-0.807438\pi\)
−0.822529 + 0.568723i \(0.807438\pi\)
\(182\) 347486.i 0.777604i
\(183\) 761187.i 1.68021i
\(184\) 33856.0 0.0737210
\(185\) 600472. + 84251.8i 1.28992 + 0.180988i
\(186\) −339170. −0.718844
\(187\) 214759.i 0.449104i
\(188\) 49548.8i 0.102244i
\(189\) −466009. −0.948943
\(190\) 425889. + 59756.1i 0.855878 + 0.120088i
\(191\) −443518. −0.879687 −0.439844 0.898074i \(-0.644966\pi\)
−0.439844 + 0.898074i \(0.644966\pi\)
\(192\) 57278.1i 0.112134i
\(193\) 811440.i 1.56806i 0.620721 + 0.784031i \(0.286840\pi\)
−0.620721 + 0.784031i \(0.713160\pi\)
\(194\) 41842.3 0.0798198
\(195\) 82241.2 586142.i 0.154883 1.10387i
\(196\) −58287.8 −0.108377
\(197\) 251172.i 0.461111i −0.973059 0.230555i \(-0.925946\pi\)
0.973059 0.230555i \(-0.0740543\pi\)
\(198\) 39622.1i 0.0718247i
\(199\) 313383. 0.560973 0.280487 0.959858i \(-0.409504\pi\)
0.280487 + 0.959858i \(0.409504\pi\)
\(200\) −55040.2 + 192277.i −0.0972982 + 0.339902i
\(201\) 558979. 0.975900
\(202\) 501853.i 0.865362i
\(203\) 527689.i 0.898748i
\(204\) 230176. 0.387244
\(205\) 27156.4 193547.i 0.0451324 0.321663i
\(206\) 566829. 0.930645
\(207\) 25101.1i 0.0407161i
\(208\) 193831.i 0.310645i
\(209\) 401499. 0.635798
\(210\) 355283. + 49849.5i 0.555938 + 0.0780033i
\(211\) −275717. −0.426341 −0.213170 0.977015i \(-0.568379\pi\)
−0.213170 + 0.977015i \(0.568379\pi\)
\(212\) 164286.i 0.251051i
\(213\) 61126.4i 0.0923166i
\(214\) −547955. −0.817919
\(215\) −344993. 48405.7i −0.508996 0.0714169i
\(216\) 259944. 0.379093
\(217\) 695701.i 1.00294i
\(218\) 482413.i 0.687508i
\(219\) −360298. −0.507635
\(220\) −25944.1 + 184906.i −0.0361395 + 0.257570i
\(221\) −778921. −1.07278
\(222\) 606722.i 0.826243i
\(223\) 67438.0i 0.0908118i −0.998969 0.0454059i \(-0.985542\pi\)
0.998969 0.0454059i \(-0.0144581\pi\)
\(224\) −117488. −0.156449
\(225\) −142556. 40807.2i −0.187728 0.0537379i
\(226\) −869821. −1.13281
\(227\) 1.05463e6i 1.35842i −0.733944 0.679210i \(-0.762323\pi\)
0.733944 0.679210i \(-0.237677\pi\)
\(228\) 430322.i 0.548222i
\(229\) 251989. 0.317535 0.158768 0.987316i \(-0.449248\pi\)
0.158768 + 0.987316i \(0.449248\pi\)
\(230\) 16435.9 117141.i 0.0204868 0.146012i
\(231\) 334937. 0.412984
\(232\) 294350.i 0.359041i
\(233\) 273022.i 0.329464i 0.986338 + 0.164732i \(0.0526760\pi\)
−0.986338 + 0.164732i \(0.947324\pi\)
\(234\) −143708. −0.171569
\(235\) −171437. 24054.2i −0.202505 0.0284133i
\(236\) 84757.5 0.0990599
\(237\) 621682.i 0.718948i
\(238\) 472134.i 0.540284i
\(239\) −578971. −0.655635 −0.327817 0.944741i \(-0.606313\pi\)
−0.327817 + 0.944741i \(0.606313\pi\)
\(240\) −198180. 27806.5i −0.222092 0.0311615i
\(241\) −602684. −0.668417 −0.334208 0.942499i \(-0.608469\pi\)
−0.334208 + 0.942499i \(0.608469\pi\)
\(242\) 469887.i 0.515768i
\(243\) 353964.i 0.384542i
\(244\) −870928. −0.936500
\(245\) −28296.7 + 201674.i −0.0301176 + 0.214652i
\(246\) 195561. 0.206037
\(247\) 1.45622e6i 1.51874i
\(248\) 388068.i 0.400663i
\(249\) 1.42833e6 1.45992
\(250\) 638553. + 283781.i 0.646170 + 0.287166i
\(251\) −407710. −0.408477 −0.204238 0.978921i \(-0.565472\pi\)
−0.204238 + 0.978921i \(0.565472\pi\)
\(252\) 87106.6i 0.0864071i
\(253\) 110432.i 0.108466i
\(254\) −607416. −0.590748
\(255\) 111742. 796400.i 0.107614 0.766974i
\(256\) 65536.0 0.0625000
\(257\) 117364.i 0.110841i 0.998463 + 0.0554205i \(0.0176499\pi\)
−0.998463 + 0.0554205i \(0.982350\pi\)
\(258\) 348584.i 0.326031i
\(259\) 1.24450e6 1.15278
\(260\) 670647. + 94098.1i 0.615263 + 0.0863271i
\(261\) 218233. 0.198299
\(262\) 111583.i 0.100425i
\(263\) 937112.i 0.835414i −0.908582 0.417707i \(-0.862834\pi\)
0.908582 0.417707i \(-0.137166\pi\)
\(264\) −186831. −0.164983
\(265\) 568425. + 79755.3i 0.497231 + 0.0697662i
\(266\) 882670. 0.764882
\(267\) 1.58462e6i 1.36034i
\(268\) 639568.i 0.543938i
\(269\) 1.61988e6 1.36490 0.682451 0.730932i \(-0.260914\pi\)
0.682451 + 0.730932i \(0.260914\pi\)
\(270\) 126194. 899398.i 0.105349 0.750832i
\(271\) −1.28949e6 −1.06659 −0.533293 0.845931i \(-0.679046\pi\)
−0.533293 + 0.845931i \(0.679046\pi\)
\(272\) 263361.i 0.215838i
\(273\) 1.21480e6i 0.986504i
\(274\) 429520. 0.345627
\(275\) 627174. + 179531.i 0.500100 + 0.143156i
\(276\) 118360. 0.0935259
\(277\) 632037.i 0.494929i −0.968897 0.247464i \(-0.920403\pi\)
0.968897 0.247464i \(-0.0795973\pi\)
\(278\) 765052.i 0.593716i
\(279\) 287717. 0.221286
\(280\) −57036.4 + 406505.i −0.0434768 + 0.309864i
\(281\) 417873. 0.315703 0.157851 0.987463i \(-0.449543\pi\)
0.157851 + 0.987463i \(0.449543\pi\)
\(282\) 173221.i 0.129712i
\(283\) 84357.4i 0.0626119i −0.999510 0.0313059i \(-0.990033\pi\)
0.999510 0.0313059i \(-0.00996662\pi\)
\(284\) 69939.1 0.0514546
\(285\) 1.48890e6 + 208906.i 1.08581 + 0.152349i
\(286\) 632241. 0.457054
\(287\) 401133.i 0.287464i
\(288\) 48588.9i 0.0345188i
\(289\) 361526. 0.254621
\(290\) −1.01844e6 142897.i −0.711116 0.0997763i
\(291\) 146280. 0.101263
\(292\) 412243.i 0.282941i
\(293\) 1.15866e6i 0.788474i 0.919009 + 0.394237i \(0.128991\pi\)
−0.919009 + 0.394237i \(0.871009\pi\)
\(294\) −203773. −0.137492
\(295\) 41146.8 293258.i 0.0275284 0.196198i
\(296\) −694195. −0.460524
\(297\) 847892.i 0.557763i
\(298\) 1.48276e6i 0.967229i
\(299\) −400533. −0.259096
\(300\) −192419. + 672198.i −0.123437 + 0.431215i
\(301\) −715011. −0.454880
\(302\) 1.17193e6i 0.739409i
\(303\) 1.75447e6i 1.09784i
\(304\) −492362. −0.305563
\(305\) −422805. + 3.01338e6i −0.260250 + 1.85483i
\(306\) −195257. −0.119208
\(307\) 2.83360e6i 1.71590i −0.513729 0.857952i \(-0.671736\pi\)
0.513729 0.857952i \(-0.328264\pi\)
\(308\) 383225.i 0.230185i
\(309\) 1.98162e6 1.18066
\(310\) −1.34270e6 188394.i −0.793553 0.111343i
\(311\) 508595. 0.298175 0.149087 0.988824i \(-0.452366\pi\)
0.149087 + 0.988824i \(0.452366\pi\)
\(312\) 677628.i 0.394099i
\(313\) 1.07973e6i 0.622949i −0.950255 0.311475i \(-0.899177\pi\)
0.950255 0.311475i \(-0.100823\pi\)
\(314\) −1.52114e6 −0.870655
\(315\) −301386. 42287.2i −0.171138 0.0240122i
\(316\) −711311. −0.400721
\(317\) 3.17514e6i 1.77466i −0.461139 0.887328i \(-0.652559\pi\)
0.461139 0.887328i \(-0.347441\pi\)
\(318\) 574342.i 0.318495i
\(319\) −960117. −0.528260
\(320\) 31815.5 226752.i 0.0173685 0.123787i
\(321\) −1.91564e6 −1.03765
\(322\) 242778.i 0.130488i
\(323\) 1.97859e6i 1.05523i
\(324\) 724274. 0.383301
\(325\) 651152. 2.27473e6i 0.341959 1.19460i
\(326\) −2.06325e6 −1.07524
\(327\) 1.68650e6i 0.872204i
\(328\) 223756.i 0.114839i
\(329\) −355310. −0.180974
\(330\) −90700.0 + 646429.i −0.0458482 + 0.326765i
\(331\) −3.29231e6 −1.65170 −0.825850 0.563890i \(-0.809304\pi\)
−0.825850 + 0.563890i \(0.809304\pi\)
\(332\) 1.63425e6i 0.813717i
\(333\) 514681.i 0.254348i
\(334\) −1.50532e6 −0.738349
\(335\) 2.21288e6 + 310488.i 1.07732 + 0.151158i
\(336\) −410736. −0.198479
\(337\) 3.44514e6i 1.65246i 0.563330 + 0.826232i \(0.309520\pi\)
−0.563330 + 0.826232i \(0.690480\pi\)
\(338\) 807940.i 0.384669i
\(339\) −3.04088e6 −1.43714
\(340\) 911218. + 127852.i 0.427489 + 0.0599807i
\(341\) −1.26581e6 −0.589498
\(342\) 365041.i 0.168763i
\(343\) 2.34632e6i 1.07684i
\(344\) 398840. 0.181720
\(345\) 57459.6 409521.i 0.0259905 0.185237i
\(346\) −82756.3 −0.0371630
\(347\) 1.26186e6i 0.562586i −0.959622 0.281293i \(-0.909237\pi\)
0.959622 0.281293i \(-0.0907632\pi\)
\(348\) 1.02904e6i 0.455496i
\(349\) 2.59689e6 1.14127 0.570636 0.821203i \(-0.306697\pi\)
0.570636 + 0.821203i \(0.306697\pi\)
\(350\) 1.37880e6 + 394688.i 0.601634 + 0.172220i
\(351\) −3.07527e6 −1.33234
\(352\) 213767.i 0.0919567i
\(353\) 1.24536e6i 0.531932i −0.963982 0.265966i \(-0.914309\pi\)
0.963982 0.265966i \(-0.0856910\pi\)
\(354\) 296310. 0.125672
\(355\) 33953.0 241987.i 0.0142991 0.101911i
\(356\) −1.81308e6 −0.758215
\(357\) 1.65057e6i 0.685430i
\(358\) 1.33829e6i 0.551875i
\(359\) −262815. −0.107625 −0.0538126 0.998551i \(-0.517137\pi\)
−0.0538126 + 0.998551i \(0.517137\pi\)
\(360\) 168116. + 23588.2i 0.0683679 + 0.00959265i
\(361\) 1.22294e6 0.493898
\(362\) 2.90026e6i 1.16323i
\(363\) 1.64271e6i 0.654328i
\(364\) 1.38994e6 0.549849
\(365\) −1.42635e6 200130.i −0.560393 0.0786284i
\(366\) −3.04475e6 −1.18809
\(367\) 4.01045e6i 1.55428i 0.629331 + 0.777138i \(0.283329\pi\)
−0.629331 + 0.777138i \(0.716671\pi\)
\(368\) 135424.i 0.0521286i
\(369\) −165894. −0.0634257
\(370\) −337007. + 2.40189e6i −0.127978 + 0.912113i
\(371\) 1.17808e6 0.444366
\(372\) 1.35668e6i 0.508300i
\(373\) 1.29316e6i 0.481261i −0.970617 0.240630i \(-0.922646\pi\)
0.970617 0.240630i \(-0.0773541\pi\)
\(374\) 859035. 0.317564
\(375\) 2.23237e6 + 992092.i 0.819761 + 0.364312i
\(376\) 198195. 0.0722975
\(377\) 3.48230e6i 1.26187i
\(378\) 1.86404e6i 0.671004i
\(379\) −266332. −0.0952414 −0.0476207 0.998865i \(-0.515164\pi\)
−0.0476207 + 0.998865i \(0.515164\pi\)
\(380\) −239025. + 1.70355e6i −0.0849148 + 0.605197i
\(381\) −2.12352e6 −0.749450
\(382\) 1.77407e6i 0.622033i
\(383\) 3.70896e6i 1.29198i −0.763346 0.645989i \(-0.776445\pi\)
0.763346 0.645989i \(-0.223555\pi\)
\(384\) 229112. 0.0792904
\(385\) 1.32595e6 + 186043.i 0.455905 + 0.0639677i
\(386\) −3.24576e6 −1.10879
\(387\) 295703.i 0.100364i
\(388\) 167369.i 0.0564411i
\(389\) 877617. 0.294057 0.147028 0.989132i \(-0.453029\pi\)
0.147028 + 0.989132i \(0.453029\pi\)
\(390\) 2.34457e6 + 328965.i 0.780551 + 0.109519i
\(391\) −544210. −0.180022
\(392\) 233151.i 0.0766342i
\(393\) 390090.i 0.127404i
\(394\) 1.00469e6 0.326054
\(395\) −345317. + 2.46111e6i −0.111359 + 0.793667i
\(396\) 158488. 0.0507878
\(397\) 3.41443e6i 1.08728i 0.839318 + 0.543640i \(0.182954\pi\)
−0.839318 + 0.543640i \(0.817046\pi\)
\(398\) 1.25353e6i 0.396668i
\(399\) 3.08580e6 0.970365
\(400\) −769109. 220161.i −0.240347 0.0688002i
\(401\) 2.76644e6 0.859132 0.429566 0.903036i \(-0.358667\pi\)
0.429566 + 0.903036i \(0.358667\pi\)
\(402\) 2.23591e6i 0.690065i
\(403\) 4.59104e6i 1.40815i
\(404\) 2.00741e6 0.611904
\(405\) 351610. 2.50596e6i 0.106518 0.759166i
\(406\) −2.11076e6 −0.635511
\(407\) 2.26434e6i 0.677572i
\(408\) 920703.i 0.273823i
\(409\) 4.23084e6 1.25060 0.625299 0.780385i \(-0.284977\pi\)
0.625299 + 0.780385i \(0.284977\pi\)
\(410\) 774187. + 108626.i 0.227450 + 0.0319134i
\(411\) 1.50159e6 0.438478
\(412\) 2.26732e6i 0.658065i
\(413\) 607788.i 0.175338i
\(414\) −100404. −0.0287907
\(415\) 5.65445e6 + 793372.i 1.61165 + 0.226129i
\(416\) −775323. −0.219659
\(417\) 2.67461e6i 0.753216i
\(418\) 1.60600e6i 0.449577i
\(419\) 6.06659e6 1.68815 0.844073 0.536229i \(-0.180152\pi\)
0.844073 + 0.536229i \(0.180152\pi\)
\(420\) −199398. + 1.42113e6i −0.0551567 + 0.393108i
\(421\) 1.95999e6 0.538950 0.269475 0.963007i \(-0.413150\pi\)
0.269475 + 0.963007i \(0.413150\pi\)
\(422\) 1.10287e6i 0.301468i
\(423\) 146943.i 0.0399300i
\(424\) −657145. −0.177520
\(425\) 884730. 3.09071e6i 0.237595 0.830016i
\(426\) 244506. 0.0652777
\(427\) 6.24535e6i 1.65763i
\(428\) 2.19182e6i 0.578356i
\(429\) 2.21030e6 0.579840
\(430\) 193623. 1.37997e6i 0.0504993 0.359914i
\(431\) −2.76008e6 −0.715695 −0.357848 0.933780i \(-0.616489\pi\)
−0.357848 + 0.933780i \(0.616489\pi\)
\(432\) 1.03978e6i 0.268059i
\(433\) 2.10588e6i 0.539777i −0.962892 0.269888i \(-0.913013\pi\)
0.962892 0.269888i \(-0.0869868\pi\)
\(434\) −2.78280e6 −0.709183
\(435\) −3.56045e6 499564.i −0.902156 0.126581i
\(436\) 1.92965e6 0.486141
\(437\) 1.01742e6i 0.254857i
\(438\) 1.44119e6i 0.358952i
\(439\) −4.63657e6 −1.14825 −0.574124 0.818768i \(-0.694657\pi\)
−0.574124 + 0.818768i \(0.694657\pi\)
\(440\) −739625. 103776.i −0.182129 0.0255545i
\(441\) 172860. 0.0423251
\(442\) 3.11568e6i 0.758574i
\(443\) 5.18509e6i 1.25530i 0.778497 + 0.627649i \(0.215983\pi\)
−0.778497 + 0.627649i \(0.784017\pi\)
\(444\) −2.42689e6 −0.584242
\(445\) −880188. + 6.27320e6i −0.210705 + 1.50172i
\(446\) 269752. 0.0642136
\(447\) 5.18369e6i 1.22707i
\(448\) 469953.i 0.110626i
\(449\) 6.46414e6 1.51319 0.756597 0.653882i \(-0.226861\pi\)
0.756597 + 0.653882i \(0.226861\pi\)
\(450\) 163229. 570223.i 0.0379984 0.132744i
\(451\) 729852. 0.168964
\(452\) 3.47928e6i 0.801021i
\(453\) 4.09705e6i 0.938049i
\(454\) 4.21851e6 0.960548
\(455\) 674769. 4.80915e6i 0.152801 1.08903i
\(456\) −1.72129e6 −0.387651
\(457\) 6.83116e6i 1.53004i 0.644005 + 0.765022i \(0.277272\pi\)
−0.644005 + 0.765022i \(0.722728\pi\)
\(458\) 1.00795e6i 0.224532i
\(459\) −4.17841e6 −0.925719
\(460\) 468562. + 65743.6i 0.103246 + 0.0144864i
\(461\) −2.15573e6 −0.472436 −0.236218 0.971700i \(-0.575908\pi\)
−0.236218 + 0.971700i \(0.575908\pi\)
\(462\) 1.33975e6i 0.292024i
\(463\) 4.45364e6i 0.965523i 0.875752 + 0.482762i \(0.160366\pi\)
−0.875752 + 0.482762i \(0.839634\pi\)
\(464\) 1.17740e6 0.253880
\(465\) −4.69406e6 658621.i −1.00674 0.141255i
\(466\) −1.09209e6 −0.232966
\(467\) 1.95904e6i 0.415672i 0.978164 + 0.207836i \(0.0666421\pi\)
−0.978164 + 0.207836i \(0.933358\pi\)
\(468\) 574830.i 0.121318i
\(469\) 4.58628e6 0.962783
\(470\) 96216.8 685748.i 0.0200912 0.143192i
\(471\) −5.31789e6 −1.10455
\(472\) 339030.i 0.0700459i
\(473\) 1.30094e6i 0.267366i
\(474\) −2.48673e6 −0.508373
\(475\) 5.77820e6 + 1.65403e6i 1.17506 + 0.336365i
\(476\) 1.88853e6 0.382039
\(477\) 487212.i 0.0980443i
\(478\) 2.31588e6i 0.463604i
\(479\) −404518. −0.0805562 −0.0402781 0.999189i \(-0.512824\pi\)
−0.0402781 + 0.999189i \(0.512824\pi\)
\(480\) 111226. 792721.i 0.0220345 0.157043i
\(481\) 8.21266e6 1.61853
\(482\) 2.41074e6i 0.472642i
\(483\) 848748.i 0.165543i
\(484\) 1.87955e6 0.364703
\(485\) 579091. + 81251.9i 0.111787 + 0.0156848i
\(486\) −1.41586e6 −0.271912
\(487\) 8.12511e6i 1.55241i 0.630479 + 0.776206i \(0.282858\pi\)
−0.630479 + 0.776206i \(0.717142\pi\)
\(488\) 3.48371e6i 0.662206i
\(489\) −7.21307e6 −1.36411
\(490\) −806695. 113187.i −0.151782 0.0212964i
\(491\) −5.42700e6 −1.01591 −0.507956 0.861383i \(-0.669599\pi\)
−0.507956 + 0.861383i \(0.669599\pi\)
\(492\) 782246.i 0.145690i
\(493\) 4.73146e6i 0.876754i
\(494\) 5.82488e6 1.07391
\(495\) 76940.5 548364.i 0.0141137 0.100590i
\(496\) 1.55227e6 0.283311
\(497\) 501527.i 0.0910758i
\(498\) 5.71331e6i 1.03232i
\(499\) −9.58639e6 −1.72347 −0.861735 0.507358i \(-0.830622\pi\)
−0.861735 + 0.507358i \(0.830622\pi\)
\(500\) −1.13512e6 + 2.55421e6i −0.203057 + 0.456911i
\(501\) −5.26255e6 −0.936704
\(502\) 1.63084e6i 0.288837i
\(503\) 1.07252e7i 1.89011i 0.326913 + 0.945054i \(0.393992\pi\)
−0.326913 + 0.945054i \(0.606008\pi\)
\(504\) 348426. 0.0610991
\(505\) 974529. 6.94557e6i 0.170046 1.21194i
\(506\) 441729. 0.0766972
\(507\) 2.82454e6i 0.488009i
\(508\) 2.42967e6i 0.417722i
\(509\) 2.04903e6 0.350553 0.175277 0.984519i \(-0.443918\pi\)
0.175277 + 0.984519i \(0.443918\pi\)
\(510\) 3.18560e6 + 446969.i 0.542333 + 0.0760943i
\(511\) −2.95616e6 −0.500813
\(512\) 262144.i 0.0441942i
\(513\) 7.81169e6i 1.31054i
\(514\) −469454. −0.0783764
\(515\) 7.84483e6 + 1.10070e6i 1.30336 + 0.182874i
\(516\) 1.39434e6 0.230538
\(517\) 646477.i 0.106372i
\(518\) 4.97801e6i 0.815138i
\(519\) −289314. −0.0471467
\(520\) −376392. + 2.68259e6i −0.0610425 + 0.435057i
\(521\) 1.19223e7 1.92427 0.962137 0.272567i \(-0.0878725\pi\)
0.962137 + 0.272567i \(0.0878725\pi\)
\(522\) 872933.i 0.140218i
\(523\) 1.01600e7i 1.62420i −0.583519 0.812099i \(-0.698325\pi\)
0.583519 0.812099i \(-0.301675\pi\)
\(524\) −446330. −0.0710114
\(525\) 4.82027e6 + 1.37982e6i 0.763261 + 0.218486i
\(526\) 3.74845e6 0.590727
\(527\) 6.23791e6i 0.978391i
\(528\) 747324.i 0.116661i
\(529\) −279841. −0.0434783
\(530\) −319021. + 2.27370e6i −0.0493321 + 0.351596i
\(531\) −251359. −0.0386864
\(532\) 3.53068e6i 0.540853i
\(533\) 2.64714e6i 0.403607i
\(534\) −6.33850e6 −0.961907
\(535\) −7.58361e6 1.06405e6i −1.14549 0.160723i
\(536\) −2.55827e6 −0.384622
\(537\) 4.67862e6i 0.700135i
\(538\) 6.47951e6i 0.965131i
\(539\) −760498. −0.112752
\(540\) 3.59759e6 + 504776.i 0.530918 + 0.0744928i
\(541\) −8.64940e6 −1.27055 −0.635276 0.772285i \(-0.719114\pi\)
−0.635276 + 0.772285i \(0.719114\pi\)
\(542\) 5.15797e6i 0.754190i
\(543\) 1.01393e7i 1.47573i
\(544\) −1.05344e6 −0.152621
\(545\) 936778. 6.67652e6i 0.135097 0.962851i
\(546\) 4.85921e6 0.697564
\(547\) 5.60937e6i 0.801578i 0.916170 + 0.400789i \(0.131264\pi\)
−0.916170 + 0.400789i \(0.868736\pi\)
\(548\) 1.71808e6i 0.244395i
\(549\) 2.58285e6 0.365737
\(550\) −718125. + 2.50870e6i −0.101226 + 0.353624i
\(551\) −8.84563e6 −1.24122
\(552\) 473439.i 0.0661328i
\(553\) 5.10074e6i 0.709285i
\(554\) 2.52815e6 0.349968
\(555\) −1.17817e6 + 8.39695e6i −0.162359 + 1.15715i
\(556\) 3.06021e6 0.419821
\(557\) 1.26142e7i 1.72275i −0.507971 0.861374i \(-0.669604\pi\)
0.507971 0.861374i \(-0.330396\pi\)
\(558\) 1.15087e6i 0.156473i
\(559\) −4.71847e6 −0.638663
\(560\) −1.62602e6 228146.i −0.219107 0.0307427i
\(561\) 3.00317e6 0.402877
\(562\) 1.67149e6i 0.223236i
\(563\) 8.23445e6i 1.09487i −0.836847 0.547437i \(-0.815604\pi\)
0.836847 0.547437i \(-0.184396\pi\)
\(564\) 692886. 0.0917200
\(565\) −1.20382e7 1.68907e6i −1.58650 0.222601i
\(566\) 337429. 0.0442733
\(567\) 5.19370e6i 0.678452i
\(568\) 279756.i 0.0363839i
\(569\) −1.32336e7 −1.71355 −0.856773 0.515693i \(-0.827535\pi\)
−0.856773 + 0.515693i \(0.827535\pi\)
\(570\) −835625. + 5.95559e6i −0.107727 + 0.767782i
\(571\) −6.53831e6 −0.839219 −0.419609 0.907705i \(-0.637833\pi\)
−0.419609 + 0.907705i \(0.637833\pi\)
\(572\) 2.52896e6i 0.323186i
\(573\) 6.20212e6i 0.789140i
\(574\) 1.60453e6 0.203268
\(575\) 454941. 1.58929e6i 0.0573833 0.200463i
\(576\) −194355. −0.0244085
\(577\) 3.66228e6i 0.457944i 0.973433 + 0.228972i \(0.0735364\pi\)
−0.973433 + 0.228972i \(0.926464\pi\)
\(578\) 1.44610e6i 0.180045i
\(579\) −1.13471e7 −1.40666
\(580\) 571587. 4.07376e6i 0.0705525 0.502835i
\(581\) 1.17191e7 1.44030
\(582\) 585119.i 0.0716039i
\(583\) 2.14349e6i 0.261186i
\(584\) 1.64897e6 0.200070
\(585\) −1.98889e6 279060.i −0.240282 0.0337138i
\(586\) −4.63464e6 −0.557535
\(587\) 1.16820e6i 0.139933i −0.997549 0.0699667i \(-0.977711\pi\)
0.997549 0.0699667i \(-0.0222893\pi\)
\(588\) 815092.i 0.0972217i
\(589\) −1.16620e7 −1.38511
\(590\) 1.17303e6 + 164587.i 0.138733 + 0.0194655i
\(591\) 3.51236e6 0.413648
\(592\) 2.77678e6i 0.325639i
\(593\) 6.84373e6i 0.799201i −0.916689 0.399601i \(-0.869149\pi\)
0.916689 0.399601i \(-0.130851\pi\)
\(594\) 3.39157e6 0.394398
\(595\) 916818. 6.53426e6i 0.106167 0.756666i
\(596\) −5.93103e6 −0.683934
\(597\) 4.38232e6i 0.503232i
\(598\) 1.60213e6i 0.183208i
\(599\) 1.77214e6 0.201804 0.100902 0.994896i \(-0.467827\pi\)
0.100902 + 0.994896i \(0.467827\pi\)
\(600\) −2.68879e6 769677.i −0.304915 0.0872832i
\(601\) −7.18815e6 −0.811766 −0.405883 0.913925i \(-0.633036\pi\)
−0.405883 + 0.913925i \(0.633036\pi\)
\(602\) 2.86004e6i 0.321649i
\(603\) 1.89672e6i 0.212427i
\(604\) 4.68772e6 0.522841
\(605\) 912455. 6.50317e6i 0.101350 0.722331i
\(606\) 7.01787e6 0.776290
\(607\) 2.47513e6i 0.272663i 0.990663 + 0.136332i \(0.0435312\pi\)
−0.990663 + 0.136332i \(0.956469\pi\)
\(608\) 1.96945e6i 0.216066i
\(609\) −7.37916e6 −0.806239
\(610\) −1.20535e7 1.69122e6i −1.31156 0.184025i
\(611\) −2.34474e6 −0.254093
\(612\) 781030.i 0.0842925i
\(613\) 594699.i 0.0639213i 0.999489 + 0.0319607i \(0.0101751\pi\)
−0.999489 + 0.0319607i \(0.989825\pi\)
\(614\) 1.13344e7 1.21333
\(615\) 2.70654e6 + 379753.i 0.288554 + 0.0404868i
\(616\) −1.53290e6 −0.162766
\(617\) 4.38364e6i 0.463577i −0.972766 0.231788i \(-0.925542\pi\)
0.972766 0.231788i \(-0.0744577\pi\)
\(618\) 7.92649e6i 0.834852i
\(619\) 1.12773e7 1.18298 0.591491 0.806311i \(-0.298539\pi\)
0.591491 + 0.806311i \(0.298539\pi\)
\(620\) 753575. 5.37081e6i 0.0787313 0.561126i
\(621\) −2.14860e6 −0.223577
\(622\) 2.03438e6i 0.210842i
\(623\) 1.30014e7i 1.34206i
\(624\) −2.71051e6 −0.278670
\(625\) 8.28642e6 + 5.16747e6i 0.848529 + 0.529149i
\(626\) 4.31890e6 0.440491
\(627\) 5.61453e6i 0.570354i
\(628\) 6.08457e6i 0.615646i
\(629\) 1.11587e7 1.12457
\(630\) 169149. 1.20554e6i 0.0169792 0.121013i
\(631\) −1.27384e6 −0.127363 −0.0636813 0.997970i \(-0.520284\pi\)
−0.0636813 + 0.997970i \(0.520284\pi\)
\(632\) 2.84524e6i 0.283352i
\(633\) 3.85560e6i 0.382457i
\(634\) 1.27005e7 1.25487
\(635\) −8.40656e6 1.17952e6i −0.827340 0.116083i
\(636\) −2.29737e6 −0.225210
\(637\) 2.75829e6i 0.269334i
\(638\) 3.84047e6i 0.373536i
\(639\) −207413. −0.0200948
\(640\) 907009. + 127262.i 0.0875309 + 0.0122814i
\(641\) 7.84981e6 0.754595 0.377298 0.926092i \(-0.376853\pi\)
0.377298 + 0.926092i \(0.376853\pi\)
\(642\) 7.66255e6i 0.733729i
\(643\) 1.43864e7i 1.37222i −0.727497 0.686111i \(-0.759317\pi\)
0.727497 0.686111i \(-0.240683\pi\)
\(644\) 971113. 0.0922689
\(645\) 676902. 4.82435e6i 0.0640658 0.456604i
\(646\) 7.91435e6 0.746163
\(647\) 2.16317e6i 0.203156i −0.994828 0.101578i \(-0.967611\pi\)
0.994828 0.101578i \(-0.0323892\pi\)
\(648\) 2.89710e6i 0.271035i
\(649\) 1.10585e6 0.103059
\(650\) 9.09894e6 + 2.60461e6i 0.844709 + 0.241801i
\(651\) −9.72862e6 −0.899702
\(652\) 8.25299e6i 0.760312i
\(653\) 2.25198e6i 0.206672i −0.994646 0.103336i \(-0.967048\pi\)
0.994646 0.103336i \(-0.0329518\pi\)
\(654\) 6.74602e6 0.616742
\(655\) −216678. + 1.54429e6i −0.0197338 + 0.140645i
\(656\) −895024. −0.0812035
\(657\) 1.22256e6i 0.110499i
\(658\) 1.42124e6i 0.127968i
\(659\) −1.08353e7 −0.971916 −0.485958 0.873982i \(-0.661529\pi\)
−0.485958 + 0.873982i \(0.661529\pi\)
\(660\) −2.58571e6 362800.i −0.231058 0.0324196i
\(661\) 1.48392e7 1.32102 0.660508 0.750819i \(-0.270341\pi\)
0.660508 + 0.750819i \(0.270341\pi\)
\(662\) 1.31692e7i 1.16793i
\(663\) 1.08924e7i 0.962362i
\(664\) −6.53700e6 −0.575385
\(665\) 1.22160e7 + 1.71402e6i 1.07121 + 0.150301i
\(666\) 2.05872e6 0.179851
\(667\) 2.43299e6i 0.211751i
\(668\) 6.02126e6i 0.522091i
\(669\) 943047. 0.0814644
\(670\) −1.24195e6 + 8.85152e6i −0.106885 + 0.761783i
\(671\) −1.13633e7 −0.974308
\(672\) 1.64294e6i 0.140346i
\(673\) 1.95395e7i 1.66294i 0.555570 + 0.831470i \(0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(674\) −1.37806e7 −1.16847
\(675\) 3.49301e6 1.22025e7i 0.295081 1.03083i
\(676\) 3.23176e6 0.272002
\(677\) 8.13422e6i 0.682094i 0.940046 + 0.341047i \(0.110782\pi\)
−0.940046 + 0.341047i \(0.889218\pi\)
\(678\) 1.21635e7i 1.01621i
\(679\) 1.20019e6 0.0999021
\(680\) −511410. + 3.64487e6i −0.0424128 + 0.302280i
\(681\) 1.47478e7 1.21860
\(682\) 5.06324e6i 0.416838i
\(683\) 1.33434e7i 1.09450i −0.836971 0.547248i \(-0.815676\pi\)
0.836971 0.547248i \(-0.184324\pi\)
\(684\) 1.46016e6 0.119333
\(685\) 5.94450e6 + 834069.i 0.484048 + 0.0679165i
\(686\) −9.38528e6 −0.761442
\(687\) 3.52379e6i 0.284851i
\(688\) 1.59536e6i 0.128495i
\(689\) 7.77435e6 0.623902
\(690\) 1.63808e6 + 229838.i 0.130983 + 0.0183781i
\(691\) −5.63941e6 −0.449303 −0.224651 0.974439i \(-0.572124\pi\)
−0.224651 + 0.974439i \(0.572124\pi\)
\(692\) 331025.i 0.0262782i
\(693\) 1.13650e6i 0.0898955i
\(694\) 5.04745e6 0.397808
\(695\) 1.48563e6 1.05882e7i 0.116667 0.831497i
\(696\) 4.11617e6 0.322085
\(697\) 3.59671e6i 0.280429i
\(698\) 1.03875e7i 0.807001i
\(699\) −3.81792e6 −0.295552
\(700\) −1.57875e6 + 5.51521e6i −0.121778 + 0.425419i
\(701\) 1.68717e6 0.129677 0.0648386 0.997896i \(-0.479347\pi\)
0.0648386 + 0.997896i \(0.479347\pi\)
\(702\) 1.23011e7i 0.942107i
\(703\) 2.08615e7i 1.59205i
\(704\) 855067. 0.0650232
\(705\) 336372. 2.39736e6i 0.0254887 0.181661i
\(706\) 4.98142e6 0.376133
\(707\) 1.43950e7i 1.08308i
\(708\) 1.18524e6i 0.0888635i
\(709\) −3.21870e6 −0.240472 −0.120236 0.992745i \(-0.538365\pi\)
−0.120236 + 0.992745i \(0.538365\pi\)
\(710\) 967947. + 135812.i 0.0720619 + 0.0101110i
\(711\) 2.10948e6 0.156496
\(712\) 7.25233e6i 0.536139i
\(713\) 3.20763e6i 0.236298i
\(714\) 6.60228e6 0.484672
\(715\) 8.75013e6 + 1.22772e6i 0.640102 + 0.0898123i
\(716\) −5.35314e6 −0.390235
\(717\) 8.09628e6i 0.588150i
\(718\) 1.05126e6i 0.0761025i
\(719\) −8.01355e6 −0.578099 −0.289050 0.957314i \(-0.593339\pi\)
−0.289050 + 0.957314i \(0.593339\pi\)
\(720\) −94352.8 + 672463.i −0.00678303 + 0.0483434i
\(721\) 1.62587e7 1.16479
\(722\) 4.89176e6i 0.349238i
\(723\) 8.42789e6i 0.599616i
\(724\) 1.16011e7 0.822529
\(725\) −1.38176e7 3.95534e6i −0.976309 0.279472i
\(726\) 6.57086e6 0.462680
\(727\) 8.09033e6i 0.567715i −0.958867 0.283857i \(-0.908386\pi\)
0.958867 0.283857i \(-0.0916142\pi\)
\(728\) 5.55977e6i 0.388802i
\(729\) −1.59497e7 −1.11156
\(730\) 800519. 5.70539e6i 0.0555987 0.396258i
\(731\) −6.41105e6 −0.443748
\(732\) 1.21790e7i 0.840105i
\(733\) 1.77542e7i 1.22051i 0.792205 + 0.610254i \(0.208933\pi\)
−0.792205 + 0.610254i \(0.791067\pi\)
\(734\) −1.60418e7 −1.09904
\(735\) −2.82019e6 395699.i −0.192557 0.0270176i
\(736\) −541696. −0.0368605
\(737\) 8.34462e6i 0.565898i
\(738\) 663577.i 0.0448488i
\(739\) 6.92864e6 0.466699 0.233349 0.972393i \(-0.425031\pi\)
0.233349 + 0.972393i \(0.425031\pi\)
\(740\) −9.60755e6 1.34803e6i −0.644961 0.0904941i
\(741\) 2.03637e7 1.36242
\(742\) 4.71233e6i 0.314214i
\(743\) 2.84559e7i 1.89104i 0.325571 + 0.945518i \(0.394444\pi\)
−0.325571 + 0.945518i \(0.605556\pi\)
\(744\) 5.42672e6 0.359422
\(745\) −2.87931e6 + 2.05211e7i −0.190063 + 1.35460i
\(746\) 5.17264e6 0.340303
\(747\) 4.84658e6i 0.317786i
\(748\) 3.43614e6i 0.224552i
\(749\) −1.57173e7 −1.02370
\(750\) −3.96837e6 + 8.92947e6i −0.257608 + 0.579659i
\(751\) 2.32342e7 1.50324 0.751618 0.659599i \(-0.229274\pi\)
0.751618 + 0.659599i \(0.229274\pi\)
\(752\) 792780.i 0.0511221i
\(753\) 5.70138e6i 0.366432i
\(754\) −1.39292e7 −0.892274
\(755\) 2.27573e6 1.62194e7i 0.145296 1.03554i
\(756\) 7.45615e6 0.474471
\(757\) 1.15860e7i 0.734843i −0.930054 0.367422i \(-0.880241\pi\)
0.930054 0.367422i \(-0.119759\pi\)
\(758\) 1.06533e6i 0.0673458i
\(759\) 1.54428e6 0.0973017
\(760\) −6.81422e6 956098.i −0.427939 0.0600439i
\(761\) −1.77781e7 −1.11282 −0.556409 0.830909i \(-0.687821\pi\)
−0.556409 + 0.830909i \(0.687821\pi\)
\(762\) 8.49406e6i 0.529942i
\(763\) 1.38373e7i 0.860482i
\(764\) 7.09629e6 0.439844
\(765\) −2.70234e6 379163.i −0.166950 0.0234246i
\(766\) 1.48358e7 0.913567
\(767\) 4.01089e6i 0.246180i
\(768\) 916450.i 0.0560668i
\(769\) 1.45352e7 0.886348 0.443174 0.896436i \(-0.353852\pi\)
0.443174 + 0.896436i \(0.353852\pi\)
\(770\) −744171. + 5.30379e6i −0.0452320 + 0.322373i
\(771\) −1.64120e6 −0.0994320
\(772\) 1.29830e7i 0.784031i
\(773\) 1.18159e7i 0.711244i 0.934630 + 0.355622i \(0.115731\pi\)
−0.934630 + 0.355622i \(0.884269\pi\)
\(774\) −1.18281e6 −0.0709681
\(775\) −1.82170e7 5.21469e6i −1.08949 0.311870i
\(776\) −669476. −0.0399099
\(777\) 1.74030e7i 1.03412i
\(778\) 3.51047e6i 0.207930i
\(779\) 6.72417e6 0.397004
\(780\) −1.31586e6 + 9.37828e6i −0.0774414 + 0.551933i
\(781\) 912515. 0.0535319
\(782\) 2.17684e6i 0.127294i
\(783\) 1.86803e7i 1.08888i
\(784\) 932605. 0.0541885
\(785\) −2.10524e7 2.95385e6i −1.21935 0.171086i
\(786\) −1.56036e6 −0.0900884
\(787\) 1.62523e7i 0.935360i −0.883898 0.467680i \(-0.845090\pi\)
0.883898 0.467680i \(-0.154910\pi\)
\(788\) 4.01875e6i 0.230555i
\(789\) 1.31045e7 0.749424
\(790\) −9.84444e6 1.38127e6i −0.561207 0.0787426i
\(791\) −2.49496e7 −1.41783
\(792\) 633953.i 0.0359124i
\(793\) 4.12140e7i 2.32735i
\(794\) −1.36577e7 −0.768823
\(795\) −1.11529e6 + 7.94881e6i −0.0625851 + 0.446051i
\(796\) −5.01412e6 −0.280487
\(797\) 4.69382e6i 0.261747i 0.991399 + 0.130873i \(0.0417781\pi\)
−0.991399 + 0.130873i \(0.958222\pi\)
\(798\) 1.23432e7i 0.686152i
\(799\) −3.18584e6 −0.176546
\(800\) 880643. 3.07644e6i 0.0486491 0.169951i
\(801\) 5.37693e6 0.296110
\(802\) 1.10657e7i 0.607498i
\(803\) 5.37865e6i 0.294364i
\(804\) −8.94366e6 −0.487950
\(805\) 471442. 3.36002e6i 0.0256412 0.182748i
\(806\) −1.83642e7 −0.995711
\(807\) 2.26522e7i 1.22441i
\(808\) 8.02965e6i 0.432681i
\(809\) 6.85605e6 0.368301 0.184150 0.982898i \(-0.441047\pi\)
0.184150 + 0.982898i \(0.441047\pi\)
\(810\) 1.00238e7 + 1.40644e6i 0.536812 + 0.0753197i
\(811\) −2.13768e6 −0.114128 −0.0570639 0.998371i \(-0.518174\pi\)
−0.0570639 + 0.998371i \(0.518174\pi\)
\(812\) 8.44303e6i 0.449374i
\(813\) 1.80322e7i 0.956801i
\(814\) −9.05736e6 −0.479116
\(815\) −2.85550e7 4.00654e6i −1.50587 0.211288i
\(816\) −3.68281e6 −0.193622
\(817\) 1.19857e7i 0.628215i
\(818\) 1.69233e7i 0.884307i
\(819\) −4.12205e6 −0.214735
\(820\) −434503. + 3.09675e6i −0.0225662 + 0.160832i
\(821\) −764211. −0.0395691 −0.0197845 0.999804i \(-0.506298\pi\)
−0.0197845 + 0.999804i \(0.506298\pi\)
\(822\) 6.00638e6i 0.310051i
\(823\) 1.33243e7i 0.685718i 0.939387 + 0.342859i \(0.111395\pi\)
−0.939387 + 0.342859i \(0.888605\pi\)
\(824\) −9.06926e6 −0.465322
\(825\) −2.51055e6 + 8.77036e6i −0.128420 + 0.448624i
\(826\) 2.43115e6 0.123983
\(827\) 1.00663e7i 0.511809i −0.966702 0.255905i \(-0.917627\pi\)
0.966702 0.255905i \(-0.0823733\pi\)
\(828\) 401617.i 0.0203581i
\(829\) 1.91526e7 0.967925 0.483962 0.875089i \(-0.339197\pi\)
0.483962 + 0.875089i \(0.339197\pi\)
\(830\) −3.17349e6 + 2.26178e7i −0.159898 + 1.13961i
\(831\) 8.83835e6 0.443985
\(832\) 3.10129e6i 0.155322i
\(833\) 3.74773e6i 0.187135i
\(834\) 1.06984e7 0.532604
\(835\) −2.08334e7 2.92311e6i −1.03405 0.145087i
\(836\) −6.42399e6 −0.317899
\(837\) 2.46280e7i 1.21511i
\(838\) 2.42664e7i 1.19370i
\(839\) 7.19059e6 0.352663 0.176331 0.984331i \(-0.443577\pi\)
0.176331 + 0.984331i \(0.443577\pi\)
\(840\) −5.68453e6 797593.i −0.277969 0.0390016i
\(841\) 641669. 0.0312839
\(842\) 7.83995e6i 0.381095i
\(843\) 5.84350e6i 0.283207i
\(844\) 4.41147e6 0.213170
\(845\) 1.56891e6 1.11818e7i 0.0755884 0.538727i
\(846\) −587773. −0.0282347
\(847\) 1.34781e7i 0.645534i
\(848\) 2.62858e6i 0.125525i
\(849\) 1.17965e6 0.0561672
\(850\) 1.23629e7 + 3.53892e6i 0.586910 + 0.168005i
\(851\) 5.73795e6 0.271602
\(852\) 978022.i 0.0461583i
\(853\) 9.62714e6i 0.453028i −0.974008 0.226514i \(-0.927267\pi\)
0.974008 0.226514i \(-0.0727329\pi\)
\(854\) −2.49814e7 −1.17212
\(855\) 708858. 5.05211e6i 0.0331623 0.236351i
\(856\) 8.76727e6 0.408959
\(857\) 1.48353e7i 0.689992i 0.938604 + 0.344996i \(0.112120\pi\)
−0.938604 + 0.344996i \(0.887880\pi\)
\(858\) 8.84121e6i 0.410009i
\(859\) 7.72123e6 0.357029 0.178515 0.983937i \(-0.442871\pi\)
0.178515 + 0.983937i \(0.442871\pi\)
\(860\) 5.51989e6 + 774492.i 0.254498 + 0.0357084i
\(861\) 5.60941e6 0.257875
\(862\) 1.10403e7i 0.506073i
\(863\) 2.57381e7i 1.17639i −0.808721 0.588193i \(-0.799840\pi\)
0.808721 0.588193i \(-0.200160\pi\)
\(864\) −4.15911e6 −0.189547
\(865\) −1.14534e6 160701.i −0.0520466 0.00730263i
\(866\) 8.42353e6 0.381680
\(867\) 5.05555e6i 0.228413i
\(868\) 1.11312e7i 0.501468i
\(869\) −9.28068e6 −0.416898
\(870\) 1.99826e6 1.42418e7i 0.0895062 0.637920i
\(871\) 3.02656e7 1.35177
\(872\) 7.71860e6i 0.343754i
\(873\) 496355.i 0.0220423i
\(874\) 4.06968e6 0.180211
\(875\) 1.83160e7 + 8.13987e6i 0.808743 + 0.359416i
\(876\) 5.76477e6 0.253818
\(877\) 3.95324e7i 1.73562i 0.496896 + 0.867810i \(0.334473\pi\)
−0.496896 + 0.867810i \(0.665527\pi\)
\(878\) 1.85463e7i 0.811934i
\(879\) −1.62026e7 −0.707315
\(880\) 415105. 2.95850e6i 0.0180697 0.128785i
\(881\) 2.29721e7 0.997151 0.498576 0.866846i \(-0.333857\pi\)
0.498576 + 0.866846i \(0.333857\pi\)
\(882\) 691440.i 0.0299284i
\(883\) 486213.i 0.0209858i 0.999945 + 0.0104929i \(0.00334005\pi\)
−0.999945 + 0.0104929i \(0.996660\pi\)
\(884\) 1.24627e7 0.536392
\(885\) 4.10089e6 + 575393.i 0.176003 + 0.0246949i
\(886\) −2.07403e7 −0.887629
\(887\) 3.32439e7i 1.41874i 0.704837 + 0.709369i \(0.251020\pi\)
−0.704837 + 0.709369i \(0.748980\pi\)
\(888\) 9.70756e6i 0.413121i
\(889\) −1.74229e7 −0.739378
\(890\) −2.50928e7 3.52075e6i −1.06188 0.148991i
\(891\) 9.44981e6 0.398776
\(892\) 1.07901e6i 0.0454059i
\(893\) 5.95604e6i 0.249936i
\(894\) −2.07347e7 −0.867670
\(895\) −2.59876e6 + 1.85217e7i −0.108445 + 0.772899i
\(896\) 1.87981e6 0.0782247
\(897\) 5.60102e6i 0.232427i
\(898\) 2.58565e7i 1.06999i
\(899\) 2.78877e7 1.15084
\(900\) 2.28089e6 + 652915.i 0.0938639 + 0.0268689i
\(901\) 1.05631e7 0.433491
\(902\) 2.91941e6i 0.119475i
\(903\) 9.99866e6i 0.408058i
\(904\) 1.39171e7 0.566407
\(905\) 5.63191e6 4.01392e7i 0.228578 1.62910i
\(906\) 1.63882e7 0.663301
\(907\) 2.44256e6i 0.0985888i 0.998784 + 0.0492944i \(0.0156973\pi\)
−0.998784 + 0.0492944i \(0.984303\pi\)
\(908\) 1.68740e7i 0.679210i
\(909\) −5.95324e6 −0.238970
\(910\) 1.92366e7 + 2.69907e6i 0.770061 + 0.108047i
\(911\) −9.25256e6 −0.369374 −0.184687 0.982797i \(-0.559127\pi\)
−0.184687 + 0.982797i \(0.559127\pi\)
\(912\) 6.88515e6i 0.274111i
\(913\) 2.13225e7i 0.846568i
\(914\) −2.73246e7 −1.08190
\(915\) −4.21389e7 5.91248e6i −1.66391 0.233462i
\(916\) −4.03182e6 −0.158768
\(917\) 3.20059e6i 0.125692i
\(918\) 1.67136e7i 0.654582i
\(919\) −7.49713e6 −0.292824 −0.146412 0.989224i \(-0.546772\pi\)
−0.146412 + 0.989224i \(0.546772\pi\)
\(920\) −262975. + 1.87425e6i −0.0102434 + 0.0730059i
\(921\) 3.96249e7 1.53928
\(922\) 8.62293e6i 0.334063i
\(923\) 3.30965e6i 0.127873i
\(924\) −5.35899e6 −0.206492
\(925\) −9.32827e6 + 3.25874e7i −0.358465 + 1.25226i
\(926\) −1.78146e7 −0.682728
\(927\) 6.72402e6i 0.256998i
\(928\) 4.70960e6i 0.179521i
\(929\) 3.10194e7 1.17922 0.589609 0.807689i \(-0.299282\pi\)
0.589609 + 0.807689i \(0.299282\pi\)
\(930\) 2.63448e6 1.87762e7i 0.0998822 0.711871i
\(931\) −7.00652e6 −0.264928
\(932\) 4.36836e6i 0.164732i
\(933\) 7.11215e6i 0.267483i
\(934\) −7.83616e6 −0.293925
\(935\) 1.18889e7 + 1.66813e6i 0.444748 + 0.0624022i
\(936\) 2.29932e6 0.0857847
\(937\) 3.97391e7i 1.47866i 0.673342 + 0.739331i \(0.264858\pi\)
−0.673342 + 0.739331i \(0.735142\pi\)
\(938\) 1.83451e7i 0.680791i
\(939\) 1.50988e7 0.558828
\(940\) 2.74299e6 + 384867.i 0.101252 + 0.0142066i
\(941\) 5.02153e7 1.84868 0.924341 0.381566i \(-0.124615\pi\)
0.924341 + 0.381566i \(0.124615\pi\)
\(942\) 2.12715e7i 0.781037i
\(943\) 1.84948e6i 0.0677284i
\(944\) −1.35612e6 −0.0495300
\(945\) 3.61970e6 2.57980e7i 0.131854 0.939738i
\(946\) 5.20378e6 0.189056
\(947\) 1.61914e7i 0.586690i −0.956007 0.293345i \(-0.905232\pi\)
0.956007 0.293345i \(-0.0947685\pi\)
\(948\) 9.94691e6i 0.359474i
\(949\) −1.95081e7 −0.703154
\(950\) −6.61613e6 + 2.31128e7i −0.237846 + 0.830890i
\(951\) 4.44008e7 1.59199
\(952\) 7.55414e6i 0.270142i
\(953\) 4.63598e7i 1.65352i −0.562556 0.826759i \(-0.690182\pi\)
0.562556 0.826759i \(-0.309818\pi\)
\(954\) 1.94885e6 0.0693278
\(955\) 3.44500e6 2.45529e7i 0.122231 0.871154i
\(956\) 9.26354e6 0.327817
\(957\) 1.34262e7i 0.473885i
\(958\) 1.61807e6i 0.0569618i
\(959\) 1.23202e7 0.432585
\(960\) 3.17088e6 + 444905.i 0.111046 + 0.0155808i
\(961\) 8.13772e6 0.284246
\(962\) 3.28506e7i 1.14447i
\(963\) 6.50012e6i 0.225868i
\(964\) 9.64295e6 0.334208
\(965\) −4.49209e7 6.30282e6i −1.55285 0.217880i
\(966\) 3.39499e6 0.117057
\(967\) 6.39991e6i 0.220094i 0.993926 + 0.110047i \(0.0351001\pi\)
−0.993926 + 0.110047i \(0.964900\pi\)
\(968\) 7.51819e6i 0.257884i
\(969\) 2.76684e7 0.946618
\(970\) −325007. + 2.31636e6i −0.0110908 + 0.0790455i
\(971\) 1.98936e7 0.677120 0.338560 0.940945i \(-0.390060\pi\)
0.338560 + 0.940945i \(0.390060\pi\)
\(972\) 5.66343e6i 0.192271i
\(973\) 2.19445e7i 0.743093i
\(974\) −3.25005e7 −1.09772
\(975\) 3.18097e7 + 9.10566e6i 1.07164 + 0.306761i
\(976\) 1.39349e7 0.468250
\(977\) 3.61680e7i 1.21224i −0.795374 0.606119i \(-0.792726\pi\)
0.795374 0.606119i \(-0.207274\pi\)
\(978\) 2.88523e7i 0.964568i
\(979\) −2.36558e7 −0.788825
\(980\) 452747. 3.22678e6i 0.0150588 0.107326i
\(981\) −5.72263e6 −0.189855
\(982\) 2.17080e7i 0.718359i
\(983\) 4.73431e7i 1.56269i 0.624100 + 0.781344i \(0.285466\pi\)
−0.624100 + 0.781344i \(0.714534\pi\)
\(984\) −3.12898e6 −0.103019
\(985\) 1.39047e7 + 1.95096e6i 0.456638 + 0.0640705i
\(986\) −1.89258e7 −0.619958
\(987\) 4.96862e6i 0.162347i
\(988\) 2.32995e7i 0.759372i
\(989\) −3.29666e6 −0.107173
\(990\) 2.19345e6 + 307762.i 0.0711280 + 0.00997992i
\(991\) 5.32159e7 1.72130 0.860651 0.509195i \(-0.170057\pi\)
0.860651 + 0.509195i \(0.170057\pi\)
\(992\) 6.20909e6i 0.200331i
\(993\) 4.60394e7i 1.48169i
\(994\) 2.00611e6 0.0644003
\(995\) −2.43418e6 + 1.73487e7i −0.0779463 + 0.555532i
\(996\) −2.28532e7 −0.729960
\(997\) 8.63822e6i 0.275224i −0.990486 0.137612i \(-0.956057\pi\)
0.990486 0.137612i \(-0.0439427\pi\)
\(998\) 3.83456e7i 1.21868i
\(999\) 4.40556e7 1.39665
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 230.6.b.a.139.23 yes 26
5.4 even 2 inner 230.6.b.a.139.4 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.6.b.a.139.4 26 5.4 even 2 inner
230.6.b.a.139.23 yes 26 1.1 even 1 trivial