Properties

Label 23.4.a.a
Level 2323
Weight 44
Character orbit 23.a
Self dual yes
Analytic conductor 1.3571.357
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [23,4,Mod(1,23)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("23.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 23 23
Weight: k k == 4 4
Character orbit: [χ][\chi] == 23.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.357043930131.35704393013
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2q25q34q46q5+10q68q7+24q82q9+12q10+34q11+20q1257q13+16q14+30q1516q1680q17+4q1870q19+68q99+O(q100) q - 2 q^{2} - 5 q^{3} - 4 q^{4} - 6 q^{5} + 10 q^{6} - 8 q^{7} + 24 q^{8} - 2 q^{9} + 12 q^{10} + 34 q^{11} + 20 q^{12} - 57 q^{13} + 16 q^{14} + 30 q^{15} - 16 q^{16} - 80 q^{17} + 4 q^{18} - 70 q^{19}+ \cdots - 68 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−2.00000 −5.00000 −4.00000 −6.00000 10.0000 −8.00000 24.0000 −2.00000 12.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
2323 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 23.4.a.a 1
3.b odd 2 1 207.4.a.a 1
4.b odd 2 1 368.4.a.d 1
5.b even 2 1 575.4.a.g 1
5.c odd 4 2 575.4.b.b 2
7.b odd 2 1 1127.4.a.a 1
8.b even 2 1 1472.4.a.h 1
8.d odd 2 1 1472.4.a.c 1
23.b odd 2 1 529.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.4.a.a 1 1.a even 1 1 trivial
207.4.a.a 1 3.b odd 2 1
368.4.a.d 1 4.b odd 2 1
529.4.a.a 1 23.b odd 2 1
575.4.a.g 1 5.b even 2 1
575.4.b.b 2 5.c odd 4 2
1127.4.a.a 1 7.b odd 2 1
1472.4.a.c 1 8.d odd 2 1
1472.4.a.h 1 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2+2 T_{2} + 2 acting on S4new(Γ0(23))S_{4}^{\mathrm{new}}(\Gamma_0(23)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+2 T + 2 Copy content Toggle raw display
33 T+5 T + 5 Copy content Toggle raw display
55 T+6 T + 6 Copy content Toggle raw display
77 T+8 T + 8 Copy content Toggle raw display
1111 T34 T - 34 Copy content Toggle raw display
1313 T+57 T + 57 Copy content Toggle raw display
1717 T+80 T + 80 Copy content Toggle raw display
1919 T+70 T + 70 Copy content Toggle raw display
2323 T23 T - 23 Copy content Toggle raw display
2929 T245 T - 245 Copy content Toggle raw display
3131 T103 T - 103 Copy content Toggle raw display
3737 T+298 T + 298 Copy content Toggle raw display
4141 T95 T - 95 Copy content Toggle raw display
4343 T88 T - 88 Copy content Toggle raw display
4747 T+357 T + 357 Copy content Toggle raw display
5353 T+414 T + 414 Copy content Toggle raw display
5959 T+408 T + 408 Copy content Toggle raw display
6161 T822 T - 822 Copy content Toggle raw display
6767 T926 T - 926 Copy content Toggle raw display
7171 T335 T - 335 Copy content Toggle raw display
7373 T+899 T + 899 Copy content Toggle raw display
7979 T+1322 T + 1322 Copy content Toggle raw display
8383 T+36 T + 36 Copy content Toggle raw display
8989 T+460 T + 460 Copy content Toggle raw display
9797 T+964 T + 964 Copy content Toggle raw display
show more
show less