Defining parameters
| Level: | \( N \) | \(=\) | \( 23 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 23.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(8\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(23))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 7 | 5 | 2 |
| Cusp forms | 5 | 5 | 0 |
| Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(23\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(5\) | \(4\) | \(1\) | \(4\) | \(4\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(2\) | \(1\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(23))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 23 | |||||||
| 23.4.a.a | $1$ | $1.357$ | \(\Q\) | None | \(-2\) | \(-5\) | \(-6\) | \(-8\) | $-$ | \(q-2q^{2}-5q^{3}-4q^{4}-6q^{5}+10q^{6}+\cdots\) | |
| 23.4.a.b | $4$ | $1.357$ | 4.4.334189.1 | None | \(2\) | \(7\) | \(14\) | \(16\) | $+$ | \(q+(1+\beta _{3})q^{2}+(1+\beta _{1}+\beta _{2})q^{3}+(6+\cdots)q^{4}+\cdots\) | |