Properties

Label 230.6.b.a
Level $230$
Weight $6$
Character orbit 230.b
Analytic conductor $36.888$
Analytic rank $0$
Dimension $26$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 230.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(36.8882785570\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 26 q - 416 q^{4} - 30 q^{5} - 72 q^{6} - 1400 q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 26 q - 416 q^{4} - 30 q^{5} - 72 q^{6} - 1400 q^{9} + 80 q^{10} - 1314 q^{11} + 808 q^{14} + 1280 q^{15} + 6656 q^{16} + 6630 q^{19} + 480 q^{20} - 10060 q^{21} + 1152 q^{24} - 10470 q^{25} - 376 q^{26} + 16084 q^{29} - 6200 q^{30} + 418 q^{31} + 3320 q^{34} - 3160 q^{35} + 22400 q^{36} + 71296 q^{39} - 1280 q^{40} - 35826 q^{41} + 21024 q^{44} - 83960 q^{45} - 55016 q^{46} + 53532 q^{49} - 20800 q^{50} - 25430 q^{51} + 98736 q^{54} - 110390 q^{55} - 12928 q^{56} + 126992 q^{59} - 20480 q^{60} - 63662 q^{61} - 106496 q^{64} - 88520 q^{65} - 18664 q^{66} - 9522 q^{69} - 116520 q^{70} - 106514 q^{71} + 183536 q^{74} - 44200 q^{75} - 106080 q^{76} + 324676 q^{79} - 7680 q^{80} - 170702 q^{81} + 160960 q^{84} + 120780 q^{85} - 42768 q^{86} + 465200 q^{89} + 61360 q^{90} - 468838 q^{91} + 107152 q^{94} + 309670 q^{95} - 18432 q^{96} + 523850 q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
139.1 4.00000i 27.5301i −16.0000 28.4300 48.1325i −110.120 119.184i 64.0000i −514.906 −192.530 113.720i
139.2 4.00000i 26.8618i −16.0000 41.5913 + 37.3519i −107.447 117.217i 64.0000i −478.554 149.408 166.365i
139.3 4.00000i 17.9630i −16.0000 −33.0651 + 45.0744i −71.8519 13.4457i 64.0000i −79.6687 180.297 + 132.260i
139.4 4.00000i 13.9839i −16.0000 −7.76744 55.3594i −55.9357 114.735i 64.0000i 47.4501 −221.438 + 31.0698i
139.5 4.00000i 11.2210i −16.0000 −42.1119 + 36.7639i −44.8839 166.669i 64.0000i 117.090 147.056 + 168.448i
139.6 4.00000i 5.96211i −16.0000 28.0011 + 48.3833i −23.8485 183.563i 64.0000i 207.453 193.533 112.004i
139.7 4.00000i 1.04517i −16.0000 −54.3251 13.1829i 4.18067 135.681i 64.0000i 241.908 −52.7315 + 217.300i
139.8 4.00000i 5.15388i −16.0000 33.2902 44.9084i 20.6155 47.7267i 64.0000i 216.438 −179.633 133.161i
139.9 4.00000i 11.0852i −16.0000 −42.4833 36.3342i 44.3407 240.887i 64.0000i 120.119 −145.337 + 169.933i
139.10 4.00000i 14.1507i −16.0000 55.0409 + 9.77250i 56.6028 1.53351i 64.0000i 42.7574 39.0900 220.164i
139.11 4.00000i 18.6563i −16.0000 −47.1490 + 30.0329i 74.6251 68.7947i 64.0000i −105.057 120.131 + 188.596i
139.12 4.00000i 19.5707i −16.0000 11.6274 + 54.6791i 78.2830 53.5462i 64.0000i −140.014 218.716 46.5095i
139.13 4.00000i 24.8599i −16.0000 13.9210 54.1406i 99.4396 51.4359i 64.0000i −375.015 −216.562 55.6841i
139.14 4.00000i 24.8599i −16.0000 13.9210 + 54.1406i 99.4396 51.4359i 64.0000i −375.015 −216.562 + 55.6841i
139.15 4.00000i 19.5707i −16.0000 11.6274 54.6791i 78.2830 53.5462i 64.0000i −140.014 218.716 + 46.5095i
139.16 4.00000i 18.6563i −16.0000 −47.1490 30.0329i 74.6251 68.7947i 64.0000i −105.057 120.131 188.596i
139.17 4.00000i 14.1507i −16.0000 55.0409 9.77250i 56.6028 1.53351i 64.0000i 42.7574 39.0900 + 220.164i
139.18 4.00000i 11.0852i −16.0000 −42.4833 + 36.3342i 44.3407 240.887i 64.0000i 120.119 −145.337 169.933i
139.19 4.00000i 5.15388i −16.0000 33.2902 + 44.9084i 20.6155 47.7267i 64.0000i 216.438 −179.633 + 133.161i
139.20 4.00000i 1.04517i −16.0000 −54.3251 + 13.1829i 4.18067 135.681i 64.0000i 241.908 −52.7315 217.300i
See all 26 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 139.26
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 230.6.b.a 26
5.b even 2 1 inner 230.6.b.a 26
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.6.b.a 26 1.a even 1 1 trivial
230.6.b.a 26 5.b even 2 1 inner