Properties

Label 23.25
Level 23
Weight 25
Dimension 517
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 1100
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 23 \)
Weight: \( k \) = \( 25 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(1100\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{25}(\Gamma_1(23))\).

Total New Old
Modular forms 539 539 0
Cusp forms 517 517 0
Eisenstein series 22 22 0

Trace form

\( 517 q - 11 q^{2} - 11 q^{3} - 11 q^{4} - 11 q^{5} - 11 q^{6} - 11 q^{7} - 11 q^{8} - 11 q^{9} + O(q^{10}) \) \( 517 q - 11 q^{2} - 11 q^{3} - 11 q^{4} - 11 q^{5} - 11 q^{6} - 11 q^{7} - 11 q^{8} - 11 q^{9} - 11 q^{10} - 11 q^{11} - 11 q^{12} - 11 q^{13} - 11 q^{14} - 800436024284523 q^{15} - 2335296108625931 q^{16} - 142943658137291 q^{17} + 9617267741818869 q^{18} - 4984581506002571 q^{19} + 31625125174444021 q^{20} - 26374255401061931 q^{21} + 59947459274197429 q^{23} - 490338334455889942 q^{24} + 235612232914265845 q^{25} - 110127563224842251 q^{26} - 540154406595840971 q^{27} + 2217672212930887669 q^{28} - 908813608243944491 q^{29} + 4485685379528916981 q^{30} - 1483300027379570411 q^{31} + 7423561284735467509 q^{32} - 7501094894633327691 q^{33} + 26123091298283901295 q^{34} + 19369214261718749989 q^{35} - 65521061172594786836 q^{36} + 63108404968659050869 q^{37} - 92165918921265264086 q^{38} + 51149986368545367061 q^{39} + 81939363966796874989 q^{40} - 79456909608691322411 q^{41} + 329488697687151395239 q^{42} + 137784834492002411989 q^{43} - 595395191417035971654 q^{44} + 1144528651104639320509 q^{46} - 273776068751144208502 q^{47} - 1683838604242654304467 q^{48} + 1171766308104949838677 q^{49} + 1941382884979248046864 q^{50} - 1746010337674620869291 q^{51} - 2678934933266948929661 q^{52} + 1749186518933984074549 q^{53} + 4472571923920978744317 q^{54} - 7770047442703882111787 q^{55} + 13097408759654225842528 q^{56} - 5654420596015814610251 q^{57} - 104306738182175624546 q^{58} + 552669515217694418533 q^{59} - 10558165123009589769541 q^{60} + 16522676211994540807285 q^{61} - 1277902590287958835211 q^{62} - 28158924553585382629611 q^{63} + 11648201837073458528245 q^{64} + 53945363833855230268213 q^{65} - 13341495806064133934688 q^{66} - 21915358203905170435211 q^{67} + 76647440769977813156949 q^{69} + 38570319600617185345514 q^{70} - 99518409259895816578091 q^{71} - 168330439313596616536502 q^{72} + 46068100745320824656629 q^{73} + 106118281018068503990740 q^{74} - 166766653537767241994123 q^{75} - 257480160777483254058074 q^{76} + 173026289483880321582709 q^{77} - 347329969198794648984621 q^{78} + 234924802817556210477877 q^{79} - 883810571198246620032962 q^{80} - 1127516818383986575180075 q^{81} + 565995640116820644947359 q^{82} - 67749481664961124754891 q^{83} + 547947373124904058930811 q^{84} - 1680838579520719122692507 q^{85} + 150450695895336919295587 q^{86} + 2423976176362035045347509 q^{87} + 1339945340235847693232445 q^{88} - 970858985408296745801051 q^{89} - 5942606524952304185455246 q^{90} + 3608138922177440782055914 q^{92} + 3479079723139524664960778 q^{93} - 2722346445722890557220672 q^{94} - 6918882501003034485341099 q^{95} - 3472547915088630902072648 q^{96} + 5099464459288890849256549 q^{97} + 8397242835824942647356589 q^{98} - 13644460322204206338338891 q^{99} + O(q^{100}) \)

Decomposition of \(S_{25}^{\mathrm{new}}(\Gamma_1(23))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
23.25.b \(\chi_{23}(22, \cdot)\) 23.25.b.a 1 1
23.25.b.b 2
23.25.b.c 44
23.25.d \(\chi_{23}(5, \cdot)\) 23.25.d.a 470 10