Properties

Label 23.25.b.c.22.31
Level $23$
Weight $25$
Character 23.22
Analytic conductor $83.942$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [23,25,Mod(22,23)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 25, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("23.22"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.9424450193\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 22.31
Character \(\chi\) \(=\) 23.22
Dual form 23.25.b.c.22.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2985.73 q^{2} +115484. q^{3} -7.86263e6 q^{4} -1.34313e8i q^{5} +3.44805e8 q^{6} -1.30902e10i q^{7} -7.35679e10 q^{8} -2.69093e11 q^{9} -4.01021e11i q^{10} -2.85381e12i q^{11} -9.08011e11 q^{12} -2.36167e13 q^{13} -3.90839e13i q^{14} -1.55110e13i q^{15} -8.77409e13 q^{16} +4.84231e14i q^{17} -8.03439e14 q^{18} +1.60859e15i q^{19} +1.05605e15i q^{20} -1.51172e15i q^{21} -8.52070e15i q^{22} +(4.19846e15 - 2.15087e16i) q^{23} -8.49594e15 q^{24} +4.15647e16 q^{25} -7.05129e16 q^{26} -6.36922e16 q^{27} +1.02924e17i q^{28} -9.26708e16 q^{29} -4.63117e16i q^{30} +4.37102e17 q^{31} +9.72295e17 q^{32} -3.29570e17i q^{33} +1.44578e18i q^{34} -1.75819e18 q^{35} +2.11578e18 q^{36} +1.54887e18i q^{37} +4.80280e18i q^{38} -2.72735e18 q^{39} +9.88111e18i q^{40} -7.65489e18 q^{41} -4.51358e18i q^{42} +2.83655e19i q^{43} +2.24385e19i q^{44} +3.61426e19i q^{45} +(1.25355e19 - 6.42191e19i) q^{46} +4.11080e19 q^{47} -1.01327e19 q^{48} +2.02266e19 q^{49} +1.24101e20 q^{50} +5.59211e19i q^{51} +1.85689e20 q^{52} +3.21206e20i q^{53} -1.90168e20 q^{54} -3.83303e20 q^{55} +9.63023e20i q^{56} +1.85766e20i q^{57} -2.76690e20 q^{58} -5.45183e20 q^{59} +1.21957e20i q^{60} +2.60916e20i q^{61} +1.30507e21 q^{62} +3.52249e21i q^{63} +4.37506e21 q^{64} +3.17202e21i q^{65} -9.84008e20i q^{66} -1.94453e21i q^{67} -3.80733e21i q^{68} +(4.84856e20 - 2.48392e21i) q^{69} -5.24947e21 q^{70} -1.51878e22 q^{71} +1.97966e22 q^{72} -1.69139e21 q^{73} +4.62451e21i q^{74} +4.80008e21 q^{75} -1.26477e22i q^{76} -3.73571e22 q^{77} -8.14314e21 q^{78} -2.50834e22i q^{79} +1.17847e22i q^{80} +6.86443e22 q^{81} -2.28554e22 q^{82} +2.83163e22i q^{83} +1.18861e22i q^{84} +6.50384e22 q^{85} +8.46918e22i q^{86} -1.07020e22 q^{87} +2.09949e23i q^{88} +7.63947e22i q^{89} +1.07912e23i q^{90} +3.09148e23i q^{91} +(-3.30109e22 + 1.69115e23i) q^{92} +5.04785e22 q^{93} +1.22738e23 q^{94} +2.16053e23 q^{95} +1.12285e23 q^{96} +7.48901e23i q^{97} +6.03912e22 q^{98} +7.67940e23i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4232 q^{2} - 434562 q^{3} + 317760360 q^{4} - 8460029520 q^{6} - 198307023760 q^{8} + 4220041988298 q^{9} - 67439597688792 q^{12} + 5771152551358 q^{13} + 18\!\cdots\!92 q^{16} + 18\!\cdots\!68 q^{18}+ \cdots - 20\!\cdots\!92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2985.73 0.728938 0.364469 0.931216i \(-0.381251\pi\)
0.364469 + 0.931216i \(0.381251\pi\)
\(3\) 115484. 0.217304 0.108652 0.994080i \(-0.465347\pi\)
0.108652 + 0.994080i \(0.465347\pi\)
\(4\) −7.86263e6 −0.468649
\(5\) 1.34313e8i 0.550145i −0.961424 0.275072i \(-0.911298\pi\)
0.961424 0.275072i \(-0.0887018\pi\)
\(6\) 3.44805e8 0.158401
\(7\) 1.30902e10i 0.945739i −0.881132 0.472870i \(-0.843218\pi\)
0.881132 0.472870i \(-0.156782\pi\)
\(8\) −7.35679e10 −1.07055
\(9\) −2.69093e11 −0.952779
\(10\) 4.01021e11i 0.401021i
\(11\) 2.85381e12i 0.909312i −0.890667 0.454656i \(-0.849762\pi\)
0.890667 0.454656i \(-0.150238\pi\)
\(12\) −9.08011e11 −0.101839
\(13\) −2.36167e13 −1.01367 −0.506837 0.862042i \(-0.669185\pi\)
−0.506837 + 0.862042i \(0.669185\pi\)
\(14\) 3.90839e13i 0.689385i
\(15\) 1.55110e13i 0.119549i
\(16\) −8.77409e13 −0.311718
\(17\) 4.84231e14i 0.831124i 0.909565 + 0.415562i \(0.136415\pi\)
−0.909565 + 0.415562i \(0.863585\pi\)
\(18\) −8.03439e14 −0.694517
\(19\) 1.60859e15i 0.726776i 0.931638 + 0.363388i \(0.118380\pi\)
−0.931638 + 0.363388i \(0.881620\pi\)
\(20\) 1.05605e15i 0.257825i
\(21\) 1.51172e15i 0.205513i
\(22\) 8.52070e15i 0.662832i
\(23\) 4.19846e15 2.15087e16i 0.191582 0.981477i
\(24\) −8.49594e15 −0.232636
\(25\) 4.15647e16 0.697341
\(26\) −7.05129e16 −0.738905
\(27\) −6.36922e16 −0.424347
\(28\) 1.02924e17i 0.443220i
\(29\) −9.26708e16 −0.261919 −0.130959 0.991388i \(-0.541806\pi\)
−0.130959 + 0.991388i \(0.541806\pi\)
\(30\) 4.63117e16i 0.0871436i
\(31\) 4.37102e17 0.554936 0.277468 0.960735i \(-0.410505\pi\)
0.277468 + 0.960735i \(0.410505\pi\)
\(32\) 9.72295e17 0.843331
\(33\) 3.29570e17i 0.197597i
\(34\) 1.44578e18i 0.605838i
\(35\) −1.75819e18 −0.520294
\(36\) 2.11578e18 0.446519
\(37\) 1.54887e18i 0.235285i 0.993056 + 0.117643i \(0.0375337\pi\)
−0.993056 + 0.117643i \(0.962466\pi\)
\(38\) 4.80280e18i 0.529775i
\(39\) −2.72735e18 −0.220275
\(40\) 9.88111e18i 0.588960i
\(41\) −7.65489e18 −0.339260 −0.169630 0.985508i \(-0.554257\pi\)
−0.169630 + 0.985508i \(0.554257\pi\)
\(42\) 4.51358e18i 0.149806i
\(43\) 2.83655e19i 0.709854i 0.934894 + 0.354927i \(0.115494\pi\)
−0.934894 + 0.354927i \(0.884506\pi\)
\(44\) 2.24385e19i 0.426148i
\(45\) 3.61426e19i 0.524166i
\(46\) 1.25355e19 6.42191e19i 0.139652 0.715435i
\(47\) 4.11080e19 0.353796 0.176898 0.984229i \(-0.443394\pi\)
0.176898 + 0.984229i \(0.443394\pi\)
\(48\) −1.01327e19 −0.0677376
\(49\) 2.02266e19 0.105577
\(50\) 1.24101e20 0.508318
\(51\) 5.59211e19i 0.180607i
\(52\) 1.85689e20 0.475058
\(53\) 3.21206e20i 0.653843i 0.945051 + 0.326922i \(0.106011\pi\)
−0.945051 + 0.326922i \(0.893989\pi\)
\(54\) −1.90168e20 −0.309323
\(55\) −3.83303e20 −0.500253
\(56\) 9.63023e20i 1.01247i
\(57\) 1.85766e20i 0.157932i
\(58\) −2.76690e20 −0.190923
\(59\) −5.45183e20 −0.306421 −0.153210 0.988194i \(-0.548961\pi\)
−0.153210 + 0.988194i \(0.548961\pi\)
\(60\) 1.21957e20i 0.0560265i
\(61\) 2.60916e20i 0.0982977i 0.998791 + 0.0491488i \(0.0156509\pi\)
−0.998791 + 0.0491488i \(0.984349\pi\)
\(62\) 1.30507e21 0.404514
\(63\) 3.52249e21i 0.901080i
\(64\) 4.37506e21 0.926454
\(65\) 3.17202e21i 0.557667i
\(66\) 9.84008e20i 0.144036i
\(67\) 1.94453e21i 0.237638i −0.992916 0.118819i \(-0.962089\pi\)
0.992916 0.118819i \(-0.0379109\pi\)
\(68\) 3.80733e21i 0.389506i
\(69\) 4.84856e20 2.48392e21i 0.0416316 0.213279i
\(70\) −5.24947e21 −0.379262
\(71\) −1.51878e22 −0.925542 −0.462771 0.886478i \(-0.653145\pi\)
−0.462771 + 0.886478i \(0.653145\pi\)
\(72\) 1.97966e22 1.02000
\(73\) −1.69139e21 −0.0738532 −0.0369266 0.999318i \(-0.511757\pi\)
−0.0369266 + 0.999318i \(0.511757\pi\)
\(74\) 4.62451e21i 0.171508i
\(75\) 4.80008e21 0.151535
\(76\) 1.26477e22i 0.340603i
\(77\) −3.73571e22 −0.859972
\(78\) −8.14314e21 −0.160567
\(79\) 2.50834e22i 0.424484i −0.977217 0.212242i \(-0.931924\pi\)
0.977217 0.212242i \(-0.0680765\pi\)
\(80\) 1.17847e22i 0.171490i
\(81\) 6.86443e22 0.860567
\(82\) −2.28554e22 −0.247300
\(83\) 2.83163e22i 0.264911i 0.991189 + 0.132455i \(0.0422862\pi\)
−0.991189 + 0.132455i \(0.957714\pi\)
\(84\) 1.18861e22i 0.0963136i
\(85\) 6.50384e22 0.457239
\(86\) 8.46918e22i 0.517440i
\(87\) −1.07020e22 −0.0569160
\(88\) 2.09949e23i 0.973467i
\(89\) 7.63947e22i 0.309302i 0.987969 + 0.154651i \(0.0494253\pi\)
−0.987969 + 0.154651i \(0.950575\pi\)
\(90\) 1.07912e23i 0.382085i
\(91\) 3.09148e23i 0.958671i
\(92\) −3.30109e22 + 1.69115e23i −0.0897850 + 0.459968i
\(93\) 5.04785e22 0.120590
\(94\) 1.22738e23 0.257895
\(95\) 2.16053e23 0.399832
\(96\) 1.12285e23 0.183259
\(97\) 7.48901e23i 1.07935i 0.841873 + 0.539676i \(0.181453\pi\)
−0.841873 + 0.539676i \(0.818547\pi\)
\(98\) 6.03912e22 0.0769592
\(99\) 7.67940e23i 0.866373i
\(100\) −3.26808e23 −0.326808
\(101\) −1.93222e23 −0.171475 −0.0857374 0.996318i \(-0.527325\pi\)
−0.0857374 + 0.996318i \(0.527325\pi\)
\(102\) 1.66965e23i 0.131651i
\(103\) 2.55738e24i 1.79369i 0.442340 + 0.896847i \(0.354148\pi\)
−0.442340 + 0.896847i \(0.645852\pi\)
\(104\) 1.73743e24 1.08519
\(105\) −2.03043e23 −0.113062
\(106\) 9.59036e23i 0.476611i
\(107\) 2.19255e24i 0.973519i 0.873536 + 0.486759i \(0.161821\pi\)
−0.873536 + 0.486759i \(0.838179\pi\)
\(108\) 5.00788e23 0.198870
\(109\) 2.96807e24i 1.05525i 0.849477 + 0.527625i \(0.176917\pi\)
−0.849477 + 0.527625i \(0.823083\pi\)
\(110\) −1.14444e24 −0.364653
\(111\) 1.78870e23i 0.0511284i
\(112\) 1.14855e24i 0.294804i
\(113\) 1.68978e24i 0.389843i −0.980819 0.194922i \(-0.937555\pi\)
0.980819 0.194922i \(-0.0624452\pi\)
\(114\) 5.54648e23i 0.115122i
\(115\) −2.88889e24 5.63906e23i −0.539954 0.105398i
\(116\) 7.28636e23 0.122748
\(117\) 6.35507e24 0.965807
\(118\) −1.62777e24 −0.223362
\(119\) 6.33871e24 0.786027
\(120\) 1.14111e24i 0.127983i
\(121\) 1.70551e24 0.173153
\(122\) 7.79026e23i 0.0716529i
\(123\) −8.84020e23 −0.0737226
\(124\) −3.43678e24 −0.260070
\(125\) 1.35883e25i 0.933783i
\(126\) 1.05172e25i 0.656832i
\(127\) −1.96652e25 −1.11700 −0.558500 0.829505i \(-0.688623\pi\)
−0.558500 + 0.829505i \(0.688623\pi\)
\(128\) −3.24966e24 −0.168003
\(129\) 3.27577e24i 0.154254i
\(130\) 9.47078e24i 0.406505i
\(131\) −1.01177e25 −0.396119 −0.198059 0.980190i \(-0.563464\pi\)
−0.198059 + 0.980190i \(0.563464\pi\)
\(132\) 2.59129e24i 0.0926038i
\(133\) 2.10568e25 0.687341
\(134\) 5.80583e24i 0.173224i
\(135\) 8.55467e24i 0.233452i
\(136\) 3.56239e25i 0.889763i
\(137\) 4.40953e25i 1.00866i −0.863511 0.504330i \(-0.831739\pi\)
0.863511 0.504330i \(-0.168261\pi\)
\(138\) 1.44765e24 7.41630e24i 0.0303469 0.155467i
\(139\) 3.89274e25 0.748303 0.374151 0.927368i \(-0.377934\pi\)
0.374151 + 0.927368i \(0.377934\pi\)
\(140\) 1.38240e25 0.243835
\(141\) 4.74733e24 0.0768813
\(142\) −4.53468e25 −0.674662
\(143\) 6.73974e25i 0.921745i
\(144\) 2.36104e25 0.296999
\(145\) 1.24469e25i 0.144093i
\(146\) −5.05003e24 −0.0538344
\(147\) 2.33586e24 0.0229424
\(148\) 1.21782e25i 0.110266i
\(149\) 1.36859e25i 0.114298i 0.998366 + 0.0571488i \(0.0182010\pi\)
−0.998366 + 0.0571488i \(0.981799\pi\)
\(150\) 1.43317e25 0.110460
\(151\) −1.31507e26 −0.935890 −0.467945 0.883758i \(-0.655005\pi\)
−0.467945 + 0.883758i \(0.655005\pi\)
\(152\) 1.18340e26i 0.778054i
\(153\) 1.30303e26i 0.791877i
\(154\) −1.11538e26 −0.626866
\(155\) 5.87084e25i 0.305295i
\(156\) 2.14442e25 0.103232
\(157\) 4.16986e26i 1.85920i −0.368574 0.929598i \(-0.620154\pi\)
0.368574 0.929598i \(-0.379846\pi\)
\(158\) 7.48922e25i 0.309422i
\(159\) 3.70943e25i 0.142083i
\(160\) 1.30592e26i 0.463954i
\(161\) −2.81554e26 5.49588e25i −0.928221 0.181187i
\(162\) 2.04953e26 0.627300
\(163\) 2.03376e26 0.578161 0.289080 0.957305i \(-0.406650\pi\)
0.289080 + 0.957305i \(0.406650\pi\)
\(164\) 6.01876e25 0.158994
\(165\) −4.42655e25 −0.108707
\(166\) 8.45449e25i 0.193104i
\(167\) −1.85599e26 −0.394437 −0.197219 0.980360i \(-0.563191\pi\)
−0.197219 + 0.980360i \(0.563191\pi\)
\(168\) 1.11214e26i 0.220013i
\(169\) 1.49454e25 0.0275339
\(170\) 1.94187e26 0.333299
\(171\) 4.32859e26i 0.692457i
\(172\) 2.23028e26i 0.332673i
\(173\) 4.88942e26 0.680306 0.340153 0.940370i \(-0.389521\pi\)
0.340153 + 0.940370i \(0.389521\pi\)
\(174\) −3.19533e25 −0.0414883
\(175\) 5.44093e26i 0.659502i
\(176\) 2.50396e26i 0.283449i
\(177\) −6.29601e25 −0.0665865
\(178\) 2.28094e26i 0.225462i
\(179\) −1.82848e27 −1.68987 −0.844937 0.534866i \(-0.820362\pi\)
−0.844937 + 0.534866i \(0.820362\pi\)
\(180\) 2.84176e26i 0.245650i
\(181\) 3.57441e26i 0.289109i −0.989497 0.144555i \(-0.953825\pi\)
0.989497 0.144555i \(-0.0461749\pi\)
\(182\) 9.23032e26i 0.698812i
\(183\) 3.01317e25i 0.0213605i
\(184\) −3.08872e26 + 1.58235e27i −0.205099 + 1.05072i
\(185\) 2.08033e26 0.129441
\(186\) 1.50715e26 0.0879025
\(187\) 1.38190e27 0.755751
\(188\) −3.23218e26 −0.165806
\(189\) 8.33747e26i 0.401322i
\(190\) 6.45077e26 0.291453
\(191\) 2.40710e27i 1.02116i 0.859830 + 0.510580i \(0.170569\pi\)
−0.859830 + 0.510580i \(0.829431\pi\)
\(192\) 5.05250e26 0.201322
\(193\) 3.16791e27 1.18600 0.593002 0.805201i \(-0.297943\pi\)
0.593002 + 0.805201i \(0.297943\pi\)
\(194\) 2.23602e27i 0.786781i
\(195\) 3.66318e26i 0.121183i
\(196\) −1.59034e26 −0.0494787
\(197\) 4.40882e26 0.129041 0.0645205 0.997916i \(-0.479448\pi\)
0.0645205 + 0.997916i \(0.479448\pi\)
\(198\) 2.29286e27i 0.631532i
\(199\) 1.59204e26i 0.0412779i 0.999787 + 0.0206389i \(0.00657004\pi\)
−0.999787 + 0.0206389i \(0.993430\pi\)
\(200\) −3.05783e27 −0.746541
\(201\) 2.24562e26i 0.0516398i
\(202\) −5.76909e26 −0.124995
\(203\) 1.21308e27i 0.247707i
\(204\) 4.39687e26i 0.0846412i
\(205\) 1.02815e27i 0.186642i
\(206\) 7.63564e27i 1.30749i
\(207\) −1.12977e27 + 5.78784e27i −0.182536 + 0.935130i
\(208\) 2.07215e27 0.315980
\(209\) 4.59059e27 0.660866
\(210\) −6.06232e26 −0.0824151
\(211\) −3.68492e27 −0.473193 −0.236597 0.971608i \(-0.576032\pi\)
−0.236597 + 0.971608i \(0.576032\pi\)
\(212\) 2.52553e27i 0.306423i
\(213\) −1.75396e27 −0.201124
\(214\) 6.54636e27i 0.709635i
\(215\) 3.80985e27 0.390523
\(216\) 4.68570e27 0.454286
\(217\) 5.72178e27i 0.524825i
\(218\) 8.86184e27i 0.769212i
\(219\) −1.95329e26 −0.0160486
\(220\) 3.01377e27 0.234443
\(221\) 1.14359e28i 0.842488i
\(222\) 5.34058e26i 0.0372695i
\(223\) −6.04925e27 −0.399984 −0.199992 0.979798i \(-0.564092\pi\)
−0.199992 + 0.979798i \(0.564092\pi\)
\(224\) 1.27276e28i 0.797571i
\(225\) −1.11848e28 −0.664411
\(226\) 5.04524e27i 0.284171i
\(227\) 3.28463e28i 1.75459i −0.479950 0.877296i \(-0.659345\pi\)
0.479950 0.877296i \(-0.340655\pi\)
\(228\) 1.46061e27i 0.0740145i
\(229\) 2.60730e28i 1.25362i −0.779173 0.626809i \(-0.784361\pi\)
0.779173 0.626809i \(-0.215639\pi\)
\(230\) −8.62545e27 1.68367e27i −0.393593 0.0768287i
\(231\) −4.31416e27 −0.186875
\(232\) 6.81760e27 0.280398
\(233\) −3.05909e28 −1.19487 −0.597435 0.801917i \(-0.703813\pi\)
−0.597435 + 0.801917i \(0.703813\pi\)
\(234\) 1.89745e28 0.704013
\(235\) 5.52133e27i 0.194639i
\(236\) 4.28658e27 0.143604
\(237\) 2.89674e27i 0.0922421i
\(238\) 1.89257e28 0.572965
\(239\) −4.19745e27 −0.120840 −0.0604200 0.998173i \(-0.519244\pi\)
−0.0604200 + 0.998173i \(0.519244\pi\)
\(240\) 1.36095e27i 0.0372655i
\(241\) 2.57487e28i 0.670736i 0.942087 + 0.335368i \(0.108861\pi\)
−0.942087 + 0.335368i \(0.891139\pi\)
\(242\) 5.09218e27 0.126217
\(243\) 2.59159e28 0.611352
\(244\) 2.05149e27i 0.0460672i
\(245\) 2.71669e27i 0.0580827i
\(246\) −2.63945e27 −0.0537392
\(247\) 3.79894e28i 0.736714i
\(248\) −3.21567e28 −0.594089
\(249\) 3.27009e27i 0.0575662i
\(250\) 4.05711e28i 0.680670i
\(251\) 2.64645e28i 0.423232i 0.977353 + 0.211616i \(0.0678726\pi\)
−0.977353 + 0.211616i \(0.932127\pi\)
\(252\) 2.76961e28i 0.422291i
\(253\) −6.13817e28 1.19816e28i −0.892468 0.174208i
\(254\) −5.87148e28 −0.814223
\(255\) 7.51092e27 0.0993598
\(256\) −8.31039e28 −1.04892
\(257\) 1.48091e29 1.78374 0.891870 0.452291i \(-0.149393\pi\)
0.891870 + 0.452291i \(0.149393\pi\)
\(258\) 9.78057e27i 0.112442i
\(259\) 2.02751e28 0.222518
\(260\) 2.49404e28i 0.261350i
\(261\) 2.49370e28 0.249551
\(262\) −3.02087e28 −0.288746
\(263\) 1.17020e29i 1.06854i 0.845314 + 0.534270i \(0.179413\pi\)
−0.845314 + 0.534270i \(0.820587\pi\)
\(264\) 2.42458e28i 0.211538i
\(265\) 4.31421e28 0.359709
\(266\) 6.28699e28 0.501029
\(267\) 8.82239e27i 0.0672126i
\(268\) 1.52891e28i 0.111369i
\(269\) 1.66884e29 1.16248 0.581241 0.813731i \(-0.302567\pi\)
0.581241 + 0.813731i \(0.302567\pi\)
\(270\) 2.55419e28i 0.170172i
\(271\) −2.33169e29 −1.48607 −0.743034 0.669254i \(-0.766614\pi\)
−0.743034 + 0.669254i \(0.766614\pi\)
\(272\) 4.24869e28i 0.259076i
\(273\) 3.57017e28i 0.208323i
\(274\) 1.31657e29i 0.735251i
\(275\) 1.18618e29i 0.634100i
\(276\) −3.81224e27 + 1.95301e28i −0.0195106 + 0.0999530i
\(277\) −1.54534e29 −0.757296 −0.378648 0.925541i \(-0.623611\pi\)
−0.378648 + 0.925541i \(0.623611\pi\)
\(278\) 1.16227e29 0.545466
\(279\) −1.17621e29 −0.528731
\(280\) 1.29346e29 0.557003
\(281\) 1.18571e29i 0.489218i 0.969622 + 0.244609i \(0.0786596\pi\)
−0.969622 + 0.244609i \(0.921340\pi\)
\(282\) 1.41743e28 0.0560417
\(283\) 1.19638e29i 0.453346i −0.973971 0.226673i \(-0.927215\pi\)
0.973971 0.226673i \(-0.0727849\pi\)
\(284\) 1.19416e29 0.433755
\(285\) 2.49508e28 0.0868852
\(286\) 2.01230e29i 0.671895i
\(287\) 1.00204e29i 0.320852i
\(288\) −2.61638e29 −0.803508
\(289\) 1.04969e29 0.309233
\(290\) 3.71630e28i 0.105035i
\(291\) 8.64863e28i 0.234548i
\(292\) 1.32988e28 0.0346113
\(293\) 6.10198e29i 1.52426i 0.647424 + 0.762130i \(0.275846\pi\)
−0.647424 + 0.762130i \(0.724154\pi\)
\(294\) 6.97423e27 0.0167236
\(295\) 7.32251e28i 0.168576i
\(296\) 1.13947e29i 0.251886i
\(297\) 1.81765e29i 0.385864i
\(298\) 4.08623e28i 0.0833159i
\(299\) −9.91535e28 + 5.07963e29i −0.194202 + 0.994897i
\(300\) −3.77412e28 −0.0710168
\(301\) 3.71312e29 0.671337
\(302\) −3.92644e29 −0.682206
\(303\) −2.23141e28 −0.0372622
\(304\) 1.41139e29i 0.226549i
\(305\) 3.50444e28 0.0540780
\(306\) 3.89050e29i 0.577230i
\(307\) 1.06953e30 1.52593 0.762964 0.646441i \(-0.223743\pi\)
0.762964 + 0.646441i \(0.223743\pi\)
\(308\) 2.93725e29 0.403025
\(309\) 2.95337e29i 0.389777i
\(310\) 1.75287e29i 0.222541i
\(311\) 1.13222e29 0.138295 0.0691476 0.997606i \(-0.477972\pi\)
0.0691476 + 0.997606i \(0.477972\pi\)
\(312\) 2.00646e29 0.235817
\(313\) 1.65370e30i 1.87036i 0.354171 + 0.935181i \(0.384763\pi\)
−0.354171 + 0.935181i \(0.615237\pi\)
\(314\) 1.24501e30i 1.35524i
\(315\) 4.73116e29 0.495725
\(316\) 1.97222e29i 0.198934i
\(317\) −1.64424e30 −1.59682 −0.798409 0.602116i \(-0.794325\pi\)
−0.798409 + 0.602116i \(0.794325\pi\)
\(318\) 1.10754e29i 0.103570i
\(319\) 2.64465e29i 0.238166i
\(320\) 5.87626e29i 0.509684i
\(321\) 2.53205e29i 0.211550i
\(322\) −8.40645e29 1.64092e29i −0.676615 0.132074i
\(323\) −7.78927e29 −0.604041
\(324\) −5.39725e29 −0.403304
\(325\) −9.81620e29 −0.706876
\(326\) 6.07226e29 0.421443
\(327\) 3.42765e29i 0.229310i
\(328\) 5.63155e29 0.363197
\(329\) 5.38115e29i 0.334599i
\(330\) −1.32165e29 −0.0792407
\(331\) 2.67835e30 1.54857 0.774286 0.632836i \(-0.218109\pi\)
0.774286 + 0.632836i \(0.218109\pi\)
\(332\) 2.22641e29i 0.124150i
\(333\) 4.16790e29i 0.224175i
\(334\) −5.54149e29 −0.287520
\(335\) −2.61175e29 −0.130735
\(336\) 1.32639e29i 0.0640622i
\(337\) 3.26029e30i 1.51949i −0.650222 0.759745i \(-0.725324\pi\)
0.650222 0.759745i \(-0.274676\pi\)
\(338\) 4.46230e28 0.0200705
\(339\) 1.95144e29i 0.0847145i
\(340\) −5.11373e29 −0.214285
\(341\) 1.24741e30i 0.504610i
\(342\) 1.29240e30i 0.504758i
\(343\) 2.77262e30i 1.04559i
\(344\) 2.08679e30i 0.759938i
\(345\) −3.33622e29 6.51223e28i −0.117334 0.0229034i
\(346\) 1.45985e30 0.495901
\(347\) 2.59376e30 0.851092 0.425546 0.904937i \(-0.360082\pi\)
0.425546 + 0.904937i \(0.360082\pi\)
\(348\) 8.41461e28 0.0266737
\(349\) −3.21703e30 −0.985258 −0.492629 0.870239i \(-0.663964\pi\)
−0.492629 + 0.870239i \(0.663964\pi\)
\(350\) 1.62451e30i 0.480736i
\(351\) 1.50420e30 0.430149
\(352\) 2.77474e30i 0.766851i
\(353\) −5.16242e30 −1.37898 −0.689488 0.724297i \(-0.742164\pi\)
−0.689488 + 0.724297i \(0.742164\pi\)
\(354\) −1.87982e29 −0.0485375
\(355\) 2.03992e30i 0.509182i
\(356\) 6.00663e29i 0.144954i
\(357\) 7.32021e29 0.170807
\(358\) −5.45935e30 −1.23181
\(359\) 6.72582e30i 1.46761i 0.679358 + 0.733807i \(0.262258\pi\)
−0.679358 + 0.733807i \(0.737742\pi\)
\(360\) 2.65894e30i 0.561149i
\(361\) 2.31122e30 0.471796
\(362\) 1.06722e30i 0.210743i
\(363\) 1.96959e29 0.0376268
\(364\) 2.43072e30i 0.449281i
\(365\) 2.27175e29i 0.0406300i
\(366\) 8.99652e28i 0.0155705i
\(367\) 3.27926e30i 0.549266i −0.961549 0.274633i \(-0.911444\pi\)
0.961549 0.274633i \(-0.0885563\pi\)
\(368\) −3.68376e29 + 1.88719e30i −0.0597197 + 0.305944i
\(369\) 2.05988e30 0.323240
\(370\) 6.21130e29 0.0943544
\(371\) 4.20467e30 0.618365
\(372\) −3.96894e29 −0.0565144
\(373\) 2.96291e30i 0.408519i 0.978917 + 0.204260i \(0.0654787\pi\)
−0.978917 + 0.204260i \(0.934521\pi\)
\(374\) 4.12599e30 0.550895
\(375\) 1.56924e30i 0.202915i
\(376\) −3.02423e30 −0.378758
\(377\) 2.18857e30 0.265500
\(378\) 2.48934e30i 0.292538i
\(379\) 1.52919e31i 1.74096i 0.492200 + 0.870482i \(0.336193\pi\)
−0.492200 + 0.870482i \(0.663807\pi\)
\(380\) −1.69875e30 −0.187381
\(381\) −2.27102e30 −0.242728
\(382\) 7.18696e30i 0.744363i
\(383\) 1.49575e31i 1.50133i 0.660685 + 0.750663i \(0.270266\pi\)
−0.660685 + 0.750663i \(0.729734\pi\)
\(384\) −3.75285e29 −0.0365078
\(385\) 5.01753e30i 0.473109i
\(386\) 9.45854e30 0.864523
\(387\) 7.63296e30i 0.676334i
\(388\) 5.88833e30i 0.505838i
\(389\) 1.46964e31i 1.22410i 0.790820 + 0.612049i \(0.209654\pi\)
−0.790820 + 0.612049i \(0.790346\pi\)
\(390\) 1.09373e30i 0.0883352i
\(391\) 1.04152e31 + 2.03302e30i 0.815729 + 0.159229i
\(392\) −1.48803e30 −0.113026
\(393\) −1.16843e30 −0.0860782
\(394\) 1.31636e30 0.0940629
\(395\) −3.36902e30 −0.233528
\(396\) 6.03803e30i 0.406025i
\(397\) −1.22870e31 −0.801606 −0.400803 0.916164i \(-0.631269\pi\)
−0.400803 + 0.916164i \(0.631269\pi\)
\(398\) 4.75340e29i 0.0300890i
\(399\) 2.43173e30 0.149362
\(400\) −3.64693e30 −0.217374
\(401\) 2.37793e31i 1.37552i 0.725938 + 0.687760i \(0.241406\pi\)
−0.725938 + 0.687760i \(0.758594\pi\)
\(402\) 6.70483e29i 0.0376422i
\(403\) −1.03229e31 −0.562524
\(404\) 1.51923e30 0.0803616
\(405\) 9.21981e30i 0.473436i
\(406\) 3.62194e30i 0.180563i
\(407\) 4.42018e30 0.213948
\(408\) 4.11400e30i 0.193349i
\(409\) 2.27082e31 1.03634 0.518170 0.855277i \(-0.326613\pi\)
0.518170 + 0.855277i \(0.326613\pi\)
\(410\) 3.06978e30i 0.136051i
\(411\) 5.09231e30i 0.219186i
\(412\) 2.01077e31i 0.840614i
\(413\) 7.13659e30i 0.289794i
\(414\) −3.37320e30 + 1.72809e31i −0.133057 + 0.681652i
\(415\) 3.80324e30 0.145739
\(416\) −2.29623e31 −0.854862
\(417\) 4.49550e30 0.162609
\(418\) 1.37063e31 0.481730
\(419\) 1.22238e31i 0.417483i −0.977971 0.208741i \(-0.933063\pi\)
0.977971 0.208741i \(-0.0669367\pi\)
\(420\) 1.59645e30 0.0529864
\(421\) 6.74716e30i 0.217638i −0.994062 0.108819i \(-0.965293\pi\)
0.994062 0.108819i \(-0.0347070\pi\)
\(422\) −1.10022e31 −0.344929
\(423\) −1.10619e31 −0.337089
\(424\) 2.36305e31i 0.699975i
\(425\) 2.01269e31i 0.579577i
\(426\) −5.23684e30 −0.146607
\(427\) 3.41546e30 0.0929640
\(428\) 1.72392e31i 0.456239i
\(429\) 7.78334e30i 0.200299i
\(430\) 1.13752e31 0.284667
\(431\) 4.02874e30i 0.0980488i −0.998798 0.0490244i \(-0.984389\pi\)
0.998798 0.0490244i \(-0.0156112\pi\)
\(432\) 5.58841e30 0.132277
\(433\) 2.83639e31i 0.652997i −0.945198 0.326498i \(-0.894131\pi\)
0.945198 0.326498i \(-0.105869\pi\)
\(434\) 1.70837e31i 0.382565i
\(435\) 1.43742e30i 0.0313121i
\(436\) 2.33368e31i 0.494543i
\(437\) 3.45986e31 + 6.75357e30i 0.713314 + 0.139238i
\(438\) −5.83199e29 −0.0116984
\(439\) −6.10803e31 −1.19214 −0.596070 0.802933i \(-0.703272\pi\)
−0.596070 + 0.802933i \(0.703272\pi\)
\(440\) 2.81988e31 0.535548
\(441\) −5.44284e30 −0.100592
\(442\) 3.41446e31i 0.614122i
\(443\) −6.08809e31 −1.06570 −0.532851 0.846209i \(-0.678880\pi\)
−0.532851 + 0.846209i \(0.678880\pi\)
\(444\) 1.40639e30i 0.0239613i
\(445\) 1.02608e31 0.170161
\(446\) −1.80614e31 −0.291564
\(447\) 1.58050e30i 0.0248374i
\(448\) 5.72706e31i 0.876184i
\(449\) 5.76703e31 0.859005 0.429503 0.903066i \(-0.358689\pi\)
0.429503 + 0.903066i \(0.358689\pi\)
\(450\) −3.33947e31 −0.484315
\(451\) 2.18456e31i 0.308493i
\(452\) 1.32862e31i 0.182700i
\(453\) −1.51870e31 −0.203373
\(454\) 9.80702e31i 1.27899i
\(455\) 4.15225e31 0.527408
\(456\) 1.36664e31i 0.169074i
\(457\) 9.01138e31i 1.08592i 0.839759 + 0.542959i \(0.182696\pi\)
−0.839759 + 0.542959i \(0.817304\pi\)
\(458\) 7.78469e31i 0.913810i
\(459\) 3.08418e31i 0.352685i
\(460\) 2.27143e31 + 4.43379e30i 0.253049 + 0.0493947i
\(461\) 2.91525e31 0.316420 0.158210 0.987405i \(-0.449428\pi\)
0.158210 + 0.987405i \(0.449428\pi\)
\(462\) −1.28809e31 −0.136221
\(463\) −8.11738e30 −0.0836458 −0.0418229 0.999125i \(-0.513317\pi\)
−0.0418229 + 0.999125i \(0.513317\pi\)
\(464\) 8.13101e30 0.0816449
\(465\) 6.77990e30i 0.0663419i
\(466\) −9.13360e31 −0.870986
\(467\) 2.10293e32i 1.95444i 0.212240 + 0.977218i \(0.431924\pi\)
−0.212240 + 0.977218i \(0.568076\pi\)
\(468\) −4.99676e31 −0.452625
\(469\) −2.54543e31 −0.224744
\(470\) 1.64852e31i 0.141880i
\(471\) 4.81553e31i 0.404011i
\(472\) 4.01080e31 0.328040
\(473\) 8.09498e31 0.645479
\(474\) 8.64888e30i 0.0672388i
\(475\) 6.68604e31i 0.506811i
\(476\) −4.98389e31 −0.368371
\(477\) 8.64344e31i 0.622968i
\(478\) −1.25324e31 −0.0880848
\(479\) 3.03109e31i 0.207765i 0.994590 + 0.103883i \(0.0331266\pi\)
−0.994590 + 0.103883i \(0.966873\pi\)
\(480\) 1.50813e31i 0.100819i
\(481\) 3.65791e31i 0.238502i
\(482\) 7.68788e31i 0.488925i
\(483\) −3.25151e31 6.34688e30i −0.201706 0.0393727i
\(484\) −1.34098e31 −0.0811478
\(485\) 1.00587e32 0.593800
\(486\) 7.73779e31 0.445637
\(487\) 1.46668e32 0.824115 0.412057 0.911158i \(-0.364810\pi\)
0.412057 + 0.911158i \(0.364810\pi\)
\(488\) 1.91951e31i 0.105233i
\(489\) 2.34868e31 0.125637
\(490\) 8.11130e30i 0.0423387i
\(491\) −2.30564e31 −0.117440 −0.0587198 0.998275i \(-0.518702\pi\)
−0.0587198 + 0.998275i \(0.518702\pi\)
\(492\) 6.95073e30 0.0345501
\(493\) 4.48741e31i 0.217687i
\(494\) 1.13426e32i 0.537019i
\(495\) 1.03144e32 0.476631
\(496\) −3.83517e31 −0.172984
\(497\) 1.98813e32i 0.875321i
\(498\) 9.76361e30i 0.0419622i
\(499\) −3.72367e32 −1.56230 −0.781151 0.624342i \(-0.785367\pi\)
−0.781151 + 0.624342i \(0.785367\pi\)
\(500\) 1.06840e32i 0.437617i
\(501\) −2.14338e31 −0.0857129
\(502\) 7.90158e31i 0.308510i
\(503\) 4.83363e32i 1.84271i 0.388721 + 0.921356i \(0.372917\pi\)
−0.388721 + 0.921356i \(0.627083\pi\)
\(504\) 2.59143e32i 0.964656i
\(505\) 2.59522e31i 0.0943360i
\(506\) −1.83269e32 3.57738e31i −0.650554 0.126987i
\(507\) 1.72596e30 0.00598322
\(508\) 1.54620e32 0.523481
\(509\) −2.84051e32 −0.939254 −0.469627 0.882865i \(-0.655612\pi\)
−0.469627 + 0.882865i \(0.655612\pi\)
\(510\) 2.24256e31 0.0724272
\(511\) 2.21407e31i 0.0698459i
\(512\) −1.93605e32 −0.596593
\(513\) 1.02454e32i 0.308405i
\(514\) 4.42160e32 1.30024
\(515\) 3.43489e32 0.986792
\(516\) 2.57562e31i 0.0722912i
\(517\) 1.17315e32i 0.321711i
\(518\) 6.05360e31 0.162202
\(519\) 5.64652e31 0.147833
\(520\) 2.33359e32i 0.597013i
\(521\) 6.74758e32i 1.68692i 0.537189 + 0.843462i \(0.319486\pi\)
−0.537189 + 0.843462i \(0.680514\pi\)
\(522\) 7.44553e31 0.181907
\(523\) 3.29526e32i 0.786809i 0.919366 + 0.393404i \(0.128703\pi\)
−0.919366 + 0.393404i \(0.871297\pi\)
\(524\) 7.95516e31 0.185641
\(525\) 6.28342e31i 0.143313i
\(526\) 3.49390e32i 0.778899i
\(527\) 2.11659e32i 0.461221i
\(528\) 2.89168e31i 0.0615946i
\(529\) −4.44997e32 1.80607e32i −0.926592 0.376067i
\(530\) 1.28811e32 0.262205
\(531\) 1.46705e32 0.291951
\(532\) −1.65562e32 −0.322122
\(533\) 1.80783e32 0.343899
\(534\) 2.63413e31i 0.0489938i
\(535\) 2.94487e32 0.535576
\(536\) 1.43055e32i 0.254405i
\(537\) −2.11161e32 −0.367216
\(538\) 4.98270e32 0.847378
\(539\) 5.77229e31i 0.0960025i
\(540\) 6.72622e31i 0.109407i
\(541\) 2.75924e32 0.438957 0.219479 0.975617i \(-0.429564\pi\)
0.219479 + 0.975617i \(0.429564\pi\)
\(542\) −6.96178e32 −1.08325
\(543\) 4.12789e31i 0.0628246i
\(544\) 4.70815e32i 0.700913i
\(545\) 3.98649e32 0.580541
\(546\) 1.06596e32i 0.151855i
\(547\) −6.05834e32 −0.844318 −0.422159 0.906522i \(-0.638728\pi\)
−0.422159 + 0.906522i \(0.638728\pi\)
\(548\) 3.46705e32i 0.472708i
\(549\) 7.02107e31i 0.0936560i
\(550\) 3.54161e32i 0.462219i
\(551\) 1.49069e32i 0.190356i
\(552\) −3.56698e31 + 1.82737e32i −0.0445689 + 0.228327i
\(553\) −3.28348e32 −0.401451
\(554\) −4.61396e32 −0.552022
\(555\) 2.40246e31 0.0281280
\(556\) −3.06072e32 −0.350692
\(557\) 1.51639e33i 1.70038i −0.526472 0.850192i \(-0.676486\pi\)
0.526472 0.850192i \(-0.323514\pi\)
\(558\) −3.51185e32 −0.385412
\(559\) 6.69899e32i 0.719561i
\(560\) 1.54265e32 0.162185
\(561\) 1.59588e32 0.164228
\(562\) 3.54021e32i 0.356610i
\(563\) 4.42314e32i 0.436144i −0.975933 0.218072i \(-0.930023\pi\)
0.975933 0.218072i \(-0.0699768\pi\)
\(564\) −3.73266e31 −0.0360304
\(565\) −2.26960e32 −0.214470
\(566\) 3.57205e32i 0.330461i
\(567\) 8.98571e32i 0.813872i
\(568\) 1.11734e33 0.990843
\(569\) 1.85447e33i 1.61017i −0.593158 0.805086i \(-0.702119\pi\)
0.593158 0.805086i \(-0.297881\pi\)
\(570\) 7.44963e31 0.0633339
\(571\) 1.90142e33i 1.58287i −0.611254 0.791435i \(-0.709335\pi\)
0.611254 0.791435i \(-0.290665\pi\)
\(572\) 5.29921e32i 0.431975i
\(573\) 2.77983e32i 0.221902i
\(574\) 2.99184e32i 0.233881i
\(575\) 1.74508e32 8.94003e32i 0.133598 0.684423i
\(576\) −1.17730e33 −0.882706
\(577\) −4.93175e32 −0.362152 −0.181076 0.983469i \(-0.557958\pi\)
−0.181076 + 0.983469i \(0.557958\pi\)
\(578\) 3.13408e32 0.225412
\(579\) 3.65844e32 0.257723
\(580\) 9.78651e31i 0.0675293i
\(581\) 3.70668e32 0.250537
\(582\) 2.58225e32i 0.170971i
\(583\) 9.16662e32 0.594547
\(584\) 1.24432e32 0.0790639
\(585\) 8.53567e32i 0.531334i
\(586\) 1.82189e33i 1.11109i
\(587\) −5.95474e32 −0.355799 −0.177900 0.984049i \(-0.556930\pi\)
−0.177900 + 0.984049i \(0.556930\pi\)
\(588\) −1.83660e31 −0.0107519
\(589\) 7.03116e32i 0.403314i
\(590\) 2.18630e32i 0.122881i
\(591\) 5.09150e31 0.0280411
\(592\) 1.35899e32i 0.0733427i
\(593\) −2.33013e31 −0.0123232 −0.00616162 0.999981i \(-0.501961\pi\)
−0.00616162 + 0.999981i \(0.501961\pi\)
\(594\) 5.42702e32i 0.281271i
\(595\) 8.51369e32i 0.432429i
\(596\) 1.07607e32i 0.0535655i
\(597\) 1.83856e31i 0.00896985i
\(598\) −2.96045e32 + 1.51664e33i −0.141561 + 0.725218i
\(599\) −3.21594e33 −1.50725 −0.753626 0.657303i \(-0.771697\pi\)
−0.753626 + 0.657303i \(0.771697\pi\)
\(600\) −3.53132e32 −0.162226
\(601\) −1.82129e33 −0.820134 −0.410067 0.912055i \(-0.634495\pi\)
−0.410067 + 0.912055i \(0.634495\pi\)
\(602\) 1.10864e33 0.489363
\(603\) 5.23259e32i 0.226417i
\(604\) 1.03399e33 0.438604
\(605\) 2.29071e32i 0.0952590i
\(606\) −6.66240e31 −0.0271618
\(607\) 1.14501e33 0.457662 0.228831 0.973466i \(-0.426510\pi\)
0.228831 + 0.973466i \(0.426510\pi\)
\(608\) 1.56402e33i 0.612913i
\(609\) 1.40092e32i 0.0538277i
\(610\) 1.04633e32 0.0394195
\(611\) −9.70834e32 −0.358633
\(612\) 1.02453e33i 0.371113i
\(613\) 1.54854e33i 0.550042i −0.961438 0.275021i \(-0.911315\pi\)
0.961438 0.275021i \(-0.0886848\pi\)
\(614\) 3.19334e33 1.11231
\(615\) 1.18735e32i 0.0405581i
\(616\) 2.74828e33 0.920646
\(617\) 9.99137e32i 0.328249i 0.986440 + 0.164124i \(0.0524799\pi\)
−0.986440 + 0.164124i \(0.947520\pi\)
\(618\) 8.81797e32i 0.284123i
\(619\) 2.53128e33i 0.799931i 0.916530 + 0.399965i \(0.130978\pi\)
−0.916530 + 0.399965i \(0.869022\pi\)
\(620\) 4.61603e32i 0.143076i
\(621\) −2.67409e32 + 1.36994e33i −0.0812974 + 0.416487i
\(622\) 3.38051e32 0.100809
\(623\) 1.00003e33 0.292519
\(624\) 2.39300e32 0.0686639
\(625\) 6.52365e32 0.183625
\(626\) 4.93751e33i 1.36338i
\(627\) 5.30142e32 0.143609
\(628\) 3.27861e33i 0.871311i
\(629\) −7.50012e32 −0.195551
\(630\) 1.41260e33 0.361353
\(631\) 4.56230e32i 0.114507i −0.998360 0.0572534i \(-0.981766\pi\)
0.998360 0.0572534i \(-0.0182343\pi\)
\(632\) 1.84533e33i 0.454433i
\(633\) −4.25551e32 −0.102827
\(634\) −4.90927e33 −1.16398
\(635\) 2.64128e33i 0.614511i
\(636\) 2.91659e32i 0.0665871i
\(637\) −4.77685e32 −0.107021
\(638\) 7.89620e32i 0.173608i
\(639\) 4.08694e33 0.881837
\(640\) 4.36471e32i 0.0924262i
\(641\) 6.62816e33i 1.37752i −0.724992 0.688758i \(-0.758156\pi\)
0.724992 0.688758i \(-0.241844\pi\)
\(642\) 7.56002e32i 0.154207i
\(643\) 1.02673e33i 0.205554i −0.994704 0.102777i \(-0.967227\pi\)
0.994704 0.102777i \(-0.0327728\pi\)
\(644\) 2.21376e33 + 4.32121e32i 0.435010 + 0.0849132i
\(645\) 4.39978e32 0.0848622
\(646\) −2.32567e33 −0.440309
\(647\) 8.19461e32 0.152292 0.0761460 0.997097i \(-0.475739\pi\)
0.0761460 + 0.997097i \(0.475739\pi\)
\(648\) −5.05002e33 −0.921283
\(649\) 1.55585e33i 0.278632i
\(650\) −2.93085e33 −0.515269
\(651\) 6.60776e32i 0.114047i
\(652\) −1.59907e33 −0.270955
\(653\) 7.98811e32 0.132888 0.0664440 0.997790i \(-0.478835\pi\)
0.0664440 + 0.997790i \(0.478835\pi\)
\(654\) 1.02340e33i 0.167153i
\(655\) 1.35893e33i 0.217923i
\(656\) 6.71647e32 0.105754
\(657\) 4.55141e32 0.0703658
\(658\) 1.60666e33i 0.243902i
\(659\) 5.41677e33i 0.807449i −0.914881 0.403725i \(-0.867715\pi\)
0.914881 0.403725i \(-0.132285\pi\)
\(660\) 3.48043e32 0.0509455
\(661\) 8.39803e33i 1.20715i 0.797308 + 0.603573i \(0.206257\pi\)
−0.797308 + 0.603573i \(0.793743\pi\)
\(662\) 7.99682e33 1.12881
\(663\) 1.32067e33i 0.183076i
\(664\) 2.08317e33i 0.283602i
\(665\) 2.82819e33i 0.378137i
\(666\) 1.24442e33i 0.163409i
\(667\) −3.89074e32 + 1.99323e33i −0.0501790 + 0.257067i
\(668\) 1.45930e33 0.184853
\(669\) −6.98593e32 −0.0869182
\(670\) −7.79797e32 −0.0952981
\(671\) 7.44605e32 0.0893832
\(672\) 1.46984e33i 0.173316i
\(673\) −4.47278e33 −0.518080 −0.259040 0.965867i \(-0.583406\pi\)
−0.259040 + 0.965867i \(0.583406\pi\)
\(674\) 9.73435e33i 1.10761i
\(675\) −2.64735e33 −0.295914
\(676\) −1.17510e32 −0.0129037
\(677\) 1.38087e32i 0.0148966i −0.999972 0.00744832i \(-0.997629\pi\)
0.999972 0.00744832i \(-0.00237090\pi\)
\(678\) 5.82646e32i 0.0617516i
\(679\) 9.80330e33 1.02079
\(680\) −4.78474e33 −0.489499
\(681\) 3.79323e33i 0.381280i
\(682\) 3.72442e33i 0.367829i
\(683\) −9.96674e33 −0.967174 −0.483587 0.875296i \(-0.660666\pi\)
−0.483587 + 0.875296i \(0.660666\pi\)
\(684\) 3.40341e33i 0.324520i
\(685\) −5.92255e33 −0.554910
\(686\) 8.27829e33i 0.762169i
\(687\) 3.01102e33i 0.272416i
\(688\) 2.48882e33i 0.221275i
\(689\) 7.58582e33i 0.662784i
\(690\) −9.96104e32 1.94438e32i −0.0855294 0.0166952i
\(691\) 6.39593e33 0.539719 0.269859 0.962900i \(-0.413023\pi\)
0.269859 + 0.962900i \(0.413023\pi\)
\(692\) −3.84438e33 −0.318825
\(693\) 1.00525e34 0.819363
\(694\) 7.74428e33 0.620393
\(695\) 5.22844e33i 0.411675i
\(696\) 7.87325e32 0.0609317
\(697\) 3.70674e33i 0.281967i
\(698\) −9.60518e33 −0.718192
\(699\) −3.53276e33 −0.259650
\(700\) 4.27800e33i 0.309075i
\(701\) 8.55870e33i 0.607843i −0.952697 0.303922i \(-0.901704\pi\)
0.952697 0.303922i \(-0.0982961\pi\)
\(702\) 4.49112e33 0.313552
\(703\) −2.49149e33 −0.171000
\(704\) 1.24856e34i 0.842436i
\(705\) 6.37627e32i 0.0422958i
\(706\) −1.54136e34 −1.00519
\(707\) 2.52933e33i 0.162170i
\(708\) 4.95032e32 0.0312057
\(709\) 2.50283e34i 1.55123i 0.631205 + 0.775616i \(0.282561\pi\)
−0.631205 + 0.775616i \(0.717439\pi\)
\(710\) 6.09065e33i 0.371162i
\(711\) 6.74976e33i 0.404439i
\(712\) 5.62020e33i 0.331125i
\(713\) 1.83516e33 9.40150e33i 0.106316 0.544657i
\(714\) 2.18562e33 0.124508
\(715\) 9.05233e33 0.507093
\(716\) 1.43767e34 0.791958
\(717\) −4.84739e32 −0.0262590
\(718\) 2.00815e34i 1.06980i
\(719\) −3.55940e34 −1.86479 −0.932395 0.361440i \(-0.882285\pi\)
−0.932395 + 0.361440i \(0.882285\pi\)
\(720\) 3.17118e33i 0.163392i
\(721\) 3.34767e34 1.69637
\(722\) 6.90067e33 0.343910
\(723\) 2.97358e33i 0.145754i
\(724\) 2.81043e33i 0.135491i
\(725\) −3.85184e33 −0.182647
\(726\) 5.88067e32 0.0274276
\(727\) 1.56376e34i 0.717394i 0.933454 + 0.358697i \(0.116779\pi\)
−0.933454 + 0.358697i \(0.883221\pi\)
\(728\) 2.27434e34i 1.02631i
\(729\) −1.63943e34 −0.727717
\(730\) 6.78283e32i 0.0296167i
\(731\) −1.37355e34 −0.589977
\(732\) 2.36915e32i 0.0100106i
\(733\) 7.92372e33i 0.329368i 0.986346 + 0.164684i \(0.0526604\pi\)
−0.986346 + 0.164684i \(0.947340\pi\)
\(734\) 9.79097e33i 0.400381i
\(735\) 3.13735e32i 0.0126216i
\(736\) 4.08214e33 2.09128e34i 0.161567 0.827710i
\(737\) −5.54931e33 −0.216087
\(738\) 6.15024e33 0.235622
\(739\) −7.28462e32 −0.0274583 −0.0137291 0.999906i \(-0.504370\pi\)
−0.0137291 + 0.999906i \(0.504370\pi\)
\(740\) −1.63569e33 −0.0606624
\(741\) 4.38718e33i 0.160091i
\(742\) 1.25540e34 0.450750
\(743\) 1.13824e34i 0.402132i −0.979578 0.201066i \(-0.935559\pi\)
0.979578 0.201066i \(-0.0644405\pi\)
\(744\) −3.71360e33 −0.129098
\(745\) 1.83819e33 0.0628803
\(746\) 8.84645e33i 0.297785i
\(747\) 7.61972e33i 0.252402i
\(748\) −1.08654e34 −0.354182
\(749\) 2.87010e34 0.920695
\(750\) 4.68533e33i 0.147912i
\(751\) 2.62152e34i 0.814467i 0.913324 + 0.407233i \(0.133506\pi\)
−0.913324 + 0.407233i \(0.866494\pi\)
\(752\) −3.60686e33 −0.110285
\(753\) 3.05623e33i 0.0919701i
\(754\) 6.53449e33 0.193533
\(755\) 1.76630e34i 0.514875i
\(756\) 6.55544e33i 0.188079i
\(757\) 3.92878e34i 1.10945i 0.832034 + 0.554724i \(0.187176\pi\)
−0.832034 + 0.554724i \(0.812824\pi\)
\(758\) 4.56574e34i 1.26906i
\(759\) −7.08862e33 1.38369e33i −0.193937 0.0378561i
\(760\) −1.58946e34 −0.428042
\(761\) 6.08698e33 0.161356 0.0806782 0.996740i \(-0.474291\pi\)
0.0806782 + 0.996740i \(0.474291\pi\)
\(762\) −6.78064e33 −0.176934
\(763\) 3.88527e34 0.997992
\(764\) 1.89262e34i 0.478566i
\(765\) −1.75014e34 −0.435647
\(766\) 4.46592e34i 1.09437i
\(767\) 1.28754e34 0.310611
\(768\) −9.59719e33 −0.227934
\(769\) 3.09123e34i 0.722795i −0.932412 0.361398i \(-0.882300\pi\)
0.932412 0.361398i \(-0.117700\pi\)
\(770\) 1.49810e34i 0.344867i
\(771\) 1.71022e34 0.387614
\(772\) −2.49082e34 −0.555820
\(773\) 4.70294e33i 0.103327i −0.998665 0.0516637i \(-0.983548\pi\)
0.998665 0.0516637i \(-0.0164524\pi\)
\(774\) 2.27900e34i 0.493006i
\(775\) 1.81680e34 0.386979
\(776\) 5.50951e34i 1.15551i
\(777\) 2.34146e33 0.0483542
\(778\) 4.38795e34i 0.892291i
\(779\) 1.23135e34i 0.246566i
\(780\) 2.88023e33i 0.0567925i
\(781\) 4.33432e34i 0.841606i
\(782\) 3.10969e34 + 6.07006e33i 0.594616 + 0.116068i
\(783\) 5.90240e33 0.111144
\(784\) −1.77470e33 −0.0329103
\(785\) −5.60065e34 −1.02283
\(786\) −3.48863e33 −0.0627457
\(787\) 3.63159e34i 0.643280i 0.946862 + 0.321640i \(0.104234\pi\)
−0.946862 + 0.321640i \(0.895766\pi\)
\(788\) −3.46650e33 −0.0604750
\(789\) 1.35140e34i 0.232198i
\(790\) −1.00590e34 −0.170227
\(791\) −2.21197e34 −0.368690
\(792\) 5.64957e34i 0.927499i
\(793\) 6.16197e33i 0.0996417i
\(794\) −3.66858e34 −0.584321
\(795\) 4.98224e33 0.0781662
\(796\) 1.25176e33i 0.0193448i
\(797\) 1.02305e35i 1.55739i 0.627401 + 0.778696i \(0.284119\pi\)
−0.627401 + 0.778696i \(0.715881\pi\)
\(798\) 7.26048e33 0.108876
\(799\) 1.99058e34i 0.294048i
\(800\) 4.04132e34 0.588089
\(801\) 2.05573e34i 0.294697i
\(802\) 7.09986e34i 1.00267i
\(803\) 4.82690e33i 0.0671556i
\(804\) 1.76565e33i 0.0242010i
\(805\) −7.38167e33 + 3.78163e34i −0.0996791 + 0.510656i
\(806\) −3.08214e34 −0.410045
\(807\) 1.92724e34 0.252612
\(808\) 1.42150e34 0.183573
\(809\) 1.13639e35 1.44592 0.722962 0.690888i \(-0.242780\pi\)
0.722962 + 0.690888i \(0.242780\pi\)
\(810\) 2.75279e34i 0.345106i
\(811\) 1.09882e35 1.35730 0.678649 0.734463i \(-0.262566\pi\)
0.678649 + 0.734463i \(0.262566\pi\)
\(812\) 9.53803e33i 0.116088i
\(813\) −2.69273e34 −0.322929
\(814\) 1.31975e34 0.155954
\(815\) 2.73160e34i 0.318072i
\(816\) 4.90657e33i 0.0562984i
\(817\) −4.56284e34 −0.515905
\(818\) 6.78005e34 0.755428
\(819\) 8.31895e34i 0.913401i
\(820\) 8.08396e33i 0.0874698i
\(821\) 2.92607e34 0.312008 0.156004 0.987756i \(-0.450139\pi\)
0.156004 + 0.987756i \(0.450139\pi\)
\(822\) 1.52043e34i 0.159773i
\(823\) −1.65767e35 −1.71672 −0.858362 0.513044i \(-0.828518\pi\)
−0.858362 + 0.513044i \(0.828518\pi\)
\(824\) 1.88141e35i 1.92025i
\(825\) 1.36985e34i 0.137793i
\(826\) 2.13079e34i 0.211242i
\(827\) 6.77123e34i 0.661609i −0.943699 0.330805i \(-0.892680\pi\)
0.943699 0.330805i \(-0.107320\pi\)
\(828\) 8.88300e33 4.55076e34i 0.0855452 0.438248i
\(829\) −1.12109e35 −1.06411 −0.532055 0.846710i \(-0.678580\pi\)
−0.532055 + 0.846710i \(0.678580\pi\)
\(830\) 1.13555e34 0.106235
\(831\) −1.78462e34 −0.164564
\(832\) −1.03324e35 −0.939122
\(833\) 9.79436e33i 0.0877477i
\(834\) 1.34223e34 0.118532
\(835\) 2.49283e34i 0.216998i
\(836\) −3.60942e34 −0.309715
\(837\) −2.78400e34 −0.235485
\(838\) 3.64970e34i 0.304319i
\(839\) 5.78484e34i 0.475497i −0.971327 0.237748i \(-0.923591\pi\)
0.971327 0.237748i \(-0.0764094\pi\)
\(840\) 1.49375e34 0.121039
\(841\) −1.16597e35 −0.931399
\(842\) 2.01452e34i 0.158645i
\(843\) 1.36931e34i 0.106309i
\(844\) 2.89732e34 0.221762
\(845\) 2.00736e33i 0.0151476i
\(846\) −3.30278e34 −0.245717
\(847\) 2.23255e34i 0.163757i
\(848\) 2.81829e34i 0.203815i
\(849\) 1.38163e34i 0.0985140i
\(850\) 6.00936e34i 0.422475i
\(851\) 3.33142e34 + 6.50287e33i 0.230927 + 0.0450765i
\(852\) 1.37907e34 0.0942567
\(853\) 2.64121e35 1.77998 0.889988 0.455984i \(-0.150713\pi\)
0.889988 + 0.455984i \(0.150713\pi\)
\(854\) 1.01976e34 0.0677650
\(855\) −5.81384e34 −0.380952
\(856\) 1.61301e35i 1.04220i
\(857\) 1.59956e35 1.01913 0.509566 0.860432i \(-0.329806\pi\)
0.509566 + 0.860432i \(0.329806\pi\)
\(858\) 2.32390e34i 0.146006i
\(859\) 7.71785e34 0.478166 0.239083 0.970999i \(-0.423153\pi\)
0.239083 + 0.970999i \(0.423153\pi\)
\(860\) −2.99555e34 −0.183018
\(861\) 1.15720e34i 0.0697224i
\(862\) 1.20287e34i 0.0714715i
\(863\) −9.18991e34 −0.538495 −0.269247 0.963071i \(-0.586775\pi\)
−0.269247 + 0.963071i \(0.586775\pi\)
\(864\) −6.19276e34 −0.357865
\(865\) 6.56712e34i 0.374267i
\(866\) 8.46869e34i 0.475994i
\(867\) 1.21222e34 0.0671976
\(868\) 4.49883e34i 0.245959i
\(869\) −7.15832e34 −0.385988
\(870\) 4.29174e33i 0.0228246i
\(871\) 4.59232e34i 0.240888i
\(872\) 2.18355e35i 1.12970i
\(873\) 2.01524e35i 1.02838i
\(874\) 1.03302e35 + 2.01643e34i 0.519962 + 0.101496i
\(875\) −1.77875e35 −0.883116
\(876\) 1.53580e33 0.00752117
\(877\) 1.46869e35 0.709470 0.354735 0.934967i \(-0.384571\pi\)
0.354735 + 0.934967i \(0.384571\pi\)
\(878\) −1.82369e35 −0.868995
\(879\) 7.04683e34i 0.331228i
\(880\) 3.36313e34 0.155938
\(881\) 1.25849e35i 0.575626i 0.957687 + 0.287813i \(0.0929281\pi\)
−0.957687 + 0.287813i \(0.907072\pi\)
\(882\) −1.62508e34 −0.0733251
\(883\) 2.90903e35 1.29485 0.647426 0.762128i \(-0.275845\pi\)
0.647426 + 0.762128i \(0.275845\pi\)
\(884\) 8.99165e34i 0.394832i
\(885\) 8.45635e33i 0.0366322i
\(886\) −1.81774e35 −0.776831
\(887\) −2.47889e35 −1.04514 −0.522570 0.852596i \(-0.675027\pi\)
−0.522570 + 0.852596i \(0.675027\pi\)
\(888\) 1.31591e34i 0.0547358i
\(889\) 2.57422e35i 1.05639i
\(890\) 3.06359e34 0.124037
\(891\) 1.95898e35i 0.782523i
\(892\) 4.75630e34 0.187452
\(893\) 6.61258e34i 0.257130i
\(894\) 4.71896e33i 0.0181049i
\(895\) 2.45588e35i 0.929675i
\(896\) 4.25389e34i 0.158887i
\(897\) −1.14507e34 + 5.86618e34i −0.0422009 + 0.216195i
\(898\) 1.72188e35 0.626161
\(899\) −4.05066e34 −0.145348
\(900\) 8.79418e34 0.311376
\(901\) −1.55538e35 −0.543425
\(902\) 6.52251e34i 0.224872i
\(903\) 4.28807e34 0.145884
\(904\) 1.24314e35i 0.417348i
\(905\) −4.80089e34 −0.159052
\(906\) −4.53442e34 −0.148246
\(907\) 4.19613e35i 1.35382i 0.736065 + 0.676911i \(0.236682\pi\)
−0.736065 + 0.676911i \(0.763318\pi\)
\(908\) 2.58258e35i 0.822289i
\(909\) 5.19947e34 0.163378
\(910\) 1.23975e35 0.384448
\(911\) 4.24501e35i 1.29915i 0.760298 + 0.649574i \(0.225053\pi\)
−0.760298 + 0.649574i \(0.774947\pi\)
\(912\) 1.62993e34i 0.0492301i
\(913\) 8.08094e34 0.240887
\(914\) 2.69056e35i 0.791567i
\(915\) 4.04708e33 0.0117514
\(916\) 2.05002e35i 0.587507i
\(917\) 1.32443e35i 0.374625i
\(918\) 9.20851e34i 0.257085i
\(919\) 9.13988e34i 0.251857i 0.992039 + 0.125929i \(0.0401910\pi\)
−0.992039 + 0.125929i \(0.959809\pi\)
\(920\) 2.12530e35 + 4.14854e34i 0.578050 + 0.112834i
\(921\) 1.23514e35 0.331591
\(922\) 8.70414e34 0.230651
\(923\) 3.58686e35 0.938197
\(924\) 3.39206e34 0.0875790
\(925\) 6.43784e34i 0.164074i
\(926\) −2.42363e34 −0.0609726
\(927\) 6.88173e35i 1.70899i
\(928\) −9.01033e34 −0.220884
\(929\) −3.75255e35 −0.908109 −0.454055 0.890974i \(-0.650023\pi\)
−0.454055 + 0.890974i \(0.650023\pi\)
\(930\) 2.02430e34i 0.0483591i
\(931\) 3.25362e34i 0.0767310i
\(932\) 2.40525e35 0.559975
\(933\) 1.30754e34 0.0300521
\(934\) 6.27877e35i 1.42466i
\(935\) 1.85607e35i 0.415772i
\(936\) −4.67530e35 −1.03395
\(937\) 1.27006e35i 0.277301i −0.990341 0.138650i \(-0.955724\pi\)
0.990341 0.138650i \(-0.0442764\pi\)
\(938\) −7.59998e34 −0.163824
\(939\) 1.90977e35i 0.406437i
\(940\) 4.34122e34i 0.0912174i
\(941\) 6.73327e35i 1.39685i −0.715682 0.698426i \(-0.753884\pi\)
0.715682 0.698426i \(-0.246116\pi\)
\(942\) 1.43779e35i 0.294499i
\(943\) −3.21387e34 + 1.64647e35i −0.0649963 + 0.332976i
\(944\) 4.78349e34 0.0955170
\(945\) 1.11983e35 0.220785
\(946\) 2.41694e35 0.470514
\(947\) 4.23978e35 0.814974 0.407487 0.913211i \(-0.366405\pi\)
0.407487 + 0.913211i \(0.366405\pi\)
\(948\) 2.27760e34i 0.0432292i
\(949\) 3.99450e34 0.0748630
\(950\) 1.99627e35i 0.369434i
\(951\) −1.89884e35 −0.346995
\(952\) −4.66326e35 −0.841484
\(953\) 2.42884e35i 0.432797i 0.976305 + 0.216399i \(0.0694311\pi\)
−0.976305 + 0.216399i \(0.930569\pi\)
\(954\) 2.58070e35i 0.454105i
\(955\) 3.23304e35 0.561786
\(956\) 3.30030e34 0.0566316
\(957\) 3.05415e34i 0.0517544i
\(958\) 9.05002e34i 0.151448i
\(959\) −5.77218e35 −0.953930
\(960\) 6.78616e34i 0.110756i
\(961\) −4.29354e35 −0.692046
\(962\) 1.09215e35i 0.173853i
\(963\) 5.90000e35i 0.927548i
\(964\) 2.02453e35i 0.314340i
\(965\) 4.25491e35i 0.652473i
\(966\) −9.70813e34 1.89501e34i −0.147031 0.0287002i
\(967\) −6.09546e35 −0.911777 −0.455889 0.890037i \(-0.650678\pi\)
−0.455889 + 0.890037i \(0.650678\pi\)
\(968\) −1.25471e35 −0.185369
\(969\) −8.99539e34 −0.131261
\(970\) 3.00325e35 0.432844
\(971\) 1.15097e36i 1.63844i −0.573477 0.819222i \(-0.694406\pi\)
0.573477 0.819222i \(-0.305594\pi\)
\(972\) −2.03767e35 −0.286510
\(973\) 5.09569e35i 0.707699i
\(974\) 4.37911e35 0.600728
\(975\) −1.13362e35 −0.153607
\(976\) 2.28930e34i 0.0306412i
\(977\) 6.38407e35i 0.844040i −0.906587 0.422020i \(-0.861321\pi\)
0.906587 0.422020i \(-0.138679\pi\)
\(978\) 7.01251e34 0.0915814
\(979\) 2.18016e35 0.281252
\(980\) 2.13603e34i 0.0272204i
\(981\) 7.98686e35i 1.00542i
\(982\) −6.88403e34 −0.0856062
\(983\) 4.07154e35i 0.500168i −0.968224 0.250084i \(-0.919542\pi\)
0.968224 0.250084i \(-0.0804583\pi\)
\(984\) 6.50355e34 0.0789241
\(985\) 5.92161e34i 0.0709913i
\(986\) 1.33982e35i 0.158680i
\(987\) 6.21438e34i 0.0727096i
\(988\) 2.98697e35i 0.345261i
\(989\) 6.10105e35 + 1.19091e35i 0.696705 + 0.135996i
\(990\) 3.07960e35 0.347434
\(991\) 3.02452e35 0.337110 0.168555 0.985692i \(-0.446090\pi\)
0.168555 + 0.985692i \(0.446090\pi\)
\(992\) 4.24992e35 0.467995
\(993\) 3.09307e35 0.336511
\(994\) 5.93601e35i 0.638055i
\(995\) 2.13831e34 0.0227088
\(996\) 2.57115e34i 0.0269784i
\(997\) −1.01108e36 −1.04820 −0.524098 0.851658i \(-0.675597\pi\)
−0.524098 + 0.851658i \(0.675597\pi\)
\(998\) −1.11179e36 −1.13882
\(999\) 9.86510e34i 0.0998425i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 23.25.b.c.22.31 44
23.22 odd 2 inner 23.25.b.c.22.32 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.25.b.c.22.31 44 1.1 even 1 trivial
23.25.b.c.22.32 yes 44 23.22 odd 2 inner