Defining parameters
Level: | \( N \) | \(=\) | \( 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 23.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(23))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7 | 5 | 2 |
Cusp forms | 5 | 5 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(23\) | Dim |
---|---|
\(+\) | \(4\) |
\(-\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(23))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 23 | |||||||
23.4.a.a | $1$ | $1.357$ | \(\Q\) | None | \(-2\) | \(-5\) | \(-6\) | \(-8\) | $-$ | \(q-2q^{2}-5q^{3}-4q^{4}-6q^{5}+10q^{6}+\cdots\) | |
23.4.a.b | $4$ | $1.357$ | 4.4.334189.1 | None | \(2\) | \(7\) | \(14\) | \(16\) | $+$ | \(q+(1+\beta _{3})q^{2}+(1+\beta _{1}+\beta _{2})q^{3}+(6+\cdots)q^{4}+\cdots\) |