Properties

Label 230.6.b.a.139.2
Level $230$
Weight $6$
Character 230.139
Analytic conductor $36.888$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [230,6,Mod(139,230)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("230.139"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(230, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 230.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8882785570\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.2
Character \(\chi\) \(=\) 230.139
Dual form 230.6.b.a.139.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -26.8618i q^{3} -16.0000 q^{4} +(41.5913 + 37.3519i) q^{5} -107.447 q^{6} +117.217i q^{7} +64.0000i q^{8} -478.554 q^{9} +(149.408 - 166.365i) q^{10} -431.621 q^{11} +429.788i q^{12} +590.216i q^{13} +468.867 q^{14} +(1003.34 - 1117.21i) q^{15} +256.000 q^{16} -455.801i q^{17} +1914.22i q^{18} +1769.15 q^{19} +(-665.460 - 597.631i) q^{20} +3148.65 q^{21} +1726.49i q^{22} -529.000i q^{23} +1719.15 q^{24} +(334.666 + 3107.03i) q^{25} +2360.86 q^{26} +6327.39i q^{27} -1875.47i q^{28} +3359.06 q^{29} +(-4468.86 - 4013.35i) q^{30} +5650.67 q^{31} -1024.00i q^{32} +11594.1i q^{33} -1823.20 q^{34} +(-4378.27 + 4875.19i) q^{35} +7656.86 q^{36} +9203.58i q^{37} -7076.59i q^{38} +15854.2 q^{39} +(-2390.52 + 2661.84i) q^{40} +8201.36 q^{41} -12594.6i q^{42} +3041.74i q^{43} +6905.94 q^{44} +(-19903.7 - 17874.9i) q^{45} -2116.00 q^{46} -27863.1i q^{47} -6876.61i q^{48} +3067.23 q^{49} +(12428.1 - 1338.66i) q^{50} -12243.6 q^{51} -9443.45i q^{52} +34141.0i q^{53} +25309.6 q^{54} +(-17951.7 - 16121.9i) q^{55} -7501.87 q^{56} -47522.4i q^{57} -13436.2i q^{58} -11655.4 q^{59} +(-16053.4 + 17875.4i) q^{60} +21992.0 q^{61} -22602.7i q^{62} -56094.5i q^{63} -4096.00 q^{64} +(-22045.7 + 24547.8i) q^{65} +46376.4 q^{66} +20140.5i q^{67} +7292.81i q^{68} -14209.9 q^{69} +(19500.8 + 17513.1i) q^{70} -31963.9 q^{71} -30627.5i q^{72} +20577.1i q^{73} +36814.3 q^{74} +(83460.2 - 8989.71i) q^{75} -28306.4 q^{76} -50593.3i q^{77} -63416.9i q^{78} +28663.6 q^{79} +(10647.4 + 9562.10i) q^{80} +53676.3 q^{81} -32805.4i q^{82} +54289.6i q^{83} -50378.4 q^{84} +(17025.0 - 18957.3i) q^{85} +12167.0 q^{86} -90230.3i q^{87} -27623.8i q^{88} -28123.0 q^{89} +(-71499.7 + 79614.7i) q^{90} -69183.2 q^{91} +8464.00i q^{92} -151787. i q^{93} -111452. q^{94} +(73581.1 + 66081.1i) q^{95} -27506.4 q^{96} +40366.4i q^{97} -12268.9i q^{98} +206554. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q - 416 q^{4} - 30 q^{5} - 72 q^{6} - 1400 q^{9} + 80 q^{10} - 1314 q^{11} + 808 q^{14} + 1280 q^{15} + 6656 q^{16} + 6630 q^{19} + 480 q^{20} - 10060 q^{21} + 1152 q^{24} - 10470 q^{25} - 376 q^{26}+ \cdots + 523850 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 26.8618i 1.72318i −0.507603 0.861591i \(-0.669468\pi\)
0.507603 0.861591i \(-0.330532\pi\)
\(4\) −16.0000 −0.500000
\(5\) 41.5913 + 37.3519i 0.744007 + 0.668172i
\(6\) −107.447 −1.21847
\(7\) 117.217i 0.904159i 0.891978 + 0.452079i \(0.149318\pi\)
−0.891978 + 0.452079i \(0.850682\pi\)
\(8\) 64.0000i 0.353553i
\(9\) −478.554 −1.96936
\(10\) 149.408 166.365i 0.472469 0.526092i
\(11\) −431.621 −1.07553 −0.537763 0.843096i \(-0.680731\pi\)
−0.537763 + 0.843096i \(0.680731\pi\)
\(12\) 429.788i 0.861591i
\(13\) 590.216i 0.968617i 0.874897 + 0.484309i \(0.160929\pi\)
−0.874897 + 0.484309i \(0.839071\pi\)
\(14\) 468.867 0.639337
\(15\) 1003.34 1117.21i 1.15138 1.28206i
\(16\) 256.000 0.250000
\(17\) 455.801i 0.382519i −0.981540 0.191259i \(-0.938743\pi\)
0.981540 0.191259i \(-0.0612572\pi\)
\(18\) 1914.22i 1.39255i
\(19\) 1769.15 1.12429 0.562147 0.827037i \(-0.309975\pi\)
0.562147 + 0.827037i \(0.309975\pi\)
\(20\) −665.460 597.631i −0.372004 0.334086i
\(21\) 3148.65 1.55803
\(22\) 1726.49i 0.760512i
\(23\) 529.000i 0.208514i
\(24\) 1719.15 0.609237
\(25\) 334.666 + 3107.03i 0.107093 + 0.994249i
\(26\) 2360.86 0.684916
\(27\) 6327.39i 1.67038i
\(28\) 1875.47i 0.452079i
\(29\) 3359.06 0.741691 0.370845 0.928695i \(-0.379068\pi\)
0.370845 + 0.928695i \(0.379068\pi\)
\(30\) −4468.86 4013.35i −0.906553 0.814150i
\(31\) 5650.67 1.05608 0.528038 0.849221i \(-0.322928\pi\)
0.528038 + 0.849221i \(0.322928\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 11594.1i 1.85333i
\(34\) −1823.20 −0.270482
\(35\) −4378.27 + 4875.19i −0.604133 + 0.672700i
\(36\) 7656.86 0.984679
\(37\) 9203.58i 1.10523i 0.833437 + 0.552615i \(0.186370\pi\)
−0.833437 + 0.552615i \(0.813630\pi\)
\(38\) 7076.59i 0.794996i
\(39\) 15854.2 1.66910
\(40\) −2390.52 + 2661.84i −0.236234 + 0.263046i
\(41\) 8201.36 0.761949 0.380975 0.924585i \(-0.375589\pi\)
0.380975 + 0.924585i \(0.375589\pi\)
\(42\) 12594.6i 1.10169i
\(43\) 3041.74i 0.250872i 0.992102 + 0.125436i \(0.0400329\pi\)
−0.992102 + 0.125436i \(0.959967\pi\)
\(44\) 6905.94 0.537763
\(45\) −19903.7 17874.9i −1.46522 1.31587i
\(46\) −2116.00 −0.147442
\(47\) 27863.1i 1.83986i −0.392085 0.919929i \(-0.628246\pi\)
0.392085 0.919929i \(-0.371754\pi\)
\(48\) 6876.61i 0.430796i
\(49\) 3067.23 0.182497
\(50\) 12428.1 1338.66i 0.703040 0.0757262i
\(51\) −12243.6 −0.659150
\(52\) 9443.45i 0.484309i
\(53\) 34141.0i 1.66950i 0.550629 + 0.834750i \(0.314388\pi\)
−0.550629 + 0.834750i \(0.685612\pi\)
\(54\) 25309.6 1.18114
\(55\) −17951.7 16121.9i −0.800200 0.718637i
\(56\) −7501.87 −0.319668
\(57\) 47522.4i 1.93736i
\(58\) 13436.2i 0.524455i
\(59\) −11655.4 −0.435909 −0.217954 0.975959i \(-0.569938\pi\)
−0.217954 + 0.975959i \(0.569938\pi\)
\(60\) −16053.4 + 17875.4i −0.575691 + 0.641030i
\(61\) 21992.0 0.756728 0.378364 0.925657i \(-0.376487\pi\)
0.378364 + 0.925657i \(0.376487\pi\)
\(62\) 22602.7i 0.746759i
\(63\) 56094.5i 1.78061i
\(64\) −4096.00 −0.125000
\(65\) −22045.7 + 24547.8i −0.647203 + 0.720658i
\(66\) 46376.4 1.31050
\(67\) 20140.5i 0.548131i 0.961711 + 0.274065i \(0.0883685\pi\)
−0.961711 + 0.274065i \(0.911632\pi\)
\(68\) 7292.81i 0.191259i
\(69\) −14209.9 −0.359308
\(70\) 19500.8 + 17513.1i 0.475671 + 0.427187i
\(71\) −31963.9 −0.752512 −0.376256 0.926516i \(-0.622789\pi\)
−0.376256 + 0.926516i \(0.622789\pi\)
\(72\) 30627.5i 0.696273i
\(73\) 20577.1i 0.451937i 0.974135 + 0.225969i \(0.0725547\pi\)
−0.974135 + 0.225969i \(0.927445\pi\)
\(74\) 36814.3 0.781515
\(75\) 83460.2 8989.71i 1.71327 0.184541i
\(76\) −28306.4 −0.562147
\(77\) 50593.3i 0.972447i
\(78\) 63416.9i 1.18024i
\(79\) 28663.6 0.516730 0.258365 0.966047i \(-0.416816\pi\)
0.258365 + 0.966047i \(0.416816\pi\)
\(80\) 10647.4 + 9562.10i 0.186002 + 0.167043i
\(81\) 53676.3 0.909013
\(82\) 32805.4i 0.538780i
\(83\) 54289.6i 0.865011i 0.901631 + 0.432505i \(0.142370\pi\)
−0.901631 + 0.432505i \(0.857630\pi\)
\(84\) −50378.4 −0.779015
\(85\) 17025.0 18957.3i 0.255588 0.284597i
\(86\) 12167.0 0.177393
\(87\) 90230.3i 1.27807i
\(88\) 27623.8i 0.380256i
\(89\) −28123.0 −0.376346 −0.188173 0.982136i \(-0.560257\pi\)
−0.188173 + 0.982136i \(0.560257\pi\)
\(90\) −71499.7 + 79614.7i −0.930460 + 1.03606i
\(91\) −69183.2 −0.875784
\(92\) 8464.00i 0.104257i
\(93\) 151787.i 1.81981i
\(94\) −111452. −1.30098
\(95\) 73581.1 + 66081.1i 0.836483 + 0.751222i
\(96\) −27506.4 −0.304619
\(97\) 40366.4i 0.435603i 0.975993 + 0.217801i \(0.0698885\pi\)
−0.975993 + 0.217801i \(0.930111\pi\)
\(98\) 12268.9i 0.129045i
\(99\) 206554. 2.11810
\(100\) −5354.65 49712.5i −0.0535465 0.497125i
\(101\) −6286.80 −0.0613234 −0.0306617 0.999530i \(-0.509761\pi\)
−0.0306617 + 0.999530i \(0.509761\pi\)
\(102\) 48974.4i 0.466089i
\(103\) 132389.i 1.22959i 0.788687 + 0.614795i \(0.210761\pi\)
−0.788687 + 0.614795i \(0.789239\pi\)
\(104\) −37773.8 −0.342458
\(105\) 130956. + 117608.i 1.15919 + 1.04103i
\(106\) 136564. 1.18052
\(107\) 173041.i 1.46113i 0.682842 + 0.730567i \(0.260744\pi\)
−0.682842 + 0.730567i \(0.739256\pi\)
\(108\) 101238.i 0.835190i
\(109\) 130523. 1.05226 0.526129 0.850405i \(-0.323643\pi\)
0.526129 + 0.850405i \(0.323643\pi\)
\(110\) −64487.6 + 71806.7i −0.508153 + 0.565827i
\(111\) 247224. 1.90451
\(112\) 30007.5i 0.226040i
\(113\) 235357.i 1.73393i 0.498372 + 0.866963i \(0.333931\pi\)
−0.498372 + 0.866963i \(0.666069\pi\)
\(114\) −190090. −1.36992
\(115\) 19759.2 22001.8i 0.139323 0.155136i
\(116\) −53745.0 −0.370845
\(117\) 282450.i 1.90755i
\(118\) 46621.5i 0.308234i
\(119\) 53427.5 0.345858
\(120\) 71501.7 + 64213.7i 0.453277 + 0.407075i
\(121\) 25246.0 0.156758
\(122\) 87967.9i 0.535087i
\(123\) 220303.i 1.31298i
\(124\) −90410.7 −0.528038
\(125\) −102134. + 141726.i −0.584651 + 0.811285i
\(126\) −224378. −1.25908
\(127\) 299544.i 1.64798i −0.566606 0.823989i \(-0.691744\pi\)
0.566606 0.823989i \(-0.308256\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 81706.6 0.432297
\(130\) 98191.2 + 88182.8i 0.509582 + 0.457641i
\(131\) −141597. −0.720903 −0.360452 0.932778i \(-0.617377\pi\)
−0.360452 + 0.932778i \(0.617377\pi\)
\(132\) 185506.i 0.926665i
\(133\) 207374.i 1.01654i
\(134\) 80562.2 0.387587
\(135\) −236340. + 263164.i −1.11610 + 1.24278i
\(136\) 29171.3 0.135241
\(137\) 315794.i 1.43748i −0.695279 0.718740i \(-0.744719\pi\)
0.695279 0.718740i \(-0.255281\pi\)
\(138\) 56839.5i 0.254069i
\(139\) 299255. 1.31373 0.656864 0.754009i \(-0.271883\pi\)
0.656864 + 0.754009i \(0.271883\pi\)
\(140\) 70052.4 78003.1i 0.302067 0.336350i
\(141\) −748451. −3.17041
\(142\) 127855.i 0.532106i
\(143\) 254750.i 1.04177i
\(144\) −122510. −0.492340
\(145\) 139708. + 125467.i 0.551823 + 0.495577i
\(146\) 82308.6 0.319568
\(147\) 82391.3i 0.314476i
\(148\) 147257.i 0.552615i
\(149\) −358442. −1.32267 −0.661337 0.750089i \(-0.730011\pi\)
−0.661337 + 0.750089i \(0.730011\pi\)
\(150\) −35958.8 333841.i −0.130490 1.21147i
\(151\) 201705. 0.719903 0.359951 0.932971i \(-0.382793\pi\)
0.359951 + 0.932971i \(0.382793\pi\)
\(152\) 113225.i 0.397498i
\(153\) 218125.i 0.753316i
\(154\) −202373. −0.687624
\(155\) 235018. + 211063.i 0.785729 + 0.705641i
\(156\) −253668. −0.834552
\(157\) 252131.i 0.816350i 0.912904 + 0.408175i \(0.133835\pi\)
−0.912904 + 0.408175i \(0.866165\pi\)
\(158\) 114655.i 0.365383i
\(159\) 917087. 2.87685
\(160\) 38248.4 42589.4i 0.118117 0.131523i
\(161\) 62007.7 0.188530
\(162\) 214705.i 0.642769i
\(163\) 271597.i 0.800674i −0.916368 0.400337i \(-0.868893\pi\)
0.916368 0.400337i \(-0.131107\pi\)
\(164\) −131222. −0.380975
\(165\) −433062. + 482214.i −1.23834 + 1.37889i
\(166\) 217158. 0.611655
\(167\) 686846.i 1.90576i 0.303348 + 0.952880i \(0.401895\pi\)
−0.303348 + 0.952880i \(0.598105\pi\)
\(168\) 201513.i 0.550847i
\(169\) 22938.6 0.0617803
\(170\) −75829.3 68100.2i −0.201240 0.180728i
\(171\) −846633. −2.21414
\(172\) 48667.9i 0.125436i
\(173\) 107188.i 0.272290i 0.990689 + 0.136145i \(0.0434713\pi\)
−0.990689 + 0.136145i \(0.956529\pi\)
\(174\) −360921. −0.903731
\(175\) −364196. + 39228.4i −0.898959 + 0.0968291i
\(176\) −110495. −0.268882
\(177\) 313084.i 0.751151i
\(178\) 112492.i 0.266117i
\(179\) 675507. 1.57579 0.787893 0.615812i \(-0.211172\pi\)
0.787893 + 0.615812i \(0.211172\pi\)
\(180\) 318459. + 285999.i 0.732608 + 0.657935i
\(181\) −777303. −1.76357 −0.881787 0.471647i \(-0.843660\pi\)
−0.881787 + 0.471647i \(0.843660\pi\)
\(182\) 276733.i 0.619273i
\(183\) 590743.i 1.30398i
\(184\) 33856.0 0.0737210
\(185\) −343772. + 382789.i −0.738483 + 0.822299i
\(186\) −607147. −1.28680
\(187\) 196733.i 0.411409i
\(188\) 445809.i 0.919929i
\(189\) −741677. −1.51029
\(190\) 264324. 294324.i 0.531194 0.591483i
\(191\) −449907. −0.892358 −0.446179 0.894944i \(-0.647215\pi\)
−0.446179 + 0.894944i \(0.647215\pi\)
\(192\) 110026.i 0.215398i
\(193\) 350276.i 0.676889i 0.940986 + 0.338444i \(0.109901\pi\)
−0.940986 + 0.338444i \(0.890099\pi\)
\(194\) 161466. 0.308018
\(195\) 659397. + 592186.i 1.24183 + 1.11525i
\(196\) −49075.7 −0.0912487
\(197\) 121355.i 0.222788i −0.993776 0.111394i \(-0.964468\pi\)
0.993776 0.111394i \(-0.0355315\pi\)
\(198\) 826217.i 1.49772i
\(199\) −209357. −0.374762 −0.187381 0.982287i \(-0.560000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(200\) −198850. + 21418.6i −0.351520 + 0.0378631i
\(201\) 541010. 0.944529
\(202\) 25147.2i 0.0433622i
\(203\) 393738.i 0.670606i
\(204\) 195898. 0.329575
\(205\) 341105. + 306337.i 0.566896 + 0.509113i
\(206\) 529557. 0.869451
\(207\) 253155.i 0.410640i
\(208\) 151095.i 0.242154i
\(209\) −763602. −1.20921
\(210\) 470432. 523825.i 0.736121 0.819668i
\(211\) 1.10895e6 1.71477 0.857386 0.514674i \(-0.172087\pi\)
0.857386 + 0.514674i \(0.172087\pi\)
\(212\) 546256.i 0.834750i
\(213\) 858605.i 1.29671i
\(214\) 692164. 1.03318
\(215\) −113615. + 126510.i −0.167625 + 0.186650i
\(216\) −404953. −0.590569
\(217\) 662353.i 0.954861i
\(218\) 522094.i 0.744059i
\(219\) 552738. 0.778770
\(220\) 287227. + 257950.i 0.400100 + 0.359318i
\(221\) 269021. 0.370514
\(222\) 988897.i 1.34669i
\(223\) 905806.i 1.21976i −0.792495 0.609878i \(-0.791219\pi\)
0.792495 0.609878i \(-0.208781\pi\)
\(224\) 120030. 0.159834
\(225\) −160156. 1.48688e6i −0.210905 1.95803i
\(226\) 941427. 1.22607
\(227\) 254382.i 0.327659i 0.986489 + 0.163830i \(0.0523847\pi\)
−0.986489 + 0.163830i \(0.947615\pi\)
\(228\) 760358.i 0.968682i
\(229\) −852673. −1.07447 −0.537234 0.843433i \(-0.680531\pi\)
−0.537234 + 0.843433i \(0.680531\pi\)
\(230\) −88007.1 79036.7i −0.109698 0.0985165i
\(231\) −1.35902e6 −1.67570
\(232\) 214980.i 0.262227i
\(233\) 1.12515e6i 1.35776i −0.734251 0.678879i \(-0.762466\pi\)
0.734251 0.678879i \(-0.237534\pi\)
\(234\) −1.12980e6 −1.34884
\(235\) 1.04074e6 1.15886e6i 1.22934 1.36887i
\(236\) 186486. 0.217954
\(237\) 769956.i 0.890420i
\(238\) 213710.i 0.244558i
\(239\) 1.19650e6 1.35494 0.677468 0.735552i \(-0.263077\pi\)
0.677468 + 0.735552i \(0.263077\pi\)
\(240\) 256855. 286007.i 0.287845 0.320515i
\(241\) −234746. −0.260349 −0.130174 0.991491i \(-0.541554\pi\)
−0.130174 + 0.991491i \(0.541554\pi\)
\(242\) 100984.i 0.110845i
\(243\) 95716.8i 0.103985i
\(244\) −351872. −0.378364
\(245\) 127570. + 114567.i 0.135779 + 0.121940i
\(246\) −881211. −0.928415
\(247\) 1.04418e6i 1.08901i
\(248\) 361643.i 0.373380i
\(249\) 1.45831e6 1.49057
\(250\) 566903. + 408537.i 0.573665 + 0.413411i
\(251\) 431980. 0.432792 0.216396 0.976306i \(-0.430570\pi\)
0.216396 + 0.976306i \(0.430570\pi\)
\(252\) 897513.i 0.890306i
\(253\) 228328.i 0.224263i
\(254\) −1.19818e6 −1.16530
\(255\) −509227. 457323.i −0.490412 0.440425i
\(256\) 65536.0 0.0625000
\(257\) 145036.i 0.136976i −0.997652 0.0684879i \(-0.978183\pi\)
0.997652 0.0684879i \(-0.0218175\pi\)
\(258\) 326826.i 0.305680i
\(259\) −1.07881e6 −0.999303
\(260\) 352731. 392765.i 0.323601 0.360329i
\(261\) −1.60749e6 −1.46065
\(262\) 566389.i 0.509756i
\(263\) 1.79162e6i 1.59719i −0.601870 0.798594i \(-0.705577\pi\)
0.601870 0.798594i \(-0.294423\pi\)
\(264\) −742023. −0.655251
\(265\) −1.27523e6 + 1.41997e6i −1.11551 + 1.24212i
\(266\) 829495. 0.718803
\(267\) 755434.i 0.648513i
\(268\) 322249.i 0.274065i
\(269\) 831782. 0.700856 0.350428 0.936590i \(-0.386036\pi\)
0.350428 + 0.936590i \(0.386036\pi\)
\(270\) 1.05266e6 + 945362.i 0.878775 + 0.789203i
\(271\) 254514. 0.210518 0.105259 0.994445i \(-0.466433\pi\)
0.105259 + 0.994445i \(0.466433\pi\)
\(272\) 116685.i 0.0956297i
\(273\) 1.85838e6i 1.50914i
\(274\) −1.26317e6 −1.01645
\(275\) −144449. 1.34106e6i −0.115181 1.06934i
\(276\) 227358. 0.179654
\(277\) 21327.4i 0.0167008i 0.999965 + 0.00835041i \(0.00265805\pi\)
−0.999965 + 0.00835041i \(0.997342\pi\)
\(278\) 1.19702e6i 0.928945i
\(279\) −2.70415e6 −2.07979
\(280\) −312012. 280209.i −0.237835 0.213593i
\(281\) 113691. 0.0858938 0.0429469 0.999077i \(-0.486325\pi\)
0.0429469 + 0.999077i \(0.486325\pi\)
\(282\) 2.99380e6i 2.24182i
\(283\) 1.87899e6i 1.39463i −0.716767 0.697313i \(-0.754379\pi\)
0.716767 0.697313i \(-0.245621\pi\)
\(284\) 511422. 0.376256
\(285\) 1.77505e6 1.97652e6i 1.29449 1.44141i
\(286\) −1.01900e6 −0.736645
\(287\) 961336.i 0.688923i
\(288\) 490039.i 0.348137i
\(289\) 1.21210e6 0.853679
\(290\) 501870. 558830.i 0.350426 0.390198i
\(291\) 1.08431e6 0.750623
\(292\) 329234.i 0.225969i
\(293\) 1.55725e6i 1.05972i −0.848086 0.529859i \(-0.822245\pi\)
0.848086 0.529859i \(-0.177755\pi\)
\(294\) −329565. −0.222368
\(295\) −484761. 435350.i −0.324319 0.291262i
\(296\) −589029. −0.390758
\(297\) 2.73104e6i 1.79654i
\(298\) 1.43377e6i 0.935272i
\(299\) 312224. 0.201971
\(300\) −1.33536e6 + 143835.i −0.856636 + 0.0922704i
\(301\) −356543. −0.226828
\(302\) 806819.i 0.509048i
\(303\) 168874.i 0.105671i
\(304\) 452902. 0.281074
\(305\) 914674. + 821443.i 0.563011 + 0.505624i
\(306\) 872501. 0.532675
\(307\) 2.08436e6i 1.26219i 0.775704 + 0.631097i \(0.217395\pi\)
−0.775704 + 0.631097i \(0.782605\pi\)
\(308\) 809492.i 0.486223i
\(309\) 3.55621e6 2.11881
\(310\) 844253. 940073.i 0.498963 0.555594i
\(311\) −494021. −0.289630 −0.144815 0.989459i \(-0.546259\pi\)
−0.144815 + 0.989459i \(0.546259\pi\)
\(312\) 1.01467e6i 0.590118i
\(313\) 1.30578e6i 0.753370i 0.926341 + 0.376685i \(0.122936\pi\)
−0.926341 + 0.376685i \(0.877064\pi\)
\(314\) 1.00852e6 0.577247
\(315\) 2.09524e6 2.33304e6i 1.18975 1.32479i
\(316\) −458618. −0.258365
\(317\) 2.62123e6i 1.46507i −0.680731 0.732533i \(-0.738338\pi\)
0.680731 0.732533i \(-0.261662\pi\)
\(318\) 3.66835e6i 2.03424i
\(319\) −1.44984e6 −0.797708
\(320\) −170358. 152994.i −0.0930009 0.0835215i
\(321\) 4.64819e6 2.51780
\(322\) 248031.i 0.133311i
\(323\) 806379.i 0.430064i
\(324\) −858821. −0.454507
\(325\) −1.83382e6 + 197525.i −0.963047 + 0.103732i
\(326\) −1.08639e6 −0.566162
\(327\) 3.50609e6i 1.81323i
\(328\) 524887.i 0.269390i
\(329\) 3.26602e6 1.66352
\(330\) 1.92885e6 + 1.73225e6i 0.975022 + 0.875640i
\(331\) −3.65353e6 −1.83291 −0.916457 0.400133i \(-0.868964\pi\)
−0.916457 + 0.400133i \(0.868964\pi\)
\(332\) 868634.i 0.432505i
\(333\) 4.40441e6i 2.17659i
\(334\) 2.74738e6 1.34758
\(335\) −752288. + 837671.i −0.366246 + 0.407813i
\(336\) 806054. 0.389508
\(337\) 2.08629e6i 1.00069i 0.865825 + 0.500347i \(0.166794\pi\)
−0.865825 + 0.500347i \(0.833206\pi\)
\(338\) 91754.4i 0.0436853i
\(339\) 6.32210e6 2.98787
\(340\) −272401. + 303317.i −0.127794 + 0.142298i
\(341\) −2.43895e6 −1.13584
\(342\) 3.38653e6i 1.56563i
\(343\) 2.32959e6i 1.06917i
\(344\) −194672. −0.0886965
\(345\) −591006. 530766.i −0.267328 0.240080i
\(346\) 428753. 0.192538
\(347\) 414832.i 0.184948i −0.995715 0.0924738i \(-0.970523\pi\)
0.995715 0.0924738i \(-0.0294774\pi\)
\(348\) 1.44368e6i 0.639034i
\(349\) 658547. 0.289417 0.144708 0.989474i \(-0.453776\pi\)
0.144708 + 0.989474i \(0.453776\pi\)
\(350\) 156914. + 1.45678e6i 0.0684685 + 0.635660i
\(351\) −3.73453e6 −1.61796
\(352\) 441980.i 0.190128i
\(353\) 1.91003e6i 0.815839i −0.913018 0.407919i \(-0.866254\pi\)
0.913018 0.407919i \(-0.133746\pi\)
\(354\) 1.25233e6 0.531144
\(355\) −1.32942e6 1.19391e6i −0.559874 0.502807i
\(356\) 449969. 0.188173
\(357\) 1.43516e6i 0.595976i
\(358\) 2.70203e6i 1.11425i
\(359\) 3.45324e6 1.41413 0.707067 0.707147i \(-0.250018\pi\)
0.707067 + 0.707147i \(0.250018\pi\)
\(360\) 1.14399e6 1.27383e6i 0.465230 0.518032i
\(361\) 653783. 0.264038
\(362\) 3.10921e6i 1.24704i
\(363\) 678153.i 0.270123i
\(364\) 1.10693e6 0.437892
\(365\) −768596. + 855829.i −0.301972 + 0.336244i
\(366\) −2.36297e6 −0.922053
\(367\) 4.93092e6i 1.91101i 0.294976 + 0.955505i \(0.404688\pi\)
−0.294976 + 0.955505i \(0.595312\pi\)
\(368\) 135424.i 0.0521286i
\(369\) −3.92479e6 −1.50055
\(370\) 1.53115e6 + 1.37509e6i 0.581453 + 0.522186i
\(371\) −4.00190e6 −1.50949
\(372\) 2.42859e6i 0.909906i
\(373\) 2.27154e6i 0.845373i 0.906276 + 0.422687i \(0.138913\pi\)
−0.906276 + 0.422687i \(0.861087\pi\)
\(374\) 786933. 0.290910
\(375\) 3.80700e6 + 2.74351e6i 1.39799 + 1.00746i
\(376\) 1.78324e6 0.650488
\(377\) 1.98257e6i 0.718415i
\(378\) 2.96671e6i 1.06794i
\(379\) 4.82813e6 1.72656 0.863278 0.504728i \(-0.168407\pi\)
0.863278 + 0.504728i \(0.168407\pi\)
\(380\) −1.17730e6 1.05730e6i −0.418241 0.375611i
\(381\) −8.04628e6 −2.83977
\(382\) 1.79963e6i 0.630992i
\(383\) 2.68294e6i 0.934575i 0.884105 + 0.467288i \(0.154769\pi\)
−0.884105 + 0.467288i \(0.845231\pi\)
\(384\) 440103. 0.152309
\(385\) 1.88976e6 2.10424e6i 0.649761 0.723507i
\(386\) 1.40110e6 0.478633
\(387\) 1.45564e6i 0.494056i
\(388\) 645862.i 0.217801i
\(389\) −3.86485e6 −1.29497 −0.647483 0.762080i \(-0.724178\pi\)
−0.647483 + 0.762080i \(0.724178\pi\)
\(390\) 2.36874e6 2.63759e6i 0.788600 0.878103i
\(391\) −241119. −0.0797607
\(392\) 196303.i 0.0645225i
\(393\) 3.80355e6i 1.24225i
\(394\) −485419. −0.157535
\(395\) 1.19216e6 + 1.07064e6i 0.384451 + 0.345264i
\(396\) −3.30487e6 −1.05905
\(397\) 3.16739e6i 1.00861i −0.863525 0.504307i \(-0.831748\pi\)
0.863525 0.504307i \(-0.168252\pi\)
\(398\) 837430.i 0.264997i
\(399\) 5.57042e6 1.75168
\(400\) 85674.4 + 795399.i 0.0267733 + 0.248562i
\(401\) −4.63478e6 −1.43936 −0.719678 0.694308i \(-0.755711\pi\)
−0.719678 + 0.694308i \(0.755711\pi\)
\(402\) 2.16404e6i 0.667883i
\(403\) 3.33511e6i 1.02293i
\(404\) 100589. 0.0306617
\(405\) 2.23247e6 + 2.00491e6i 0.676312 + 0.607377i
\(406\) 1.57495e6 0.474190
\(407\) 3.97246e6i 1.18870i
\(408\) 783591.i 0.233045i
\(409\) −3.61968e6 −1.06995 −0.534974 0.844869i \(-0.679678\pi\)
−0.534974 + 0.844869i \(0.679678\pi\)
\(410\) 1.22535e6 1.36442e6i 0.359997 0.400856i
\(411\) −8.48277e6 −2.47704
\(412\) 2.11823e6i 0.614795i
\(413\) 1.36620e6i 0.394131i
\(414\) 1.01262e6 0.290366
\(415\) −2.02782e6 + 2.25797e6i −0.577976 + 0.643574i
\(416\) 604381. 0.171229
\(417\) 8.03853e6i 2.26379i
\(418\) 3.05441e6i 0.855040i
\(419\) 1.71063e6 0.476015 0.238007 0.971263i \(-0.423506\pi\)
0.238007 + 0.971263i \(0.423506\pi\)
\(420\) −2.09530e6 1.88173e6i −0.579593 0.520516i
\(421\) 5.12281e6 1.40865 0.704324 0.709878i \(-0.251250\pi\)
0.704324 + 0.709878i \(0.251250\pi\)
\(422\) 4.43581e6i 1.21253i
\(423\) 1.33340e7i 3.62334i
\(424\) −2.18502e6 −0.590258
\(425\) 1.41619e6 152541.i 0.380319 0.0409651i
\(426\) 3.43442e6 0.916916
\(427\) 2.57783e6i 0.684202i
\(428\) 2.76866e6i 0.730567i
\(429\) −6.84302e6 −1.79517
\(430\) 506040. + 454460.i 0.131982 + 0.118529i
\(431\) −5.24857e6 −1.36097 −0.680484 0.732763i \(-0.738230\pi\)
−0.680484 + 0.732763i \(0.738230\pi\)
\(432\) 1.61981e6i 0.417595i
\(433\) 3.15341e6i 0.808277i −0.914698 0.404138i \(-0.867571\pi\)
0.914698 0.404138i \(-0.132429\pi\)
\(434\) 2.64941e6 0.675189
\(435\) 3.37028e6 3.75279e6i 0.853969 0.950892i
\(436\) −2.08837e6 −0.526129
\(437\) 935879.i 0.234432i
\(438\) 2.21095e6i 0.550674i
\(439\) −7.46039e6 −1.84757 −0.923783 0.382916i \(-0.874920\pi\)
−0.923783 + 0.382916i \(0.874920\pi\)
\(440\) 1.03180e6 1.14891e6i 0.254076 0.282913i
\(441\) −1.46784e6 −0.359403
\(442\) 1.07608e6i 0.261993i
\(443\) 250230.i 0.0605802i −0.999541 0.0302901i \(-0.990357\pi\)
0.999541 0.0302901i \(-0.00964311\pi\)
\(444\) −3.95559e6 −0.952256
\(445\) −1.16967e6 1.05045e6i −0.280004 0.251464i
\(446\) −3.62322e6 −0.862497
\(447\) 9.62837e6i 2.27921i
\(448\) 480120.i 0.113020i
\(449\) −3.52812e6 −0.825901 −0.412950 0.910754i \(-0.635502\pi\)
−0.412950 + 0.910754i \(0.635502\pi\)
\(450\) −5.94752e6 + 640623.i −1.38454 + 0.149132i
\(451\) −3.53988e6 −0.819497
\(452\) 3.76571e6i 0.866963i
\(453\) 5.41815e6i 1.24052i
\(454\) 1.01753e6 0.231690
\(455\) −2.87741e6 2.58412e6i −0.651589 0.585174i
\(456\) 3.04143e6 0.684962
\(457\) 2.73901e6i 0.613484i 0.951793 + 0.306742i \(0.0992389\pi\)
−0.951793 + 0.306742i \(0.900761\pi\)
\(458\) 3.41069e6i 0.759764i
\(459\) 2.88403e6 0.638952
\(460\) −316147. + 352028.i −0.0696617 + 0.0775681i
\(461\) −5.14651e6 −1.12787 −0.563937 0.825818i \(-0.690714\pi\)
−0.563937 + 0.825818i \(0.690714\pi\)
\(462\) 5.43610e6i 1.18490i
\(463\) 8.06412e6i 1.74825i 0.485698 + 0.874127i \(0.338566\pi\)
−0.485698 + 0.874127i \(0.661434\pi\)
\(464\) 859920. 0.185423
\(465\) 5.66953e6 6.31301e6i 1.21595 1.35395i
\(466\) −4.50062e6 −0.960079
\(467\) 5.47424e6i 1.16153i −0.814070 0.580766i \(-0.802753\pi\)
0.814070 0.580766i \(-0.197247\pi\)
\(468\) 4.51920e6i 0.953777i
\(469\) −2.36081e6 −0.495597
\(470\) −4.63544e6 4.16296e6i −0.967936 0.869276i
\(471\) 6.77267e6 1.40672
\(472\) 745943.i 0.154117i
\(473\) 1.31288e6i 0.269819i
\(474\) −3.07982e6 −0.629622
\(475\) 592073. + 5.49679e6i 0.120404 + 1.11783i
\(476\) −854840. −0.172929
\(477\) 1.63383e7i 3.28784i
\(478\) 4.78601e6i 0.958084i
\(479\) −5.99647e6 −1.19415 −0.597073 0.802187i \(-0.703670\pi\)
−0.597073 + 0.802187i \(0.703670\pi\)
\(480\) −1.14403e6 1.02742e6i −0.226638 0.203537i
\(481\) −5.43210e6 −1.07054
\(482\) 938983.i 0.184094i
\(483\) 1.66563e6i 0.324872i
\(484\) −403936. −0.0783790
\(485\) −1.50776e6 + 1.67889e6i −0.291057 + 0.324092i
\(486\) 382867. 0.0735288
\(487\) 6.82842e6i 1.30466i −0.757935 0.652330i \(-0.773792\pi\)
0.757935 0.652330i \(-0.226208\pi\)
\(488\) 1.40749e6i 0.267544i
\(489\) −7.29557e6 −1.37971
\(490\) 458268. 510280.i 0.0862243 0.0960105i
\(491\) 9.40676e6 1.76091 0.880454 0.474132i \(-0.157238\pi\)
0.880454 + 0.474132i \(0.157238\pi\)
\(492\) 3.52485e6i 0.656489i
\(493\) 1.53106e6i 0.283711i
\(494\) 4.17671e6 0.770047
\(495\) 8.59085e6 + 7.71520e6i 1.57588 + 1.41525i
\(496\) 1.44657e6 0.264019
\(497\) 3.74670e6i 0.680390i
\(498\) 5.83326e6i 1.05399i
\(499\) −4.77154e6 −0.857842 −0.428921 0.903342i \(-0.641106\pi\)
−0.428921 + 0.903342i \(0.641106\pi\)
\(500\) 1.63415e6 2.26761e6i 0.292326 0.405642i
\(501\) 1.84499e7 3.28397
\(502\) 1.72792e6i 0.306030i
\(503\) 2.17494e6i 0.383290i 0.981464 + 0.191645i \(0.0613823\pi\)
−0.981464 + 0.191645i \(0.938618\pi\)
\(504\) 3.59005e6 0.629541
\(505\) −261476. 234824.i −0.0456250 0.0409745i
\(506\) 913311. 0.158578
\(507\) 616171.i 0.106459i
\(508\) 4.79270e6i 0.823989i
\(509\) 7.75150e6 1.32615 0.663073 0.748555i \(-0.269252\pi\)
0.663073 + 0.748555i \(0.269252\pi\)
\(510\) −1.82929e6 + 2.03691e6i −0.311428 + 0.346774i
\(511\) −2.41199e6 −0.408623
\(512\) 262144.i 0.0441942i
\(513\) 1.11941e7i 1.87800i
\(514\) −580145. −0.0968565
\(515\) −4.94500e6 + 5.50624e6i −0.821577 + 0.914823i
\(516\) −1.30730e6 −0.216149
\(517\) 1.20263e7i 1.97882i
\(518\) 4.31526e6i 0.706614i
\(519\) 2.87926e6 0.469205
\(520\) −1.57106e6 1.41092e6i −0.254791 0.228821i
\(521\) 1.65026e6 0.266354 0.133177 0.991092i \(-0.457482\pi\)
0.133177 + 0.991092i \(0.457482\pi\)
\(522\) 6.42997e6i 1.03284i
\(523\) 8.99272e6i 1.43760i −0.695219 0.718798i \(-0.744693\pi\)
0.695219 0.718798i \(-0.255307\pi\)
\(524\) 2.26556e6 0.360452
\(525\) 1.05374e6 + 9.78294e6i 0.166854 + 1.54907i
\(526\) −7.16647e6 −1.12938
\(527\) 2.57558e6i 0.403969i
\(528\) 2.96809e6i 0.463332i
\(529\) −279841. −0.0434783
\(530\) 5.67987e6 + 5.10093e6i 0.878312 + 0.788787i
\(531\) 5.57772e6 0.858461
\(532\) 3.31798e6i 0.508270i
\(533\) 4.84057e6i 0.738037i
\(534\) 3.02174e6 0.458568
\(535\) −6.46342e6 + 7.19700e6i −0.976288 + 1.08709i
\(536\) −1.28899e6 −0.193794
\(537\) 1.81453e7i 2.71537i
\(538\) 3.32713e6i 0.495580i
\(539\) −1.32388e6 −0.196281
\(540\) 3.78145e6 4.21063e6i 0.558051 0.621388i
\(541\) −3.67890e6 −0.540411 −0.270206 0.962803i \(-0.587092\pi\)
−0.270206 + 0.962803i \(0.587092\pi\)
\(542\) 1.01806e6i 0.148858i
\(543\) 2.08797e7i 3.03896i
\(544\) −466740. −0.0676204
\(545\) 5.42863e6 + 4.87530e6i 0.782887 + 0.703089i
\(546\) 7.43352e6 1.06712
\(547\) 6.86297e6i 0.980717i −0.871521 0.490359i \(-0.836866\pi\)
0.871521 0.490359i \(-0.163134\pi\)
\(548\) 5.05270e6i 0.718740i
\(549\) −1.05244e7 −1.49027
\(550\) −5.36424e6 + 577796.i −0.756139 + 0.0814456i
\(551\) 5.94267e6 0.833879
\(552\) 909432.i 0.127035i
\(553\) 3.35986e6i 0.467206i
\(554\) 85309.5 0.0118093
\(555\) 1.02824e7 + 9.23431e6i 1.41697 + 1.27254i
\(556\) −4.78809e6 −0.656864
\(557\) 1.03524e7i 1.41384i −0.707292 0.706922i \(-0.750083\pi\)
0.707292 0.706922i \(-0.249917\pi\)
\(558\) 1.08166e7i 1.47064i
\(559\) −1.79528e6 −0.242999
\(560\) −1.12084e6 + 1.24805e6i −0.151033 + 0.168175i
\(561\) 5.28460e6 0.708933
\(562\) 454766.i 0.0607361i
\(563\) 5.89028e6i 0.783186i −0.920138 0.391593i \(-0.871924\pi\)
0.920138 0.391593i \(-0.128076\pi\)
\(564\) 1.19752e7 1.58521
\(565\) −8.79103e6 + 9.78879e6i −1.15856 + 1.29005i
\(566\) −7.51595e6 −0.986150
\(567\) 6.29176e6i 0.821892i
\(568\) 2.04569e6i 0.266053i
\(569\) −1.64596e6 −0.213128 −0.106564 0.994306i \(-0.533985\pi\)
−0.106564 + 0.994306i \(0.533985\pi\)
\(570\) −7.90607e6 7.10022e6i −1.01923 0.915344i
\(571\) −3.27781e6 −0.420721 −0.210360 0.977624i \(-0.567464\pi\)
−0.210360 + 0.977624i \(0.567464\pi\)
\(572\) 4.07599e6i 0.520887i
\(573\) 1.20853e7i 1.53770i
\(574\) 3.84535e6 0.487142
\(575\) 1.64362e6 177038.i 0.207315 0.0223304i
\(576\) 1.96016e6 0.246170
\(577\) 1.32494e7i 1.65674i 0.560178 + 0.828372i \(0.310733\pi\)
−0.560178 + 0.828372i \(0.689267\pi\)
\(578\) 4.84841e6i 0.603642i
\(579\) 9.40903e6 1.16640
\(580\) −2.23532e6 2.00748e6i −0.275912 0.247788i
\(581\) −6.36365e6 −0.782107
\(582\) 4.33725e6i 0.530771i
\(583\) 1.47360e7i 1.79559i
\(584\) −1.31694e6 −0.159784
\(585\) 1.05501e7 1.17475e7i 1.27457 1.41923i
\(586\) −6.22901e6 −0.749334
\(587\) 3.14421e6i 0.376631i 0.982109 + 0.188316i \(0.0603028\pi\)
−0.982109 + 0.188316i \(0.939697\pi\)
\(588\) 1.31826e6i 0.157238i
\(589\) 9.99686e6 1.18734
\(590\) −1.74140e6 + 1.93904e6i −0.205953 + 0.229328i
\(591\) −3.25980e6 −0.383904
\(592\) 2.35612e6i 0.276307i
\(593\) 2.41001e6i 0.281438i −0.990050 0.140719i \(-0.955059\pi\)
0.990050 0.140719i \(-0.0449414\pi\)
\(594\) −1.09242e7 −1.27035
\(595\) 2.22212e6 + 1.99562e6i 0.257321 + 0.231092i
\(596\) 5.73507e6 0.661337
\(597\) 5.62371e6i 0.645784i
\(598\) 1.24890e6i 0.142815i
\(599\) −5.53205e6 −0.629968 −0.314984 0.949097i \(-0.601999\pi\)
−0.314984 + 0.949097i \(0.601999\pi\)
\(600\) 575341. + 5.34146e6i 0.0652450 + 0.605733i
\(601\) 1.33069e7 1.50276 0.751381 0.659869i \(-0.229388\pi\)
0.751381 + 0.659869i \(0.229388\pi\)
\(602\) 1.42617e6i 0.160391i
\(603\) 9.63834e6i 1.07947i
\(604\) −3.22728e6 −0.359951
\(605\) 1.05001e6 + 942988.i 0.116629 + 0.104741i
\(606\) 675497. 0.0747209
\(607\) 7.69221e6i 0.847382i −0.905807 0.423691i \(-0.860734\pi\)
0.905807 0.423691i \(-0.139266\pi\)
\(608\) 1.81161e6i 0.198749i
\(609\) 1.05765e7 1.15558
\(610\) 3.28577e6 3.65870e6i 0.357530 0.398109i
\(611\) 1.64452e7 1.78212
\(612\) 3.49000e6i 0.376658i
\(613\) 1.14763e7i 1.23353i −0.787147 0.616765i \(-0.788443\pi\)
0.787147 0.616765i \(-0.211557\pi\)
\(614\) 8.33743e6 0.892506
\(615\) 8.22874e6 9.16267e6i 0.877295 0.976865i
\(616\) 3.23797e6 0.343812
\(617\) 2.16141e6i 0.228573i −0.993448 0.114286i \(-0.963542\pi\)
0.993448 0.114286i \(-0.0364581\pi\)
\(618\) 1.42248e7i 1.49822i
\(619\) 9.03776e6 0.948056 0.474028 0.880510i \(-0.342800\pi\)
0.474028 + 0.880510i \(0.342800\pi\)
\(620\) −3.76029e6 3.37701e6i −0.392864 0.352820i
\(621\) 3.34719e6 0.348298
\(622\) 1.97608e6i 0.204800i
\(623\) 3.29649e6i 0.340276i
\(624\) 4.05868e6 0.417276
\(625\) −9.54162e6 + 2.07963e6i −0.977062 + 0.212954i
\(626\) 5.22311e6 0.532713
\(627\) 2.05117e7i 2.08369i
\(628\) 4.03409e6i 0.408175i
\(629\) 4.19500e6 0.422771
\(630\) −9.33217e6 8.38096e6i −0.936766 0.841284i
\(631\) −1.08548e7 −1.08530 −0.542648 0.839960i \(-0.682578\pi\)
−0.542648 + 0.839960i \(0.682578\pi\)
\(632\) 1.83447e6i 0.182692i
\(633\) 2.97884e7i 2.95487i
\(634\) −1.04849e7 −1.03596
\(635\) 1.11885e7 1.24584e7i 1.10113 1.22611i
\(636\) −1.46734e7 −1.43843
\(637\) 1.81033e6i 0.176770i
\(638\) 5.79937e6i 0.564065i
\(639\) 1.52964e7 1.48196
\(640\) −611974. + 681431.i −0.0590586 + 0.0657616i
\(641\) −1.45321e6 −0.139695 −0.0698477 0.997558i \(-0.522251\pi\)
−0.0698477 + 0.997558i \(0.522251\pi\)
\(642\) 1.85927e7i 1.78035i
\(643\) 6.34297e6i 0.605013i −0.953147 0.302507i \(-0.902177\pi\)
0.953147 0.302507i \(-0.0978235\pi\)
\(644\) −992123. −0.0942650
\(645\) 3.39828e6 + 3.05190e6i 0.321632 + 0.288849i
\(646\) −3.22551e6 −0.304101
\(647\) 1.65532e7i 1.55461i −0.629123 0.777306i \(-0.716586\pi\)
0.629123 0.777306i \(-0.283414\pi\)
\(648\) 3.43528e6i 0.321385i
\(649\) 5.03070e6 0.468832
\(650\) 790100. + 7.33527e6i 0.0733497 + 0.680977i
\(651\) 1.77920e7 1.64540
\(652\) 4.34555e6i 0.400337i
\(653\) 7.59986e6i 0.697465i −0.937222 0.348733i \(-0.886612\pi\)
0.937222 0.348733i \(-0.113388\pi\)
\(654\) −1.40244e7 −1.28215
\(655\) −5.88921e6 5.28894e6i −0.536357 0.481687i
\(656\) 2.09955e6 0.190487
\(657\) 9.84728e6i 0.890026i
\(658\) 1.30641e7i 1.17629i
\(659\) −3.69368e6 −0.331318 −0.165659 0.986183i \(-0.552975\pi\)
−0.165659 + 0.986183i \(0.552975\pi\)
\(660\) 6.92900e6 7.71542e6i 0.619171 0.689445i
\(661\) −4.26313e6 −0.379512 −0.189756 0.981831i \(-0.560770\pi\)
−0.189756 + 0.981831i \(0.560770\pi\)
\(662\) 1.46141e7i 1.29607i
\(663\) 7.22637e6i 0.638464i
\(664\) −3.47453e6 −0.305827
\(665\) −7.74581e6 + 8.62493e6i −0.679223 + 0.756313i
\(666\) −1.76176e7 −1.53908
\(667\) 1.77694e6i 0.154653i
\(668\) 1.09895e7i 0.952880i
\(669\) −2.43315e7 −2.10186
\(670\) 3.35068e6 + 3.00915e6i 0.288367 + 0.258975i
\(671\) −9.49221e6 −0.813881
\(672\) 3.22422e6i 0.275423i
\(673\) 7.86653e6i 0.669493i 0.942308 + 0.334746i \(0.108651\pi\)
−0.942308 + 0.334746i \(0.891349\pi\)
\(674\) 8.34518e6 0.707597
\(675\) −1.96594e7 + 2.11756e6i −1.66077 + 0.178886i
\(676\) −367017. −0.0308901
\(677\) 1.14271e7i 0.958215i 0.877756 + 0.479107i \(0.159040\pi\)
−0.877756 + 0.479107i \(0.840960\pi\)
\(678\) 2.52884e7i 2.11274i
\(679\) −4.73162e6 −0.393854
\(680\) 1.21327e6 + 1.08960e6i 0.100620 + 0.0903641i
\(681\) 6.83316e6 0.564616
\(682\) 9.75579e6i 0.803159i
\(683\) 2.08171e7i 1.70753i 0.520656 + 0.853766i \(0.325687\pi\)
−0.520656 + 0.853766i \(0.674313\pi\)
\(684\) 1.35461e7 1.10707
\(685\) 1.17955e7 1.31343e7i 0.960484 1.06950i
\(686\) 9.31837e6 0.756014
\(687\) 2.29043e7i 1.85150i
\(688\) 778686.i 0.0627179i
\(689\) −2.01505e7 −1.61711
\(690\) −2.12306e6 + 2.36403e6i −0.169762 + 0.189029i
\(691\) 923178. 0.0735513 0.0367756 0.999324i \(-0.488291\pi\)
0.0367756 + 0.999324i \(0.488291\pi\)
\(692\) 1.71501e6i 0.136145i
\(693\) 2.42116e7i 1.91510i
\(694\) −1.65933e6 −0.130778
\(695\) 1.24464e7 + 1.11778e7i 0.977422 + 0.877795i
\(696\) 5.77474e6 0.451866
\(697\) 3.73818e6i 0.291460i
\(698\) 2.63419e6i 0.204648i
\(699\) −3.02236e7 −2.33966
\(700\) 5.82713e6 627655.i 0.449479 0.0484145i
\(701\) 1.56158e7 1.20024 0.600121 0.799909i \(-0.295119\pi\)
0.600121 + 0.799909i \(0.295119\pi\)
\(702\) 1.49381e7i 1.14407i
\(703\) 1.62825e7i 1.24260i
\(704\) 1.76792e6 0.134441
\(705\) −3.11290e7 2.79561e7i −2.35881 2.11838i
\(706\) −7.64014e6 −0.576885
\(707\) 736918.i 0.0554460i
\(708\) 5.00934e6i 0.375575i
\(709\) 1.23664e7 0.923908 0.461954 0.886904i \(-0.347149\pi\)
0.461954 + 0.886904i \(0.347149\pi\)
\(710\) −4.77565e6 + 5.31767e6i −0.355538 + 0.395891i
\(711\) −1.37171e7 −1.01763
\(712\) 1.79988e6i 0.133058i
\(713\) 2.98920e6i 0.220207i
\(714\) −5.74062e6 −0.421419
\(715\) 9.51539e6 1.05954e7i 0.696084 0.775087i
\(716\) −1.08081e7 −0.787893
\(717\) 3.21401e7i 2.33480i
\(718\) 1.38130e7i 0.999943i
\(719\) 7.41015e6 0.534571 0.267285 0.963617i \(-0.413873\pi\)
0.267285 + 0.963617i \(0.413873\pi\)
\(720\) −5.09534e6 4.57598e6i −0.366304 0.328967i
\(721\) −1.55183e7 −1.11174
\(722\) 2.61513e6i 0.186703i
\(723\) 6.30568e6i 0.448628i
\(724\) 1.24368e7 0.881787
\(725\) 1.12416e6 + 1.04367e7i 0.0794299 + 0.737425i
\(726\) −2.71261e6 −0.191005
\(727\) 1.02065e7i 0.716208i 0.933682 + 0.358104i \(0.116577\pi\)
−0.933682 + 0.358104i \(0.883423\pi\)
\(728\) 4.42772e6i 0.309636i
\(729\) 1.56145e7 1.08820
\(730\) 3.42332e6 + 3.07439e6i 0.237761 + 0.213526i
\(731\) 1.38643e6 0.0959631
\(732\) 9.45189e6i 0.651990i
\(733\) 2.62828e6i 0.180681i 0.995911 + 0.0903405i \(0.0287955\pi\)
−0.995911 + 0.0903405i \(0.971204\pi\)
\(734\) 1.97237e7 1.35129
\(735\) 3.07747e6 3.42676e6i 0.210124 0.233973i
\(736\) −541696. −0.0368605
\(737\) 8.69309e6i 0.589529i
\(738\) 1.56992e7i 1.06105i
\(739\) 2.78382e6 0.187513 0.0937564 0.995595i \(-0.470113\pi\)
0.0937564 + 0.995595i \(0.470113\pi\)
\(740\) 5.50035e6 6.12462e6i 0.369242 0.411149i
\(741\) 2.80485e7 1.87656
\(742\) 1.60076e7i 1.06737i
\(743\) 8.18922e6i 0.544215i −0.962267 0.272107i \(-0.912279\pi\)
0.962267 0.272107i \(-0.0877206\pi\)
\(744\) 9.71436e6 0.643401
\(745\) −1.49080e7 1.33885e7i −0.984079 0.883773i
\(746\) 9.08616e6 0.597769
\(747\) 2.59805e7i 1.70352i
\(748\) 3.14773e6i 0.205705i
\(749\) −2.02833e7 −1.32110
\(750\) 1.09740e7 1.52280e7i 0.712382 0.988530i
\(751\) 1.35672e7 0.877792 0.438896 0.898538i \(-0.355370\pi\)
0.438896 + 0.898538i \(0.355370\pi\)
\(752\) 7.13295e6i 0.459965i
\(753\) 1.16037e7i 0.745779i
\(754\) 7.93028e6 0.507996
\(755\) 8.38916e6 + 7.53407e6i 0.535613 + 0.481019i
\(756\) 1.18668e7 0.755145
\(757\) 2.17873e7i 1.38186i 0.722923 + 0.690928i \(0.242798\pi\)
−0.722923 + 0.690928i \(0.757202\pi\)
\(758\) 1.93125e7i 1.22086i
\(759\) 6.13328e6 0.386446
\(760\) −4.22919e6 + 4.70919e6i −0.265597 + 0.295741i
\(761\) −3.22261e6 −0.201719 −0.100859 0.994901i \(-0.532159\pi\)
−0.100859 + 0.994901i \(0.532159\pi\)
\(762\) 3.21851e7i 2.00802i
\(763\) 1.52995e7i 0.951408i
\(764\) 7.19851e6 0.446179
\(765\) −8.14740e6 + 9.07211e6i −0.503345 + 0.560473i
\(766\) 1.07318e7 0.660844
\(767\) 6.87918e6i 0.422229i
\(768\) 1.76041e6i 0.107699i
\(769\) −4.02074e6 −0.245183 −0.122591 0.992457i \(-0.539120\pi\)
−0.122591 + 0.992457i \(0.539120\pi\)
\(770\) −8.41695e6 7.55902e6i −0.511597 0.459451i
\(771\) −3.89593e6 −0.236034
\(772\) 5.60442e6i 0.338444i
\(773\) 1.03233e7i 0.621398i −0.950508 0.310699i \(-0.899437\pi\)
0.950508 0.310699i \(-0.100563\pi\)
\(774\) −5.82255e6 −0.349350
\(775\) 1.89108e6 + 1.75568e7i 0.113098 + 1.05000i
\(776\) −2.58345e6 −0.154009
\(777\) 2.89788e7i 1.72198i
\(778\) 1.54594e7i 0.915679i
\(779\) 1.45094e7 0.856655
\(780\) −1.05504e7 9.47498e6i −0.620913 0.557624i
\(781\) 1.37963e7 0.809346
\(782\) 964474.i 0.0563993i
\(783\) 2.12541e7i 1.23891i
\(784\) 785212. 0.0456243
\(785\) −9.41757e6 + 1.04864e7i −0.545462 + 0.607370i
\(786\) 1.52142e7 0.878402
\(787\) 1.04668e7i 0.602389i −0.953563 0.301195i \(-0.902615\pi\)
0.953563 0.301195i \(-0.0973854\pi\)
\(788\) 1.94168e6i 0.111394i
\(789\) −4.81260e7 −2.75225
\(790\) 4.28257e6 4.76863e6i 0.244139 0.271848i
\(791\) −2.75878e7 −1.56774
\(792\) 1.32195e7i 0.748861i
\(793\) 1.29800e7i 0.732980i
\(794\) −1.26695e7 −0.713197
\(795\) 3.81428e7 + 3.42550e7i 2.14040 + 1.92223i
\(796\) 3.34972e6 0.187381
\(797\) 1.28535e7i 0.716763i 0.933575 + 0.358382i \(0.116671\pi\)
−0.933575 + 0.358382i \(0.883329\pi\)
\(798\) 2.22817e7i 1.23863i
\(799\) −1.27000e7 −0.703780
\(800\) 3.18160e6 342698.i 0.175760 0.0189316i
\(801\) 1.34584e7 0.741160
\(802\) 1.85391e7i 1.01778i
\(803\) 8.88154e6i 0.486070i
\(804\) −8.65617e6 −0.472265
\(805\) 2.57898e6 + 2.31611e6i 0.140268 + 0.125970i
\(806\) 1.33404e7 0.723324
\(807\) 2.23431e7i 1.20770i
\(808\) 402355.i 0.0216811i
\(809\) 8.26723e6 0.444108 0.222054 0.975034i \(-0.428724\pi\)
0.222054 + 0.975034i \(0.428724\pi\)
\(810\) 8.01966e6 8.92986e6i 0.429480 0.478225i
\(811\) 2.45999e6 0.131335 0.0656676 0.997842i \(-0.479082\pi\)
0.0656676 + 0.997842i \(0.479082\pi\)
\(812\) 6.29981e6i 0.335303i
\(813\) 6.83670e6i 0.362760i
\(814\) −1.58898e7 −0.840541
\(815\) 1.01447e7 1.12961e7i 0.534988 0.595707i
\(816\) −3.13436e6 −0.164787
\(817\) 5.38129e6i 0.282053i
\(818\) 1.44787e7i 0.756567i
\(819\) 3.31079e7 1.72473
\(820\) −5.45768e6 4.90138e6i −0.283448 0.254556i
\(821\) 1.35274e7 0.700417 0.350208 0.936672i \(-0.386111\pi\)
0.350208 + 0.936672i \(0.386111\pi\)
\(822\) 3.39311e7i 1.75153i
\(823\) 3.58804e7i 1.84654i 0.384156 + 0.923268i \(0.374493\pi\)
−0.384156 + 0.923268i \(0.625507\pi\)
\(824\) −8.47292e6 −0.434725
\(825\) −3.60232e7 + 3.88015e6i −1.84267 + 0.198479i
\(826\) −5.46482e6 −0.278693
\(827\) 3.38121e7i 1.71913i 0.511026 + 0.859565i \(0.329266\pi\)
−0.511026 + 0.859565i \(0.670734\pi\)
\(828\) 4.05048e6i 0.205320i
\(829\) −1.17504e7 −0.593834 −0.296917 0.954903i \(-0.595959\pi\)
−0.296917 + 0.954903i \(0.595959\pi\)
\(830\) 9.03189e6 + 8.11129e6i 0.455076 + 0.408691i
\(831\) 572891. 0.0287786
\(832\) 2.41752e6i 0.121077i
\(833\) 1.39805e6i 0.0698087i
\(834\) −3.21541e7 −1.60074
\(835\) −2.56550e7 + 2.85668e7i −1.27337 + 1.41790i
\(836\) 1.22176e7 0.604604
\(837\) 3.57540e7i 1.76405i
\(838\) 6.84251e6i 0.336593i
\(839\) 2.99880e7 1.47076 0.735382 0.677653i \(-0.237003\pi\)
0.735382 + 0.677653i \(0.237003\pi\)
\(840\) −7.52692e6 + 8.38120e6i −0.368060 + 0.409834i
\(841\) −9.22786e6 −0.449895
\(842\) 2.04912e7i 0.996065i
\(843\) 3.05395e6i 0.148011i
\(844\) −1.77432e7 −0.857386
\(845\) 954045. + 856801.i 0.0459650 + 0.0412798i
\(846\) 5.33359e7 2.56209
\(847\) 2.95926e6i 0.141734i
\(848\) 8.74010e6i 0.417375i
\(849\) −5.04729e7 −2.40320
\(850\) −610164. 5.66474e6i −0.0289667 0.268926i
\(851\) 4.86869e6 0.230456
\(852\) 1.37377e7i 0.648357i
\(853\) 2.97995e7i 1.40228i −0.713021 0.701142i \(-0.752674\pi\)
0.713021 0.701142i \(-0.247326\pi\)
\(854\) 1.03113e7 0.483804
\(855\) −3.52125e7 3.16234e7i −1.64733 1.47942i
\(856\) −1.10746e7 −0.516589
\(857\) 3.36282e7i 1.56406i 0.623244 + 0.782028i \(0.285815\pi\)
−0.623244 + 0.782028i \(0.714185\pi\)
\(858\) 2.73721e7i 1.26937i
\(859\) −548701. −0.0253719 −0.0126859 0.999920i \(-0.504038\pi\)
−0.0126859 + 0.999920i \(0.504038\pi\)
\(860\) 1.81784e6 2.02416e6i 0.0838126 0.0933251i
\(861\) 2.58232e7 1.18714
\(862\) 2.09943e7i 0.962350i
\(863\) 1.05222e7i 0.480927i −0.970658 0.240463i \(-0.922701\pi\)
0.970658 0.240463i \(-0.0772994\pi\)
\(864\) 6.47925e6 0.295284
\(865\) −4.00369e6 + 4.45809e6i −0.181936 + 0.202586i
\(866\) −1.26136e7 −0.571538
\(867\) 3.25592e7i 1.47105i
\(868\) 1.05976e7i 0.477430i
\(869\) −1.23718e7 −0.555757
\(870\) −1.50112e7 1.34811e7i −0.672382 0.603848i
\(871\) −1.18873e7 −0.530929
\(872\) 8.35350e6i 0.372029i
\(873\) 1.93175e7i 0.857858i
\(874\) −3.74352e6 −0.165768
\(875\) −1.66126e7 1.19719e7i −0.733530 0.528617i
\(876\) −8.84381e6 −0.389385
\(877\) 1.46747e7i 0.644273i −0.946693 0.322137i \(-0.895599\pi\)
0.946693 0.322137i \(-0.104401\pi\)
\(878\) 2.98416e7i 1.30643i
\(879\) −4.18306e7 −1.82609
\(880\) −4.59563e6 4.12720e6i −0.200050 0.179659i
\(881\) −1.62640e7 −0.705972 −0.352986 0.935629i \(-0.614834\pi\)
−0.352986 + 0.935629i \(0.614834\pi\)
\(882\) 5.87135e6i 0.254136i
\(883\) 1.69389e7i 0.731112i −0.930789 0.365556i \(-0.880879\pi\)
0.930789 0.365556i \(-0.119121\pi\)
\(884\) −4.30433e6 −0.185257
\(885\) −1.16943e7 + 1.30215e7i −0.501898 + 0.558861i
\(886\) −1.00092e6 −0.0428367
\(887\) 3.44782e7i 1.47142i −0.677298 0.735709i \(-0.736849\pi\)
0.677298 0.735709i \(-0.263151\pi\)
\(888\) 1.58224e7i 0.673347i
\(889\) 3.51116e7 1.49003
\(890\) −4.20180e6 + 4.67869e6i −0.177812 + 0.197993i
\(891\) −2.31678e7 −0.977668
\(892\) 1.44929e7i 0.609878i
\(893\) 4.92939e7i 2.06854i
\(894\) 3.85135e7 1.61164
\(895\) 2.80952e7 + 2.52315e7i 1.17240 + 1.05290i
\(896\) −1.92048e6 −0.0799171
\(897\) 8.38689e6i 0.348032i
\(898\) 1.41125e7i 0.584000i
\(899\) 1.89809e7 0.783282
\(900\) 2.56249e6 + 2.37901e7i 0.105452 + 0.979016i
\(901\) 1.55615e7 0.638615
\(902\) 1.41595e7i 0.579472i
\(903\) 9.57738e6i 0.390865i
\(904\) −1.50628e7 −0.613036
\(905\) −3.23290e7 2.90338e7i −1.31211 1.17837i
\(906\) −2.16726e7 −0.877183
\(907\) 2.86555e7i 1.15662i 0.815818 + 0.578308i \(0.196287\pi\)
−0.815818 + 0.578308i \(0.803713\pi\)
\(908\) 4.07012e6i 0.163830i
\(909\) 3.00857e6 0.120768
\(910\) −1.03365e7 + 1.15097e7i −0.413780 + 0.460743i
\(911\) 2.02300e7 0.807606 0.403803 0.914846i \(-0.367688\pi\)
0.403803 + 0.914846i \(0.367688\pi\)
\(912\) 1.21657e7i 0.484341i
\(913\) 2.34326e7i 0.930342i
\(914\) 1.09560e7 0.433799
\(915\) 2.20654e7 2.45698e7i 0.871283 0.970171i
\(916\) 1.36428e7 0.537234
\(917\) 1.65976e7i 0.651811i
\(918\) 1.15361e7i 0.451807i
\(919\) −6.54020e6 −0.255448 −0.127724 0.991810i \(-0.540767\pi\)
−0.127724 + 0.991810i \(0.540767\pi\)
\(920\) 1.40811e6 + 1.26459e6i 0.0548489 + 0.0492583i
\(921\) 5.59895e7 2.17499
\(922\) 2.05860e7i 0.797527i
\(923\) 1.88656e7i 0.728896i
\(924\) 2.17444e7 0.837852
\(925\) −2.85958e7 + 3.08012e6i −1.09887 + 0.118362i
\(926\) 3.22565e7 1.23620
\(927\) 6.33555e7i 2.42150i
\(928\) 3.43968e6i 0.131114i
\(929\) 4.70275e7 1.78777 0.893886 0.448294i \(-0.147968\pi\)
0.893886 + 0.448294i \(0.147968\pi\)
\(930\) −2.52520e7 2.26781e7i −0.957390 0.859805i
\(931\) 5.42639e6 0.205181
\(932\) 1.80025e7i 0.678879i
\(933\) 1.32703e7i 0.499086i
\(934\) −2.18970e7 −0.821328
\(935\) −7.34837e6 + 8.18239e6i −0.274892 + 0.306091i
\(936\) 1.80768e7 0.674422
\(937\) 3.35351e6i 0.124782i 0.998052 + 0.0623908i \(0.0198725\pi\)
−0.998052 + 0.0623908i \(0.980127\pi\)
\(938\) 9.44324e6i 0.350440i
\(939\) 3.50755e7 1.29819
\(940\) −1.66518e7 + 1.85418e7i −0.614671 + 0.684434i
\(941\) −3.75069e7 −1.38082 −0.690409 0.723419i \(-0.742569\pi\)
−0.690409 + 0.723419i \(0.742569\pi\)
\(942\) 2.70907e7i 0.994701i
\(943\) 4.33852e6i 0.158877i
\(944\) −2.98377e6 −0.108977
\(945\) −3.08473e7 2.77031e7i −1.12367 1.00913i
\(946\) −5.25153e6 −0.190791
\(947\) 2.97558e7i 1.07819i −0.842244 0.539097i \(-0.818766\pi\)
0.842244 0.539097i \(-0.181234\pi\)
\(948\) 1.23193e7i 0.445210i
\(949\) −1.21450e7 −0.437754
\(950\) 2.19872e7 2.36829e6i 0.790424 0.0851385i
\(951\) −7.04109e7 −2.52458
\(952\) 3.41936e6i 0.122279i
\(953\) 1.91059e7i 0.681451i 0.940163 + 0.340726i \(0.110673\pi\)
−0.940163 + 0.340726i \(0.889327\pi\)
\(954\) −6.53532e7 −2.32486
\(955\) −1.87122e7 1.68049e7i −0.663920 0.596248i
\(956\) −1.91440e7 −0.677468
\(957\) 3.89453e7i 1.37460i
\(958\) 2.39859e7i 0.844388i
\(959\) 3.70163e7 1.29971
\(960\) −4.10968e6 + 4.57611e6i −0.143923 + 0.160257i
\(961\) 3.30088e6 0.115298
\(962\) 2.17284e7i 0.756989i
\(963\) 8.28095e7i 2.87749i
\(964\) 3.75593e6 0.130174
\(965\) −1.30835e7 + 1.45684e7i −0.452278 + 0.503610i
\(966\) −6.66254e6 −0.229719
\(967\) 6.00580e6i 0.206540i 0.994653 + 0.103270i \(0.0329306\pi\)
−0.994653 + 0.103270i \(0.967069\pi\)
\(968\) 1.61575e6i 0.0554223i
\(969\) −2.16607e7 −0.741078
\(970\) 6.71556e6 + 6.03105e6i 0.229167 + 0.205809i
\(971\) 2.22673e7 0.757914 0.378957 0.925414i \(-0.376283\pi\)
0.378957 + 0.925414i \(0.376283\pi\)
\(972\) 1.53147e6i 0.0519927i
\(973\) 3.50778e7i 1.18782i
\(974\) −2.73137e7 −0.922534
\(975\) 5.30587e6 + 4.92595e7i 0.178749 + 1.65951i
\(976\) 5.62995e6 0.189182
\(977\) 2.72011e7i 0.911697i 0.890057 + 0.455849i \(0.150664\pi\)
−0.890057 + 0.455849i \(0.849336\pi\)
\(978\) 2.91823e7i 0.975600i
\(979\) 1.21385e7 0.404770
\(980\) −2.04112e6 1.83307e6i −0.0678896 0.0609698i
\(981\) −6.24625e7 −2.07227
\(982\) 3.76271e7i 1.24515i
\(983\) 2.18935e7i 0.722654i −0.932439 0.361327i \(-0.882324\pi\)
0.932439 0.361327i \(-0.117676\pi\)
\(984\) 1.40994e7 0.464208
\(985\) 4.53284e6 5.04730e6i 0.148860 0.165756i
\(986\) −6.12425e6 −0.200614
\(987\) 8.77310e7i 2.86655i
\(988\) 1.67069e7i 0.544506i
\(989\) 1.60908e6 0.0523103
\(990\) 3.08608e7 3.43634e7i 1.00073 1.11432i
\(991\) 2.78010e6 0.0899242 0.0449621 0.998989i \(-0.485683\pi\)
0.0449621 + 0.998989i \(0.485683\pi\)
\(992\) 5.78628e6i 0.186690i
\(993\) 9.81401e7i 3.15845i
\(994\) −1.49868e7 −0.481108
\(995\) −8.70744e6 7.81991e6i −0.278826 0.250406i
\(996\) −2.33330e7 −0.745286
\(997\) 7.68207e6i 0.244760i 0.992483 + 0.122380i \(0.0390526\pi\)
−0.992483 + 0.122380i \(0.960947\pi\)
\(998\) 1.90862e7i 0.606586i
\(999\) −5.82347e7 −1.84615
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 230.6.b.a.139.2 26
5.4 even 2 inner 230.6.b.a.139.25 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.6.b.a.139.2 26 1.1 even 1 trivial
230.6.b.a.139.25 yes 26 5.4 even 2 inner