Properties

Label 230.6
Level 230
Weight 6
Dimension 2410
Nonzero newspaces 6
Sturm bound 19008
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 6 \)
Sturm bound: \(19008\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(230))\).

Total New Old
Modular forms 8096 2410 5686
Cusp forms 7744 2410 5334
Eisenstein series 352 0 352

Trace form

\( 2410 q + 8 q^{2} - 8 q^{3} - 32 q^{4} - 170 q^{5} + 160 q^{6} + 624 q^{7} + 128 q^{8} - 1306 q^{9} + 360 q^{10} + 1480 q^{11} - 128 q^{12} - 228 q^{13} - 3136 q^{14} - 10902 q^{15} - 2560 q^{16} + 14048 q^{17}+ \cdots - 48640 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(230))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
230.6.a \(\chi_{230}(1, \cdot)\) 230.6.a.a 1 1
230.6.a.b 2
230.6.a.c 3
230.6.a.d 3
230.6.a.e 3
230.6.a.f 5
230.6.a.g 5
230.6.a.h 6
230.6.a.i 6
230.6.b \(\chi_{230}(139, \cdot)\) 230.6.b.a 26 1
230.6.b.b 30
230.6.e \(\chi_{230}(137, \cdot)\) n/a 120 2
230.6.g \(\chi_{230}(31, \cdot)\) n/a 400 10
230.6.j \(\chi_{230}(9, \cdot)\) n/a 600 10
230.6.l \(\chi_{230}(7, \cdot)\) n/a 1200 20

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(230))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(230)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 2}\)