Properties

Label 23.25
Level 23
Weight 25
Dimension 517
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 1100
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 23 23
Weight: k k = 25 25
Nonzero newspaces: 2 2
Newform subspaces: 4 4
Sturm bound: 11001100
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M25(Γ1(23))M_{25}(\Gamma_1(23)).

Total New Old
Modular forms 539 539 0
Cusp forms 517 517 0
Eisenstein series 22 22 0

Trace form

517q11q211q311q411q511q611q711q811q911q1011q1111q1211q1311q14800436024284523q1523 ⁣ ⁣31q16+13 ⁣ ⁣91q99+O(q100) 517 q - 11 q^{2} - 11 q^{3} - 11 q^{4} - 11 q^{5} - 11 q^{6} - 11 q^{7} - 11 q^{8} - 11 q^{9} - 11 q^{10} - 11 q^{11} - 11 q^{12} - 11 q^{13} - 11 q^{14} - 800436024284523 q^{15} - 23\!\cdots\!31 q^{16}+ \cdots - 13\!\cdots\!91 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S25new(Γ1(23))S_{25}^{\mathrm{new}}(\Gamma_1(23))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
23.25.b χ23(22,)\chi_{23}(22, \cdot) 23.25.b.a 1 1
23.25.b.b 2
23.25.b.c 44
23.25.d χ23(5,)\chi_{23}(5, \cdot) 23.25.d.a 470 10