gp: [N,k,chi] = [23,4,Mod(1,23)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(23, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("23.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
23 23 2 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 + 2 T_{2} + 2 T 2 + 2
T2 + 2
acting on S 4 n e w ( Γ 0 ( 23 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(23)) S 4 n e w ( Γ 0 ( 2 3 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T + 5 T + 5 T + 5
T + 5
5 5 5
T + 6 T + 6 T + 6
T + 6
7 7 7
T + 8 T + 8 T + 8
T + 8
11 11 1 1
T − 34 T - 34 T − 3 4
T - 34
13 13 1 3
T + 57 T + 57 T + 5 7
T + 57
17 17 1 7
T + 80 T + 80 T + 8 0
T + 80
19 19 1 9
T + 70 T + 70 T + 7 0
T + 70
23 23 2 3
T − 23 T - 23 T − 2 3
T - 23
29 29 2 9
T − 245 T - 245 T − 2 4 5
T - 245
31 31 3 1
T − 103 T - 103 T − 1 0 3
T - 103
37 37 3 7
T + 298 T + 298 T + 2 9 8
T + 298
41 41 4 1
T − 95 T - 95 T − 9 5
T - 95
43 43 4 3
T − 88 T - 88 T − 8 8
T - 88
47 47 4 7
T + 357 T + 357 T + 3 5 7
T + 357
53 53 5 3
T + 414 T + 414 T + 4 1 4
T + 414
59 59 5 9
T + 408 T + 408 T + 4 0 8
T + 408
61 61 6 1
T − 822 T - 822 T − 8 2 2
T - 822
67 67 6 7
T − 926 T - 926 T − 9 2 6
T - 926
71 71 7 1
T − 335 T - 335 T − 3 3 5
T - 335
73 73 7 3
T + 899 T + 899 T + 8 9 9
T + 899
79 79 7 9
T + 1322 T + 1322 T + 1 3 2 2
T + 1322
83 83 8 3
T + 36 T + 36 T + 3 6
T + 36
89 89 8 9
T + 460 T + 460 T + 4 6 0
T + 460
97 97 9 7
T + 964 T + 964 T + 9 6 4
T + 964
show more
show less