Defining parameters
Level: | \( N \) | \(=\) | \( 23 \) |
Weight: | \( k \) | \(=\) | \( 25 \) |
Character orbit: | \([\chi]\) | \(=\) | 23.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(50\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{25}(23, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 49 | 49 | 0 |
Cusp forms | 47 | 47 | 0 |
Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{25}^{\mathrm{new}}(23, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
23.25.b.a | $1$ | $83.942$ | \(\Q\) | \(\Q(\sqrt{-23}) \) | \(-1951\) | \(-1062686\) | \(0\) | \(0\) | \(q-1951q^{2}-1062686q^{3}-12970815q^{4}+\cdots\) |
23.25.b.b | $2$ | $83.942$ | \(\Q(\sqrt{69}) \) | \(\Q(\sqrt{-23}) \) | \(1951\) | \(1062686\) | \(0\) | \(0\) | \(q+(1094+237\beta )q^{2}+(531039-608\beta )q^{3}+\cdots\) |
23.25.b.c | $44$ | $83.942$ | None | \(-4232\) | \(-434562\) | \(0\) | \(0\) |