Newspace parameters
| Level: | \( N \) | \(=\) | \( 230 = 2 \cdot 5 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 230.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(36.8882785570\) |
| Analytic rank: | \(0\) |
| Dimension: | \(26\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 139.1 | − | 4.00000i | − | 27.5301i | −16.0000 | 28.4300 | − | 48.1325i | −110.120 | − | 119.184i | 64.0000i | −514.906 | −192.530 | − | 113.720i | |||||||||||
| 139.2 | − | 4.00000i | − | 26.8618i | −16.0000 | 41.5913 | + | 37.3519i | −107.447 | 117.217i | 64.0000i | −478.554 | 149.408 | − | 166.365i | ||||||||||||
| 139.3 | − | 4.00000i | − | 17.9630i | −16.0000 | −33.0651 | + | 45.0744i | −71.8519 | 13.4457i | 64.0000i | −79.6687 | 180.297 | + | 132.260i | ||||||||||||
| 139.4 | − | 4.00000i | − | 13.9839i | −16.0000 | −7.76744 | − | 55.3594i | −55.9357 | − | 114.735i | 64.0000i | 47.4501 | −221.438 | + | 31.0698i | |||||||||||
| 139.5 | − | 4.00000i | − | 11.2210i | −16.0000 | −42.1119 | + | 36.7639i | −44.8839 | 166.669i | 64.0000i | 117.090 | 147.056 | + | 168.448i | ||||||||||||
| 139.6 | − | 4.00000i | − | 5.96211i | −16.0000 | 28.0011 | + | 48.3833i | −23.8485 | − | 183.563i | 64.0000i | 207.453 | 193.533 | − | 112.004i | |||||||||||
| 139.7 | − | 4.00000i | 1.04517i | −16.0000 | −54.3251 | − | 13.1829i | 4.18067 | − | 135.681i | 64.0000i | 241.908 | −52.7315 | + | 217.300i | ||||||||||||
| 139.8 | − | 4.00000i | 5.15388i | −16.0000 | 33.2902 | − | 44.9084i | 20.6155 | 47.7267i | 64.0000i | 216.438 | −179.633 | − | 133.161i | |||||||||||||
| 139.9 | − | 4.00000i | 11.0852i | −16.0000 | −42.4833 | − | 36.3342i | 44.3407 | 240.887i | 64.0000i | 120.119 | −145.337 | + | 169.933i | |||||||||||||
| 139.10 | − | 4.00000i | 14.1507i | −16.0000 | 55.0409 | + | 9.77250i | 56.6028 | 1.53351i | 64.0000i | 42.7574 | 39.0900 | − | 220.164i | |||||||||||||
| 139.11 | − | 4.00000i | 18.6563i | −16.0000 | −47.1490 | + | 30.0329i | 74.6251 | 68.7947i | 64.0000i | −105.057 | 120.131 | + | 188.596i | |||||||||||||
| 139.12 | − | 4.00000i | 19.5707i | −16.0000 | 11.6274 | + | 54.6791i | 78.2830 | − | 53.5462i | 64.0000i | −140.014 | 218.716 | − | 46.5095i | ||||||||||||
| 139.13 | − | 4.00000i | 24.8599i | −16.0000 | 13.9210 | − | 54.1406i | 99.4396 | 51.4359i | 64.0000i | −375.015 | −216.562 | − | 55.6841i | |||||||||||||
| 139.14 | 4.00000i | − | 24.8599i | −16.0000 | 13.9210 | + | 54.1406i | 99.4396 | − | 51.4359i | − | 64.0000i | −375.015 | −216.562 | + | 55.6841i | |||||||||||
| 139.15 | 4.00000i | − | 19.5707i | −16.0000 | 11.6274 | − | 54.6791i | 78.2830 | 53.5462i | − | 64.0000i | −140.014 | 218.716 | + | 46.5095i | ||||||||||||
| 139.16 | 4.00000i | − | 18.6563i | −16.0000 | −47.1490 | − | 30.0329i | 74.6251 | − | 68.7947i | − | 64.0000i | −105.057 | 120.131 | − | 188.596i | |||||||||||
| 139.17 | 4.00000i | − | 14.1507i | −16.0000 | 55.0409 | − | 9.77250i | 56.6028 | − | 1.53351i | − | 64.0000i | 42.7574 | 39.0900 | + | 220.164i | |||||||||||
| 139.18 | 4.00000i | − | 11.0852i | −16.0000 | −42.4833 | + | 36.3342i | 44.3407 | − | 240.887i | − | 64.0000i | 120.119 | −145.337 | − | 169.933i | |||||||||||
| 139.19 | 4.00000i | − | 5.15388i | −16.0000 | 33.2902 | + | 44.9084i | 20.6155 | − | 47.7267i | − | 64.0000i | 216.438 | −179.633 | + | 133.161i | |||||||||||
| 139.20 | 4.00000i | − | 1.04517i | −16.0000 | −54.3251 | + | 13.1829i | 4.18067 | 135.681i | − | 64.0000i | 241.908 | −52.7315 | − | 217.300i | ||||||||||||
| See all 26 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 230.6.b.a | ✓ | 26 |
| 5.b | even | 2 | 1 | inner | 230.6.b.a | ✓ | 26 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 230.6.b.a | ✓ | 26 | 1.a | even | 1 | 1 | trivial |
| 230.6.b.a | ✓ | 26 | 5.b | even | 2 | 1 | inner |