Properties

Label 23.4
Level 23
Weight 4
Dimension 55
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 176
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(176\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(23))\).

Total New Old
Modular forms 77 75 2
Cusp forms 55 55 0
Eisenstein series 22 20 2

Trace form

\( 55 q - 11 q^{2} - 11 q^{3} - 11 q^{4} - 11 q^{5} - 11 q^{6} - 11 q^{7} - 11 q^{8} - 11 q^{9} - 11 q^{10} - 11 q^{11} - 11 q^{12} - 11 q^{13} - 11 q^{14} - 385 q^{15} - 451 q^{16} - 99 q^{17} + 77 q^{18}+ \cdots - 2321 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
23.4.a \(\chi_{23}(1, \cdot)\) 23.4.a.a 1 1
23.4.a.b 4
23.4.c \(\chi_{23}(2, \cdot)\) 23.4.c.a 50 10