Defining parameters
| Level: | \( N \) | = | \( 230 = 2 \cdot 5 \cdot 23 \) |
| Weight: | \( k \) | = | \( 6 \) |
| Nonzero newspaces: | \( 6 \) | ||
| Sturm bound: | \(19008\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(230))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 8096 | 2410 | 5686 |
| Cusp forms | 7744 | 2410 | 5334 |
| Eisenstein series | 352 | 0 | 352 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(230))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 230.6.a | \(\chi_{230}(1, \cdot)\) | 230.6.a.a | 1 | 1 |
| 230.6.a.b | 2 | |||
| 230.6.a.c | 3 | |||
| 230.6.a.d | 3 | |||
| 230.6.a.e | 3 | |||
| 230.6.a.f | 5 | |||
| 230.6.a.g | 5 | |||
| 230.6.a.h | 6 | |||
| 230.6.a.i | 6 | |||
| 230.6.b | \(\chi_{230}(139, \cdot)\) | 230.6.b.a | 26 | 1 |
| 230.6.b.b | 30 | |||
| 230.6.e | \(\chi_{230}(137, \cdot)\) | n/a | 120 | 2 |
| 230.6.g | \(\chi_{230}(31, \cdot)\) | n/a | 400 | 10 |
| 230.6.j | \(\chi_{230}(9, \cdot)\) | n/a | 600 | 10 |
| 230.6.l | \(\chi_{230}(7, \cdot)\) | n/a | 1200 | 20 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(230))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(230)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 2}\)