L(s) = 1 | + 2.98e3·2-s + 1.15e5·3-s − 7.86e6·4-s − 1.34e8i·5-s + 3.44e8·6-s − 1.30e10i·7-s − 7.35e10·8-s − 2.69e11·9-s − 4.01e11i·10-s − 2.85e12i·11-s − 9.08e11·12-s − 2.36e13·13-s − 3.90e13i·14-s − 1.55e13i·15-s − 8.77e13·16-s + 4.84e14i·17-s + ⋯ |
L(s) = 1 | + 0.728·2-s + 0.217·3-s − 0.468·4-s − 0.550i·5-s + 0.158·6-s − 0.945i·7-s − 1.07·8-s − 0.952·9-s − 0.401i·10-s − 0.909i·11-s − 0.101·12-s − 1.01·13-s − 0.689i·14-s − 0.119i·15-s − 0.311·16-s + 0.831i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.191 - 0.981i)\, \overline{\Lambda}(25-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+12) \, L(s)\cr =\mathstrut & (0.191 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{25}{2})\) |
\(\approx\) |
\(0.6824021813\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6824021813\) |
\(L(13)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 23 | \( 1 + (-4.19e15 + 2.15e16i)T \) |
good | 2 | \( 1 - 2.98e3T + 1.67e7T^{2} \) |
| 3 | \( 1 - 1.15e5T + 2.82e11T^{2} \) |
| 5 | \( 1 + 1.34e8iT - 5.96e16T^{2} \) |
| 7 | \( 1 + 1.30e10iT - 1.91e20T^{2} \) |
| 11 | \( 1 + 2.85e12iT - 9.84e24T^{2} \) |
| 13 | \( 1 + 2.36e13T + 5.42e26T^{2} \) |
| 17 | \( 1 - 4.84e14iT - 3.39e29T^{2} \) |
| 19 | \( 1 - 1.60e15iT - 4.89e30T^{2} \) |
| 29 | \( 1 + 9.26e16T + 1.25e35T^{2} \) |
| 31 | \( 1 - 4.37e17T + 6.20e35T^{2} \) |
| 37 | \( 1 - 1.54e18iT - 4.33e37T^{2} \) |
| 41 | \( 1 + 7.65e18T + 5.09e38T^{2} \) |
| 43 | \( 1 - 2.83e19iT - 1.59e39T^{2} \) |
| 47 | \( 1 - 4.11e19T + 1.35e40T^{2} \) |
| 53 | \( 1 - 3.21e20iT - 2.41e41T^{2} \) |
| 59 | \( 1 + 5.45e20T + 3.16e42T^{2} \) |
| 61 | \( 1 - 2.60e20iT - 7.04e42T^{2} \) |
| 67 | \( 1 + 1.94e21iT - 6.69e43T^{2} \) |
| 71 | \( 1 + 1.51e22T + 2.69e44T^{2} \) |
| 73 | \( 1 + 1.69e21T + 5.24e44T^{2} \) |
| 79 | \( 1 + 2.50e22iT - 3.49e45T^{2} \) |
| 83 | \( 1 - 2.83e22iT - 1.14e46T^{2} \) |
| 89 | \( 1 - 7.63e22iT - 6.10e46T^{2} \) |
| 97 | \( 1 - 7.48e23iT - 4.81e47T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.09465240161598194027223363294, −12.02571000038760639363063881703, −10.49492019041374786884879395008, −9.012402923201818034466664784031, −8.052075494381319973682646289569, −6.21194198785295955515092268311, −5.03232424063229218128559259396, −3.94837746344953421394154133505, −2.82270291992244215168163614039, −0.886311068148860451835297547655,
0.14595803164210824714332589469, 2.38072771319292203364955249750, 3.11711724228529261247112193745, 4.75132161488533388279730062466, 5.62662372518212161033834627532, 7.14202092796205768752299911062, 8.774530477326998647023000579298, 9.687069646732790312064098937128, 11.53947176461064779278673902183, 12.42781593885342769103884022629