Properties

Label 23.25.b.c.22.2
Level $23$
Weight $25$
Character 23.22
Analytic conductor $83.942$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [23,25,Mod(22,23)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 25, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("23.22"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.9424450193\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 22.2
Character \(\chi\) \(=\) 23.22
Dual form 23.25.b.c.22.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7585.13 q^{2} +776377. q^{3} +4.07570e7 q^{4} +3.88802e8i q^{5} -5.88892e9 q^{6} -7.00512e9i q^{7} -1.81889e11 q^{8} +3.20332e11 q^{9} -2.94912e12i q^{10} +3.53280e12i q^{11} +3.16428e13 q^{12} +7.20698e12 q^{13} +5.31348e13i q^{14} +3.01857e14i q^{15} +6.95866e14 q^{16} -3.92673e13i q^{17} -2.42976e15 q^{18} -2.86866e15i q^{19} +1.58464e16i q^{20} -5.43862e15i q^{21} -2.67967e16i q^{22} +(-1.94816e16 + 1.00359e16i) q^{23} -1.41215e17 q^{24} -9.15626e16 q^{25} -5.46659e16 q^{26} +2.94264e16 q^{27} -2.85508e17i q^{28} -1.47160e17 q^{29} -2.28963e18i q^{30} -4.74187e17 q^{31} -2.22664e18 q^{32} +2.74279e18i q^{33} +2.97847e17i q^{34} +2.72361e18 q^{35} +1.30557e19 q^{36} +1.14369e19i q^{37} +2.17591e19i q^{38} +5.59533e18 q^{39} -7.07190e19i q^{40} -3.61739e19 q^{41} +4.12526e19i q^{42} -7.05725e19i q^{43} +1.43986e20i q^{44} +1.24546e20i q^{45} +(1.47770e20 - 7.61235e19i) q^{46} -1.72045e20 q^{47} +5.40255e20 q^{48} +1.42509e20 q^{49} +6.94514e20 q^{50} -3.04862e19i q^{51} +2.93735e20 q^{52} +5.62272e20i q^{53} -2.23203e20 q^{54} -1.37356e21 q^{55} +1.27416e21i q^{56} -2.22716e21i q^{57} +1.11622e21 q^{58} +3.17850e21 q^{59} +1.23028e22i q^{60} -4.66747e21i q^{61} +3.59677e21 q^{62} -2.24396e21i q^{63} +5.21463e21 q^{64} +2.80209e21i q^{65} -2.08044e22i q^{66} +3.10815e21i q^{67} -1.60042e21i q^{68} +(-1.51250e22 + 7.79163e21i) q^{69} -2.06589e22 q^{70} -1.62037e22 q^{71} -5.82650e22 q^{72} -2.51668e21 q^{73} -8.67506e22i q^{74} -7.10871e22 q^{75} -1.16918e23i q^{76} +2.47477e22 q^{77} -4.24413e22 q^{78} +7.84739e22i q^{79} +2.70554e23i q^{80} -6.76252e22 q^{81} +2.74383e23 q^{82} +3.55880e22i q^{83} -2.21662e23i q^{84} +1.52672e22 q^{85} +5.35301e23i q^{86} -1.14251e23 q^{87} -6.42579e23i q^{88} +1.67467e22i q^{89} -9.44696e23i q^{90} -5.04858e22i q^{91} +(-7.94010e23 + 4.09032e23i) q^{92} -3.68148e23 q^{93} +1.30498e24 q^{94} +1.11534e24 q^{95} -1.72871e24 q^{96} -2.72120e23i q^{97} -1.08095e24 q^{98} +1.13167e24i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4232 q^{2} - 434562 q^{3} + 317760360 q^{4} - 8460029520 q^{6} - 198307023760 q^{8} + 4220041988298 q^{9} - 67439597688792 q^{12} + 5771152551358 q^{13} + 18\!\cdots\!92 q^{16} + 18\!\cdots\!68 q^{18}+ \cdots - 20\!\cdots\!92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7585.13 −1.85184 −0.925919 0.377722i \(-0.876707\pi\)
−0.925919 + 0.377722i \(0.876707\pi\)
\(3\) 776377. 1.46089 0.730445 0.682971i \(-0.239313\pi\)
0.730445 + 0.682971i \(0.239313\pi\)
\(4\) 4.07570e7 2.42930
\(5\) 3.88802e8i 1.59253i 0.604945 + 0.796267i \(0.293195\pi\)
−0.604945 + 0.796267i \(0.706805\pi\)
\(6\) −5.88892e9 −2.70533
\(7\) 7.00512e9i 0.506104i −0.967453 0.253052i \(-0.918566\pi\)
0.967453 0.253052i \(-0.0814343\pi\)
\(8\) −1.81889e11 −2.64684
\(9\) 3.20332e11 1.13420
\(10\) 2.94912e12i 2.94912i
\(11\) 3.53280e12i 1.12566i 0.826573 + 0.562830i \(0.190287\pi\)
−0.826573 + 0.562830i \(0.809713\pi\)
\(12\) 3.16428e13 3.54895
\(13\) 7.20698e12 0.309338 0.154669 0.987966i \(-0.450569\pi\)
0.154669 + 0.987966i \(0.450569\pi\)
\(14\) 5.31348e13i 0.937222i
\(15\) 3.01857e14i 2.32652i
\(16\) 6.95866e14 2.47221
\(17\) 3.92673e13i 0.0673975i −0.999432 0.0336988i \(-0.989271\pi\)
0.999432 0.0336988i \(-0.0107287\pi\)
\(18\) −2.42976e15 −2.10036
\(19\) 2.86866e15i 1.29609i −0.761602 0.648045i \(-0.775587\pi\)
0.761602 0.648045i \(-0.224413\pi\)
\(20\) 1.58464e16i 3.86875i
\(21\) 5.43862e15i 0.739362i
\(22\) 2.67967e16i 2.08454i
\(23\) −1.94816e16 + 1.00359e16i −0.888976 + 0.457954i
\(24\) −1.41215e17 −3.86674
\(25\) −9.15626e16 −1.53617
\(26\) −5.46659e16 −0.572844
\(27\) 2.94264e16 0.196052
\(28\) 2.85508e17i 1.22948i
\(29\) −1.47160e17 −0.415923 −0.207961 0.978137i \(-0.566683\pi\)
−0.207961 + 0.978137i \(0.566683\pi\)
\(30\) 2.28963e18i 4.30834i
\(31\) −4.74187e17 −0.602018 −0.301009 0.953621i \(-0.597323\pi\)
−0.301009 + 0.953621i \(0.597323\pi\)
\(32\) −2.22664e18 −1.93130
\(33\) 2.74279e18i 1.64446i
\(34\) 2.97847e17i 0.124809i
\(35\) 2.72361e18 0.805987
\(36\) 1.30557e19 2.75532
\(37\) 1.14369e19i 1.73736i 0.495377 + 0.868678i \(0.335030\pi\)
−0.495377 + 0.868678i \(0.664970\pi\)
\(38\) 2.17591e19i 2.40015i
\(39\) 5.59533e18 0.451909
\(40\) 7.07190e19i 4.21518i
\(41\) −3.61739e19 −1.60320 −0.801602 0.597858i \(-0.796019\pi\)
−0.801602 + 0.597858i \(0.796019\pi\)
\(42\) 4.12526e19i 1.36918i
\(43\) 7.05725e19i 1.76609i −0.469285 0.883047i \(-0.655488\pi\)
0.469285 0.883047i \(-0.344512\pi\)
\(44\) 1.43986e20i 2.73457i
\(45\) 1.24546e20i 1.80625i
\(46\) 1.47770e20 7.61235e19i 1.64624 0.848056i
\(47\) −1.72045e20 −1.48070 −0.740351 0.672221i \(-0.765341\pi\)
−0.740351 + 0.672221i \(0.765341\pi\)
\(48\) 5.40255e20 3.61163
\(49\) 1.42509e20 0.743859
\(50\) 6.94514e20 2.84473
\(51\) 3.04862e19i 0.0984604i
\(52\) 2.93735e20 0.751476
\(53\) 5.62272e20i 1.14455i 0.820061 + 0.572277i \(0.193940\pi\)
−0.820061 + 0.572277i \(0.806060\pi\)
\(54\) −2.23203e20 −0.363057
\(55\) −1.37356e21 −1.79265
\(56\) 1.27416e21i 1.33957i
\(57\) 2.22716e21i 1.89345i
\(58\) 1.11622e21 0.770221
\(59\) 3.17850e21 1.78648 0.893239 0.449583i \(-0.148427\pi\)
0.893239 + 0.449583i \(0.148427\pi\)
\(60\) 1.23028e22i 5.65182i
\(61\) 4.66747e21i 1.75842i −0.476432 0.879211i \(-0.658070\pi\)
0.476432 0.879211i \(-0.341930\pi\)
\(62\) 3.59677e21 1.11484
\(63\) 2.24396e21i 0.574023i
\(64\) 5.21463e21 1.10424
\(65\) 2.80209e21i 0.492631i
\(66\) 2.08044e22i 3.04528i
\(67\) 3.10815e21i 0.379843i 0.981799 + 0.189922i \(0.0608234\pi\)
−0.981799 + 0.189922i \(0.939177\pi\)
\(68\) 1.60042e21i 0.163729i
\(69\) −1.51250e22 + 7.79163e21i −1.29870 + 0.669020i
\(70\) −2.06589e22 −1.49256
\(71\) −1.62037e22 −0.987448 −0.493724 0.869619i \(-0.664365\pi\)
−0.493724 + 0.869619i \(0.664365\pi\)
\(72\) −5.82650e22 −3.00205
\(73\) −2.51668e21 −0.109889 −0.0549443 0.998489i \(-0.517498\pi\)
−0.0549443 + 0.998489i \(0.517498\pi\)
\(74\) 8.67506e22i 3.21730i
\(75\) −7.10871e22 −2.24417
\(76\) 1.16918e23i 3.14860i
\(77\) 2.47477e22 0.569700
\(78\) −4.24413e22 −0.836862
\(79\) 7.84739e22i 1.32801i 0.747730 + 0.664003i \(0.231144\pi\)
−0.747730 + 0.664003i \(0.768856\pi\)
\(80\) 2.70554e23i 3.93709i
\(81\) −6.76252e22 −0.847790
\(82\) 2.74383e23 2.96887
\(83\) 3.55880e22i 0.332940i 0.986046 + 0.166470i \(0.0532369\pi\)
−0.986046 + 0.166470i \(0.946763\pi\)
\(84\) 2.21662e23i 1.79613i
\(85\) 1.52672e22 0.107333
\(86\) 5.35301e23i 3.27052i
\(87\) −1.14251e23 −0.607617
\(88\) 6.42579e23i 2.97944i
\(89\) 1.67467e22i 0.0678029i 0.999425 + 0.0339014i \(0.0107932\pi\)
−0.999425 + 0.0339014i \(0.989207\pi\)
\(90\) 9.44696e23i 3.34489i
\(91\) 5.04858e22i 0.156557i
\(92\) −7.94010e23 + 4.09032e23i −2.15959 + 1.11251i
\(93\) −3.68148e23 −0.879482
\(94\) 1.30498e24 2.74202
\(95\) 1.11534e24 2.06407
\(96\) −1.72871e24 −2.82142
\(97\) 2.72120e23i 0.392193i −0.980585 0.196096i \(-0.937173\pi\)
0.980585 0.196096i \(-0.0628265\pi\)
\(98\) −1.08095e24 −1.37751
\(99\) 1.13167e24i 1.27672i
\(100\) −3.73181e24 −3.73181
\(101\) 6.45835e23 0.573145 0.286573 0.958059i \(-0.407484\pi\)
0.286573 + 0.958059i \(0.407484\pi\)
\(102\) 2.31242e23i 0.182333i
\(103\) 3.04489e22i 0.0213563i −0.999943 0.0106781i \(-0.996601\pi\)
0.999943 0.0106781i \(-0.00339902\pi\)
\(104\) −1.31087e24 −0.818768
\(105\) 2.11455e24 1.17746
\(106\) 4.26490e24i 2.11953i
\(107\) 5.18109e23i 0.230046i −0.993363 0.115023i \(-0.963306\pi\)
0.993363 0.115023i \(-0.0366942\pi\)
\(108\) 1.19933e24 0.476271
\(109\) 1.06840e24i 0.379854i 0.981798 + 0.189927i \(0.0608252\pi\)
−0.981798 + 0.189927i \(0.939175\pi\)
\(110\) 1.04186e25 3.31970
\(111\) 8.87937e24i 2.53809i
\(112\) 4.87463e24i 1.25120i
\(113\) 7.52777e24i 1.73670i −0.495951 0.868350i \(-0.665181\pi\)
0.495951 0.868350i \(-0.334819\pi\)
\(114\) 1.68933e25i 3.50635i
\(115\) −3.90198e24 7.57448e24i −0.729307 1.41572i
\(116\) −5.99777e24 −1.01040
\(117\) 2.30863e24 0.350851
\(118\) −2.41093e25 −3.30827
\(119\) −2.75072e23 −0.0341101
\(120\) 5.49046e25i 6.15792i
\(121\) −2.63095e24 −0.267108
\(122\) 3.54033e25i 3.25631i
\(123\) −2.80846e25 −2.34211
\(124\) −1.93264e25 −1.46248
\(125\) 1.24253e25i 0.853863i
\(126\) 1.70208e25i 1.06300i
\(127\) 1.65652e25 0.940921 0.470460 0.882421i \(-0.344088\pi\)
0.470460 + 0.882421i \(0.344088\pi\)
\(128\) −2.19687e24 −0.113576
\(129\) 5.47908e25i 2.58007i
\(130\) 2.12542e25i 0.912273i
\(131\) −3.23922e25 −1.26819 −0.634095 0.773255i \(-0.718627\pi\)
−0.634095 + 0.773255i \(0.718627\pi\)
\(132\) 1.11788e26i 3.99490i
\(133\) −2.00953e25 −0.655956
\(134\) 2.35757e25i 0.703408i
\(135\) 1.14411e25i 0.312220i
\(136\) 7.14230e24i 0.178390i
\(137\) 1.39722e25i 0.319609i −0.987149 0.159804i \(-0.948914\pi\)
0.987149 0.159804i \(-0.0510863\pi\)
\(138\) 1.14725e26 5.91005e25i 2.40498 1.23892i
\(139\) −1.86441e25 −0.358396 −0.179198 0.983813i \(-0.557350\pi\)
−0.179198 + 0.983813i \(0.557350\pi\)
\(140\) 1.11006e26 1.95799
\(141\) −1.33572e26 −2.16314
\(142\) 1.22907e26 1.82859
\(143\) 2.54608e25i 0.348209i
\(144\) 2.22908e26 2.80399
\(145\) 5.72160e25i 0.662371i
\(146\) 1.90893e25 0.203496
\(147\) 1.10641e26 1.08670
\(148\) 4.66134e26i 4.22057i
\(149\) 4.43102e25i 0.370057i 0.982733 + 0.185028i \(0.0592377\pi\)
−0.982733 + 0.185028i \(0.940762\pi\)
\(150\) 5.39205e26 4.15584
\(151\) −1.42601e26 −1.01484 −0.507422 0.861698i \(-0.669402\pi\)
−0.507422 + 0.861698i \(0.669402\pi\)
\(152\) 5.21778e26i 3.43054i
\(153\) 1.25786e25i 0.0764423i
\(154\) −1.87715e26 −1.05499
\(155\) 1.84365e26i 0.958734i
\(156\) 2.28049e26 1.09782
\(157\) 4.56975e25i 0.203750i 0.994797 + 0.101875i \(0.0324841\pi\)
−0.994797 + 0.101875i \(0.967516\pi\)
\(158\) 5.95234e26i 2.45925i
\(159\) 4.36535e26i 1.67207i
\(160\) 8.65722e26i 3.07566i
\(161\) 7.03026e25 + 1.36471e26i 0.231772 + 0.449914i
\(162\) 5.12945e26 1.56997
\(163\) 1.25314e26 0.356244 0.178122 0.984008i \(-0.442998\pi\)
0.178122 + 0.984008i \(0.442998\pi\)
\(164\) −1.47434e27 −3.89467
\(165\) −1.06640e27 −2.61887
\(166\) 2.69939e26i 0.616551i
\(167\) −1.55595e26 −0.330673 −0.165336 0.986237i \(-0.552871\pi\)
−0.165336 + 0.986237i \(0.552871\pi\)
\(168\) 9.89227e26i 1.95697i
\(169\) −4.90860e26 −0.904310
\(170\) −1.15804e26 −0.198763
\(171\) 9.18922e26i 1.47003i
\(172\) 2.87632e27i 4.29038i
\(173\) 3.74892e25 0.0521618 0.0260809 0.999660i \(-0.491697\pi\)
0.0260809 + 0.999660i \(0.491697\pi\)
\(174\) 8.66611e26 1.12521
\(175\) 6.41408e26i 0.777459i
\(176\) 2.45836e27i 2.78287i
\(177\) 2.46771e27 2.60985
\(178\) 1.27026e26i 0.125560i
\(179\) 3.79011e25 0.0350280 0.0175140 0.999847i \(-0.494425\pi\)
0.0175140 + 0.999847i \(0.494425\pi\)
\(180\) 5.07611e27i 4.38794i
\(181\) 3.03173e26i 0.245215i −0.992455 0.122608i \(-0.960874\pi\)
0.992455 0.122608i \(-0.0391257\pi\)
\(182\) 3.82941e26i 0.289918i
\(183\) 3.62371e27i 2.56886i
\(184\) 3.54349e27 1.82542e27i 2.35298 1.21213i
\(185\) −4.44671e27 −2.76680
\(186\) 2.79245e27 1.62866
\(187\) 1.38723e26 0.0758666
\(188\) −7.01203e27 −3.59707
\(189\) 2.06136e26i 0.0992228i
\(190\) −8.46000e27 −3.82232
\(191\) 2.52559e27i 1.07142i −0.844400 0.535712i \(-0.820043\pi\)
0.844400 0.535712i \(-0.179957\pi\)
\(192\) 4.04852e27 1.61318
\(193\) −3.32813e27 −1.24598 −0.622992 0.782229i \(-0.714083\pi\)
−0.622992 + 0.782229i \(0.714083\pi\)
\(194\) 2.06406e27i 0.726277i
\(195\) 2.17548e27i 0.719680i
\(196\) 5.80825e27 1.80706
\(197\) 1.60425e27 0.469545 0.234773 0.972050i \(-0.424565\pi\)
0.234773 + 0.972050i \(0.424565\pi\)
\(198\) 8.58385e27i 2.36428i
\(199\) 6.07370e27i 1.57477i 0.616463 + 0.787384i \(0.288565\pi\)
−0.616463 + 0.787384i \(0.711435\pi\)
\(200\) 1.66543e28 4.06599
\(201\) 2.41310e27i 0.554909i
\(202\) −4.89874e27 −1.06137
\(203\) 1.03087e27i 0.210500i
\(204\) 1.24253e27i 0.239190i
\(205\) 1.40645e28i 2.55316i
\(206\) 2.30959e26i 0.0395483i
\(207\) −6.24057e27 + 3.21481e27i −1.00828 + 0.519412i
\(208\) 5.01510e27 0.764750
\(209\) 1.01344e28 1.45896
\(210\) −1.60391e28 −2.18046
\(211\) −1.09266e28 −1.40312 −0.701561 0.712609i \(-0.747513\pi\)
−0.701561 + 0.712609i \(0.747513\pi\)
\(212\) 2.29165e28i 2.78047i
\(213\) −1.25802e28 −1.44255
\(214\) 3.92992e27i 0.426009i
\(215\) 2.74387e28 2.81257
\(216\) −5.35235e27 −0.518919
\(217\) 3.32174e27i 0.304683i
\(218\) 8.10398e27i 0.703429i
\(219\) −1.95389e27 −0.160535
\(220\) −5.59822e28 −4.35489
\(221\) 2.82999e26i 0.0208486i
\(222\) 6.73512e28i 4.70012i
\(223\) −9.79037e26 −0.0647353 −0.0323676 0.999476i \(-0.510305\pi\)
−0.0323676 + 0.999476i \(0.510305\pi\)
\(224\) 1.55979e28i 0.977438i
\(225\) −2.93304e28 −1.74232
\(226\) 5.70991e28i 3.21609i
\(227\) 1.12221e28i 0.599467i −0.954023 0.299733i \(-0.903102\pi\)
0.954023 0.299733i \(-0.0968977\pi\)
\(228\) 9.07722e28i 4.59976i
\(229\) 2.03649e28i 0.979165i −0.871957 0.489583i \(-0.837149\pi\)
0.871957 0.489583i \(-0.162851\pi\)
\(230\) 2.95970e28 + 5.74534e28i 1.35056 + 2.62169i
\(231\) 1.92136e28 0.832269
\(232\) 2.67668e28 1.10088
\(233\) −1.09927e28 −0.429372 −0.214686 0.976683i \(-0.568873\pi\)
−0.214686 + 0.976683i \(0.568873\pi\)
\(234\) −1.75112e28 −0.649720
\(235\) 6.68915e28i 2.35807i
\(236\) 1.29546e29 4.33990
\(237\) 6.09253e28i 1.94007i
\(238\) 2.08646e27 0.0631664
\(239\) −4.98514e28 −1.43517 −0.717583 0.696473i \(-0.754752\pi\)
−0.717583 + 0.696473i \(0.754752\pi\)
\(240\) 2.10052e29i 5.75165i
\(241\) 5.80118e28i 1.51116i 0.655054 + 0.755582i \(0.272646\pi\)
−0.655054 + 0.755582i \(0.727354\pi\)
\(242\) 1.99561e28 0.494642
\(243\) −6.08135e28 −1.43458
\(244\) 1.90232e29i 4.27174i
\(245\) 5.54080e28i 1.18462i
\(246\) 2.13025e29 4.33720
\(247\) 2.06743e28i 0.400930i
\(248\) 8.62496e28 1.59344
\(249\) 2.76297e28i 0.486389i
\(250\) 9.42478e28i 1.58122i
\(251\) 1.31725e28i 0.210661i −0.994437 0.105331i \(-0.966410\pi\)
0.994437 0.105331i \(-0.0335901\pi\)
\(252\) 9.14571e28i 1.39448i
\(253\) −3.54548e28 6.88245e28i −0.515500 1.00068i
\(254\) −1.25649e29 −1.74243
\(255\) 1.18531e28 0.156802
\(256\) −7.08234e28 −0.893918
\(257\) 5.76443e28 0.694319 0.347159 0.937806i \(-0.387146\pi\)
0.347159 + 0.937806i \(0.387146\pi\)
\(258\) 4.15596e29i 4.77787i
\(259\) 8.01171e28 0.879282
\(260\) 1.14205e29i 1.19675i
\(261\) −4.71399e28 −0.471740
\(262\) 2.45699e29 2.34848
\(263\) 2.13176e29i 1.94657i −0.229607 0.973283i \(-0.573744\pi\)
0.229607 0.973283i \(-0.426256\pi\)
\(264\) 4.98884e29i 4.35263i
\(265\) −2.18613e29 −1.82274
\(266\) 1.52425e29 1.21472
\(267\) 1.30017e28i 0.0990525i
\(268\) 1.26679e29i 0.922754i
\(269\) −1.02657e29 −0.715094 −0.357547 0.933895i \(-0.616387\pi\)
−0.357547 + 0.933895i \(0.616387\pi\)
\(270\) 8.67819e28i 0.578181i
\(271\) 1.40090e28 0.0892844 0.0446422 0.999003i \(-0.485785\pi\)
0.0446422 + 0.999003i \(0.485785\pi\)
\(272\) 2.73248e28i 0.166621i
\(273\) 3.91960e28i 0.228713i
\(274\) 1.05981e29i 0.591863i
\(275\) 3.23473e29i 1.72920i
\(276\) −6.16451e29 + 3.17563e29i −3.15493 + 1.62525i
\(277\) −2.25808e29 −1.10658 −0.553290 0.832989i \(-0.686628\pi\)
−0.553290 + 0.832989i \(0.686628\pi\)
\(278\) 1.41418e29 0.663691
\(279\) −1.51897e29 −0.682809
\(280\) −4.95396e29 −2.13332
\(281\) 1.94644e29i 0.803091i 0.915839 + 0.401545i \(0.131527\pi\)
−0.915839 + 0.401545i \(0.868473\pi\)
\(282\) 1.01316e30 4.00579
\(283\) 2.30282e29i 0.872615i −0.899798 0.436308i \(-0.856286\pi\)
0.899798 0.436308i \(-0.143714\pi\)
\(284\) −6.60414e29 −2.39881
\(285\) 8.65925e29 3.01538
\(286\) 1.93124e29i 0.644827i
\(287\) 2.53403e29i 0.811387i
\(288\) −7.13263e29 −2.19048
\(289\) 3.37907e29 0.995458
\(290\) 4.33991e29i 1.22660i
\(291\) 2.11268e29i 0.572950i
\(292\) −1.02572e29 −0.266953
\(293\) 1.00109e29i 0.250070i −0.992152 0.125035i \(-0.960096\pi\)
0.992152 0.125035i \(-0.0399042\pi\)
\(294\) −8.39227e29 −2.01239
\(295\) 1.23581e30i 2.84503i
\(296\) 2.08026e30i 4.59850i
\(297\) 1.03958e29i 0.220688i
\(298\) 3.36098e29i 0.685285i
\(299\) −1.40403e29 + 7.23285e28i −0.274994 + 0.141663i
\(300\) −2.89730e30 −5.45177
\(301\) −4.94369e29 −0.893826
\(302\) 1.08165e30 1.87933
\(303\) 5.01411e29 0.837303
\(304\) 1.99620e30i 3.20421i
\(305\) 1.81472e30 2.80035
\(306\) 9.54100e28i 0.141559i
\(307\) 6.98940e29 0.997193 0.498597 0.866834i \(-0.333849\pi\)
0.498597 + 0.866834i \(0.333849\pi\)
\(308\) 1.00864e30 1.38397
\(309\) 2.36398e28i 0.0311992i
\(310\) 1.39843e30i 1.77542i
\(311\) −3.34364e29 −0.408409 −0.204204 0.978928i \(-0.565461\pi\)
−0.204204 + 0.978928i \(0.565461\pi\)
\(312\) −1.01773e30 −1.19613
\(313\) 1.58699e30i 1.79491i 0.441103 + 0.897456i \(0.354587\pi\)
−0.441103 + 0.897456i \(0.645413\pi\)
\(314\) 3.46622e29i 0.377311i
\(315\) 8.72459e29 0.914151
\(316\) 3.19836e30i 3.22613i
\(317\) −1.03048e30 −1.00076 −0.500378 0.865807i \(-0.666806\pi\)
−0.500378 + 0.865807i \(0.666806\pi\)
\(318\) 3.31117e30i 3.09640i
\(319\) 5.19885e29i 0.468187i
\(320\) 2.02746e30i 1.75854i
\(321\) 4.02248e29i 0.336073i
\(322\) −5.33255e29 1.03515e30i −0.429204 0.833168i
\(323\) −1.12644e29 −0.0873533
\(324\) −2.75620e30 −2.05954
\(325\) −6.59890e29 −0.475194
\(326\) −9.50522e29 −0.659707
\(327\) 8.29484e29i 0.554926i
\(328\) 6.57965e30 4.24342
\(329\) 1.20520e30i 0.749389i
\(330\) 8.08879e30 4.84972
\(331\) 7.48192e29 0.432591 0.216295 0.976328i \(-0.430603\pi\)
0.216295 + 0.976328i \(0.430603\pi\)
\(332\) 1.45046e30i 0.808813i
\(333\) 3.66361e30i 1.97051i
\(334\) 1.18021e30 0.612352
\(335\) −1.20846e30 −0.604913
\(336\) 3.78455e30i 1.82786i
\(337\) 2.61722e30i 1.21978i 0.792487 + 0.609889i \(0.208786\pi\)
−0.792487 + 0.609889i \(0.791214\pi\)
\(338\) 3.72324e30 1.67464
\(339\) 5.84439e30i 2.53713i
\(340\) 6.22245e29 0.260744
\(341\) 1.67521e30i 0.677667i
\(342\) 6.97014e30i 2.72225i
\(343\) 2.34035e30i 0.882573i
\(344\) 1.28364e31i 4.67457i
\(345\) −3.02941e30 5.88065e30i −1.06544 2.06822i
\(346\) −2.84360e29 −0.0965952
\(347\) 3.03827e30 0.996949 0.498474 0.866904i \(-0.333894\pi\)
0.498474 + 0.866904i \(0.333894\pi\)
\(348\) −4.65653e30 −1.47609
\(349\) −3.45731e30 −1.05885 −0.529424 0.848358i \(-0.677592\pi\)
−0.529424 + 0.848358i \(0.677592\pi\)
\(350\) 4.86516e30i 1.43973i
\(351\) 2.12076e29 0.0606465
\(352\) 7.86627e30i 2.17399i
\(353\) −4.13194e29 −0.110372 −0.0551858 0.998476i \(-0.517575\pi\)
−0.0551858 + 0.998476i \(0.517575\pi\)
\(354\) −1.87179e31 −4.83301
\(355\) 6.30004e30i 1.57254i
\(356\) 6.82543e29i 0.164714i
\(357\) −2.13560e29 −0.0498311
\(358\) −2.87485e29 −0.0648662
\(359\) 2.07923e30i 0.453700i 0.973930 + 0.226850i \(0.0728428\pi\)
−0.973930 + 0.226850i \(0.927157\pi\)
\(360\) 2.26536e31i 4.78086i
\(361\) −3.33042e30 −0.679850
\(362\) 2.29960e30i 0.454099i
\(363\) −2.04261e30 −0.390216
\(364\) 2.05765e30i 0.380325i
\(365\) 9.78490e29i 0.175002i
\(366\) 2.74863e31i 4.75712i
\(367\) 4.10100e30i 0.686906i 0.939170 + 0.343453i \(0.111597\pi\)
−0.939170 + 0.343453i \(0.888403\pi\)
\(368\) −1.35566e31 + 6.98364e30i −2.19774 + 1.13216i
\(369\) −1.15876e31 −1.81835
\(370\) 3.37288e31 5.12366
\(371\) 3.93879e30 0.579262
\(372\) −1.50046e31 −2.13653
\(373\) 1.29773e31i 1.78928i 0.446788 + 0.894640i \(0.352568\pi\)
−0.446788 + 0.894640i \(0.647432\pi\)
\(374\) −1.05224e30 −0.140493
\(375\) 9.64675e30i 1.24740i
\(376\) 3.12932e31 3.91918
\(377\) −1.06058e30 −0.128661
\(378\) 1.56357e30i 0.183745i
\(379\) 1.48340e30i 0.168883i −0.996428 0.0844417i \(-0.973089\pi\)
0.996428 0.0844417i \(-0.0269107\pi\)
\(380\) 4.54579e31 5.01425
\(381\) 1.28609e31 1.37458
\(382\) 1.91569e31i 1.98411i
\(383\) 6.43681e30i 0.646079i 0.946386 + 0.323039i \(0.104705\pi\)
−0.946386 + 0.323039i \(0.895295\pi\)
\(384\) −1.70560e30 −0.165922
\(385\) 9.62197e30i 0.907267i
\(386\) 2.52443e31 2.30736
\(387\) 2.26066e31i 2.00310i
\(388\) 1.10908e31i 0.952755i
\(389\) 1.48758e31i 1.23904i −0.784980 0.619521i \(-0.787327\pi\)
0.784980 0.619521i \(-0.212673\pi\)
\(390\) 1.65013e31i 1.33273i
\(391\) 3.94082e29 + 7.64989e29i 0.0308649 + 0.0599148i
\(392\) −2.59210e31 −1.96888
\(393\) −2.51485e31 −1.85269
\(394\) −1.21684e31 −0.869522
\(395\) −3.05108e31 −2.11489
\(396\) 4.61234e31i 3.10155i
\(397\) −7.33844e30 −0.478760 −0.239380 0.970926i \(-0.576944\pi\)
−0.239380 + 0.970926i \(0.576944\pi\)
\(398\) 4.60698e31i 2.91621i
\(399\) −1.56015e31 −0.958280
\(400\) −6.37154e31 −3.79773
\(401\) 3.24739e30i 0.187846i 0.995579 + 0.0939231i \(0.0299408\pi\)
−0.995579 + 0.0939231i \(0.970059\pi\)
\(402\) 1.83036e31i 1.02760i
\(403\) −3.41746e30 −0.186227
\(404\) 2.63223e31 1.39234
\(405\) 2.62928e31i 1.35013i
\(406\) 7.81929e30i 0.389812i
\(407\) −4.04044e31 −1.95567
\(408\) 5.54512e30i 0.260609i
\(409\) 9.57044e30 0.436769 0.218385 0.975863i \(-0.429921\pi\)
0.218385 + 0.975863i \(0.429921\pi\)
\(410\) 1.06681e32i 4.72803i
\(411\) 1.08477e31i 0.466913i
\(412\) 1.24101e30i 0.0518809i
\(413\) 2.22658e31i 0.904142i
\(414\) 4.73355e31 2.43848e31i 1.86717 0.961866i
\(415\) −1.38367e31 −0.530219
\(416\) −1.60473e31 −0.597424
\(417\) −1.44748e31 −0.523577
\(418\) −7.68706e31 −2.70175
\(419\) 4.62348e30i 0.157907i −0.996878 0.0789534i \(-0.974842\pi\)
0.996878 0.0789534i \(-0.0251578\pi\)
\(420\) 8.61825e31 2.86041
\(421\) 2.86447e30i 0.0923972i 0.998932 + 0.0461986i \(0.0147107\pi\)
−0.998932 + 0.0461986i \(0.985289\pi\)
\(422\) 8.28796e31 2.59835
\(423\) −5.51115e31 −1.67941
\(424\) 1.02271e32i 3.02945i
\(425\) 3.59542e30i 0.103534i
\(426\) 9.54223e31 2.67137
\(427\) −3.26962e31 −0.889944
\(428\) 2.11165e31i 0.558853i
\(429\) 1.97672e31i 0.508695i
\(430\) −2.08126e32 −5.20842
\(431\) 5.45776e31i 1.32827i 0.747611 + 0.664137i \(0.231201\pi\)
−0.747611 + 0.664137i \(0.768799\pi\)
\(432\) 2.04769e31 0.484684
\(433\) 4.90968e31i 1.13031i −0.824984 0.565156i \(-0.808816\pi\)
0.824984 0.565156i \(-0.191184\pi\)
\(434\) 2.51958e31i 0.564224i
\(435\) 4.44212e31i 0.967651i
\(436\) 4.35449e31i 0.922782i
\(437\) 2.87895e31 + 5.58859e31i 0.593550 + 1.15219i
\(438\) 1.48205e31 0.297285
\(439\) −7.31449e31 −1.42761 −0.713805 0.700345i \(-0.753030\pi\)
−0.713805 + 0.700345i \(0.753030\pi\)
\(440\) 2.49836e32 4.74486
\(441\) 4.56503e31 0.843686
\(442\) 2.14658e30i 0.0386082i
\(443\) 7.90449e31 1.38366 0.691830 0.722061i \(-0.256805\pi\)
0.691830 + 0.722061i \(0.256805\pi\)
\(444\) 3.61896e32i 6.16578i
\(445\) −6.51114e30 −0.107978
\(446\) 7.42612e30 0.119879
\(447\) 3.44014e31i 0.540612i
\(448\) 3.65291e31i 0.558860i
\(449\) 7.38820e31 1.10048 0.550241 0.835006i \(-0.314536\pi\)
0.550241 + 0.835006i \(0.314536\pi\)
\(450\) 2.22475e32 3.22650
\(451\) 1.27795e32i 1.80466i
\(452\) 3.06809e32i 4.21897i
\(453\) −1.10712e32 −1.48258
\(454\) 8.51213e31i 1.11012i
\(455\) 1.96290e31 0.249322
\(456\) 4.05097e32i 5.01165i
\(457\) 3.67034e30i 0.0442295i 0.999755 + 0.0221147i \(0.00703991\pi\)
−0.999755 + 0.0221147i \(0.992960\pi\)
\(458\) 1.54470e32i 1.81325i
\(459\) 1.15550e30i 0.0132134i
\(460\) −1.59033e32 3.08713e32i −1.77171 3.43923i
\(461\) 1.04432e32 1.13350 0.566750 0.823890i \(-0.308200\pi\)
0.566750 + 0.823890i \(0.308200\pi\)
\(462\) −1.45737e32 −1.54123
\(463\) 1.24125e32 1.27905 0.639523 0.768772i \(-0.279132\pi\)
0.639523 + 0.768772i \(0.279132\pi\)
\(464\) −1.02403e32 −1.02825
\(465\) 1.43137e32i 1.40061i
\(466\) 8.33812e31 0.795128
\(467\) 4.52826e31i 0.420852i −0.977610 0.210426i \(-0.932515\pi\)
0.977610 0.210426i \(-0.0674850\pi\)
\(468\) 9.40925e31 0.852324
\(469\) 2.17730e31 0.192240
\(470\) 5.07380e32i 4.36676i
\(471\) 3.54785e31i 0.297656i
\(472\) −5.78135e32 −4.72852
\(473\) 2.49318e32 1.98802
\(474\) 4.62126e32i 3.59270i
\(475\) 2.62662e32i 1.99101i
\(476\) −1.12111e31 −0.0828639
\(477\) 1.80114e32i 1.29815i
\(478\) 3.78129e32 2.65770
\(479\) 1.75664e32i 1.20408i −0.798464 0.602042i \(-0.794354\pi\)
0.798464 0.602042i \(-0.205646\pi\)
\(480\) 6.72127e32i 4.49321i
\(481\) 8.24257e31i 0.537430i
\(482\) 4.40027e32i 2.79843i
\(483\) 5.45814e31 + 1.05953e32i 0.338594 + 0.657275i
\(484\) −1.07229e32 −0.648888
\(485\) 1.05801e32 0.624580
\(486\) 4.61278e32 2.65661
\(487\) −7.58562e31 −0.426230 −0.213115 0.977027i \(-0.568361\pi\)
−0.213115 + 0.977027i \(0.568361\pi\)
\(488\) 8.48963e32i 4.65426i
\(489\) 9.72909e31 0.520434
\(490\) 4.20277e32i 2.19373i
\(491\) −2.75345e32 −1.40249 −0.701244 0.712922i \(-0.747371\pi\)
−0.701244 + 0.712922i \(0.747371\pi\)
\(492\) −1.14464e33 −5.68969
\(493\) 5.77856e30i 0.0280321i
\(494\) 1.56818e32i 0.742457i
\(495\) −4.39995e32 −2.03323
\(496\) −3.29971e32 −1.48832
\(497\) 1.13509e32i 0.499751i
\(498\) 2.09575e32i 0.900714i
\(499\) 6.61065e31 0.277356 0.138678 0.990338i \(-0.455715\pi\)
0.138678 + 0.990338i \(0.455715\pi\)
\(500\) 5.06419e32i 2.07429i
\(501\) −1.20800e32 −0.483076
\(502\) 9.99154e31i 0.390110i
\(503\) 3.92283e31i 0.149549i −0.997200 0.0747746i \(-0.976176\pi\)
0.997200 0.0747746i \(-0.0238237\pi\)
\(504\) 4.08153e32i 1.51935i
\(505\) 2.51102e32i 0.912754i
\(506\) 2.68929e32 + 5.22043e32i 0.954622 + 1.85310i
\(507\) −3.81093e32 −1.32110
\(508\) 6.75149e32 2.28578
\(509\) −2.01147e31 −0.0665119 −0.0332560 0.999447i \(-0.510588\pi\)
−0.0332560 + 0.999447i \(0.510588\pi\)
\(510\) −8.99074e31 −0.290371
\(511\) 1.76296e31i 0.0556151i
\(512\) 5.74062e32 1.76897
\(513\) 8.44143e31i 0.254102i
\(514\) −4.37240e32 −1.28577
\(515\) 1.18386e31 0.0340106
\(516\) 2.23311e33i 6.26777i
\(517\) 6.07800e32i 1.66677i
\(518\) −6.07699e32 −1.62829
\(519\) 2.91057e31 0.0762027
\(520\) 5.09671e32i 1.30392i
\(521\) 1.11815e32i 0.279541i −0.990184 0.139771i \(-0.955364\pi\)
0.990184 0.139771i \(-0.0446365\pi\)
\(522\) 3.57562e32 0.873585
\(523\) 2.13324e32i 0.509353i −0.967026 0.254676i \(-0.918031\pi\)
0.967026 0.254676i \(-0.0819690\pi\)
\(524\) −1.32021e33 −3.08082
\(525\) 4.97974e32i 1.13578i
\(526\) 1.61697e33i 3.60473i
\(527\) 1.86200e31i 0.0405745i
\(528\) 1.90861e33i 4.06547i
\(529\) 2.78813e32 3.91030e32i 0.580557 0.814220i
\(530\) 1.65821e33 3.37542
\(531\) 1.01817e33 2.02622
\(532\) −8.19023e32 −1.59352
\(533\) −2.60704e32 −0.495932
\(534\) 9.86197e31i 0.183429i
\(535\) 2.01442e32 0.366357
\(536\) 5.65340e32i 1.00538i
\(537\) 2.94255e31 0.0511720
\(538\) 7.78670e32 1.32424
\(539\) 5.03457e32i 0.837332i
\(540\) 4.66303e32i 0.758478i
\(541\) 7.25303e32 1.15386 0.576929 0.816795i \(-0.304251\pi\)
0.576929 + 0.816795i \(0.304251\pi\)
\(542\) −1.06260e32 −0.165340
\(543\) 2.35376e32i 0.358232i
\(544\) 8.74340e31i 0.130165i
\(545\) −4.15398e32 −0.604931
\(546\) 2.97307e32i 0.423539i
\(547\) −6.58711e32 −0.918009 −0.459004 0.888434i \(-0.651794\pi\)
−0.459004 + 0.888434i \(0.651794\pi\)
\(548\) 5.69465e32i 0.776426i
\(549\) 1.49514e33i 1.99440i
\(550\) 2.45358e33i 3.20220i
\(551\) 4.22150e32i 0.539073i
\(552\) 2.75109e33 1.41722e33i 3.43744 1.77079i
\(553\) 5.49719e32 0.672108
\(554\) 1.71279e33 2.04921
\(555\) −3.45232e33 −4.04199
\(556\) −7.59875e32 −0.870652
\(557\) 1.26835e33i 1.42226i 0.703062 + 0.711129i \(0.251816\pi\)
−0.703062 + 0.711129i \(0.748184\pi\)
\(558\) 1.15216e33 1.26445
\(559\) 5.08614e32i 0.546320i
\(560\) 1.89527e33 1.99257
\(561\) 1.07702e32 0.110833
\(562\) 1.47640e33i 1.48719i
\(563\) 1.59371e33i 1.57148i 0.618560 + 0.785738i \(0.287717\pi\)
−0.618560 + 0.785738i \(0.712283\pi\)
\(564\) −5.44398e33 −5.25493
\(565\) 2.92681e33 2.76576
\(566\) 1.74672e33i 1.61594i
\(567\) 4.73723e32i 0.429069i
\(568\) 2.94728e33 2.61362
\(569\) 4.21895e32i 0.366317i 0.983083 + 0.183159i \(0.0586322\pi\)
−0.983083 + 0.183159i \(0.941368\pi\)
\(570\) −6.56815e33 −5.58399
\(571\) 1.92981e33i 1.60650i −0.595640 0.803251i \(-0.703102\pi\)
0.595640 0.803251i \(-0.296898\pi\)
\(572\) 1.03771e33i 0.845906i
\(573\) 1.96081e33i 1.56523i
\(574\) 1.92209e33i 1.50256i
\(575\) 1.78378e33 9.18912e32i 1.36561 0.703493i
\(576\) 1.67041e33 1.25243
\(577\) 7.67282e32 0.563437 0.281719 0.959497i \(-0.409096\pi\)
0.281719 + 0.959497i \(0.409096\pi\)
\(578\) −2.56307e33 −1.84343
\(579\) −2.58388e33 −1.82024
\(580\) 2.33195e33i 1.60910i
\(581\) 2.49298e32 0.168502
\(582\) 1.60249e33i 1.06101i
\(583\) −1.98639e33 −1.28838
\(584\) 4.57757e32 0.290858
\(585\) 8.97599e32i 0.558743i
\(586\) 7.59338e32i 0.463088i
\(587\) 9.72059e32 0.580812 0.290406 0.956904i \(-0.406210\pi\)
0.290406 + 0.956904i \(0.406210\pi\)
\(588\) 4.50939e33 2.63992
\(589\) 1.36028e33i 0.780269i
\(590\) 9.37375e33i 5.26853i
\(591\) 1.24550e33 0.685954
\(592\) 7.95857e33i 4.29512i
\(593\) 1.03826e31 0.00549100 0.00274550 0.999996i \(-0.499126\pi\)
0.00274550 + 0.999996i \(0.499126\pi\)
\(594\) 7.88532e32i 0.408679i
\(595\) 1.06949e32i 0.0543215i
\(596\) 1.80595e33i 0.898980i
\(597\) 4.71548e33i 2.30056i
\(598\) 1.06498e33 5.48621e32i 0.509244 0.262336i
\(599\) −2.49672e33 −1.17017 −0.585084 0.810972i \(-0.698939\pi\)
−0.585084 + 0.810972i \(0.698939\pi\)
\(600\) 1.29300e34 5.93996
\(601\) 2.06676e33 0.930672 0.465336 0.885134i \(-0.345933\pi\)
0.465336 + 0.885134i \(0.345933\pi\)
\(602\) 3.74985e33 1.65522
\(603\) 9.95639e32i 0.430818i
\(604\) −5.81199e33 −2.46537
\(605\) 1.02292e33i 0.425379i
\(606\) −3.80327e33 −1.55055
\(607\) 1.37636e33 0.550132 0.275066 0.961425i \(-0.411300\pi\)
0.275066 + 0.961425i \(0.411300\pi\)
\(608\) 6.38746e33i 2.50314i
\(609\) 8.00345e32i 0.307517i
\(610\) −1.37649e34 −5.18579
\(611\) −1.23992e33 −0.458037
\(612\) 5.12664e32i 0.185702i
\(613\) 2.20185e33i 0.782099i 0.920370 + 0.391049i \(0.127888\pi\)
−0.920370 + 0.391049i \(0.872112\pi\)
\(614\) −5.30155e33 −1.84664
\(615\) 1.09193e34i 3.72988i
\(616\) −4.50135e33 −1.50790
\(617\) 4.25946e33i 1.39937i 0.714451 + 0.699685i \(0.246676\pi\)
−0.714451 + 0.699685i \(0.753324\pi\)
\(618\) 1.79311e32i 0.0577758i
\(619\) 3.90011e33i 1.23250i −0.787549 0.616252i \(-0.788650\pi\)
0.787549 0.616252i \(-0.211350\pi\)
\(620\) 7.51416e33i 2.32906i
\(621\) −5.73273e32 + 2.95320e32i −0.174286 + 0.0897830i
\(622\) 2.53620e33 0.756307
\(623\) 1.17312e32 0.0343153
\(624\) 3.89361e33 1.11722
\(625\) −6.26556e32 −0.176360
\(626\) 1.20376e34i 3.32389i
\(627\) 7.86811e33 2.13137
\(628\) 1.86249e33i 0.494970i
\(629\) 4.49097e32 0.117093
\(630\) −6.61771e33 −1.69286
\(631\) 8.65919e32i 0.217333i −0.994078 0.108666i \(-0.965342\pi\)
0.994078 0.108666i \(-0.0346580\pi\)
\(632\) 1.42736e34i 3.51502i
\(633\) −8.48316e33 −2.04981
\(634\) 7.81632e33 1.85324
\(635\) 6.44060e33i 1.49845i
\(636\) 1.77918e34i 4.06196i
\(637\) 1.02706e33 0.230104
\(638\) 3.94340e33i 0.867006i
\(639\) −5.19056e33 −1.11996
\(640\) 8.54149e32i 0.180873i
\(641\) 1.23355e33i 0.256366i 0.991751 + 0.128183i \(0.0409144\pi\)
−0.991751 + 0.128183i \(0.959086\pi\)
\(642\) 3.05110e33i 0.622352i
\(643\) 3.37076e33i 0.674833i 0.941355 + 0.337417i \(0.109553\pi\)
−0.941355 + 0.337417i \(0.890447\pi\)
\(644\) 2.86532e33 + 5.56214e33i 0.563045 + 1.09298i
\(645\) 2.13028e34 4.10885
\(646\) 8.54422e32 0.161764
\(647\) 5.56976e33 1.03511 0.517554 0.855651i \(-0.326843\pi\)
0.517554 + 0.855651i \(0.326843\pi\)
\(648\) 1.23003e34 2.24396
\(649\) 1.12290e34i 2.01096i
\(650\) 5.00535e33 0.879983
\(651\) 2.57892e33i 0.445109i
\(652\) 5.10741e33 0.865426
\(653\) −7.17884e33 −1.19425 −0.597127 0.802147i \(-0.703691\pi\)
−0.597127 + 0.802147i \(0.703691\pi\)
\(654\) 6.29174e33i 1.02763i
\(655\) 1.25942e34i 2.01964i
\(656\) −2.51722e34 −3.96346
\(657\) −8.06171e32 −0.124636
\(658\) 9.14157e33i 1.38775i
\(659\) 8.04363e33i 1.19902i 0.800367 + 0.599511i \(0.204638\pi\)
−0.800367 + 0.599511i \(0.795362\pi\)
\(660\) −4.34633e34 −6.36202
\(661\) 6.89259e33i 0.990752i 0.868679 + 0.495376i \(0.164970\pi\)
−0.868679 + 0.495376i \(0.835030\pi\)
\(662\) −5.67513e33 −0.801088
\(663\) 2.19714e32i 0.0304575i
\(664\) 6.47308e33i 0.881239i
\(665\) 7.81310e33i 1.04463i
\(666\) 2.77890e34i 3.64907i
\(667\) 2.86690e33 1.47688e33i 0.369745 0.190473i
\(668\) −6.34158e33 −0.803304
\(669\) −7.60102e32 −0.0945711
\(670\) 9.16629e33 1.12020
\(671\) 1.64892e34 1.97938
\(672\) 1.21098e34i 1.42793i
\(673\) 3.55514e33 0.411790 0.205895 0.978574i \(-0.433989\pi\)
0.205895 + 0.978574i \(0.433989\pi\)
\(674\) 1.98519e34i 2.25883i
\(675\) −2.69436e33 −0.301169
\(676\) −2.00060e34 −2.19684
\(677\) 8.91448e33i 0.961683i 0.876808 + 0.480841i \(0.159669\pi\)
−0.876808 + 0.480841i \(0.840331\pi\)
\(678\) 4.43304e34i 4.69835i
\(679\) −1.90623e33 −0.198490
\(680\) −2.77694e33 −0.284093
\(681\) 8.71261e33i 0.875755i
\(682\) 1.27067e34i 1.25493i
\(683\) −2.12262e33 −0.205979 −0.102989 0.994682i \(-0.532841\pi\)
−0.102989 + 0.994682i \(0.532841\pi\)
\(684\) 3.74524e34i 3.57114i
\(685\) 5.43243e33 0.508988
\(686\) 1.77518e34i 1.63438i
\(687\) 1.58108e34i 1.43045i
\(688\) 4.91090e34i 4.36616i
\(689\) 4.05228e33i 0.354054i
\(690\) 2.29784e34 + 4.46055e34i 1.97302 + 3.83001i
\(691\) −1.26826e34 −1.07022 −0.535108 0.844784i \(-0.679729\pi\)
−0.535108 + 0.844784i \(0.679729\pi\)
\(692\) 1.52794e33 0.126717
\(693\) 7.92748e33 0.646154
\(694\) −2.30457e34 −1.84619
\(695\) 7.24885e33i 0.570757i
\(696\) 2.07811e34 1.60827
\(697\) 1.42045e33i 0.108052i
\(698\) 2.62242e34 1.96081
\(699\) −8.53450e33 −0.627266
\(700\) 2.61418e34i 1.88868i
\(701\) 5.71529e33i 0.405903i 0.979189 + 0.202951i \(0.0650533\pi\)
−0.979189 + 0.202951i \(0.934947\pi\)
\(702\) −1.60862e33 −0.112307
\(703\) 3.28086e34 2.25177
\(704\) 1.84223e34i 1.24300i
\(705\) 5.19330e34i 3.44488i
\(706\) 3.13413e33 0.204390
\(707\) 4.52415e33i 0.290071i
\(708\) 1.00576e35 6.34011
\(709\) 2.19102e34i 1.35798i 0.734149 + 0.678988i \(0.237581\pi\)
−0.734149 + 0.678988i \(0.762419\pi\)
\(710\) 4.77866e34i 2.91210i
\(711\) 2.51377e34i 1.50622i
\(712\) 3.04604e33i 0.179463i
\(713\) 9.23791e33 4.75889e33i 0.535179 0.275696i
\(714\) 1.61988e33 0.0922792
\(715\) −9.89923e33 −0.554535
\(716\) 1.54473e33 0.0850936
\(717\) −3.87035e34 −2.09662
\(718\) 1.57712e34i 0.840180i
\(719\) −2.93570e34 −1.53803 −0.769014 0.639232i \(-0.779252\pi\)
−0.769014 + 0.639232i \(0.779252\pi\)
\(720\) 8.66672e34i 4.46545i
\(721\) −2.13299e32 −0.0108085
\(722\) 2.52617e34 1.25897
\(723\) 4.50390e34i 2.20764i
\(724\) 1.23564e34i 0.595702i
\(725\) 1.34743e34 0.638926
\(726\) 1.54934e34 0.722617
\(727\) 9.74007e33i 0.446837i −0.974723 0.223418i \(-0.928278\pi\)
0.974723 0.223418i \(-0.0717216\pi\)
\(728\) 9.18283e33i 0.414381i
\(729\) −2.81149e34 −1.24797
\(730\) 7.42197e33i 0.324074i
\(731\) −2.77119e33 −0.119030
\(732\) 1.47692e35i 6.24055i
\(733\) 1.25245e33i 0.0520611i −0.999661 0.0260305i \(-0.991713\pi\)
0.999661 0.0260305i \(-0.00828671\pi\)
\(734\) 3.11066e34i 1.27204i
\(735\) 4.30175e34i 1.73060i
\(736\) 4.33784e34 2.23463e34i 1.71688 0.884446i
\(737\) −1.09805e34 −0.427574
\(738\) 8.78937e34 3.36730
\(739\) 4.15383e34 1.56573 0.782863 0.622195i \(-0.213759\pi\)
0.782863 + 0.622195i \(0.213759\pi\)
\(740\) −1.81234e35 −6.72140
\(741\) 1.60511e34i 0.585715i
\(742\) −2.98762e34 −1.07270
\(743\) 1.00639e34i 0.355551i 0.984071 + 0.177776i \(0.0568901\pi\)
−0.984071 + 0.177776i \(0.943110\pi\)
\(744\) 6.69622e34 2.32785
\(745\) −1.72279e34 −0.589328
\(746\) 9.84345e34i 3.31346i
\(747\) 1.14000e34i 0.377621i
\(748\) 5.65395e33 0.184303
\(749\) −3.62942e33 −0.116427
\(750\) 7.31718e34i 2.30998i
\(751\) 2.24098e34i 0.696239i 0.937450 + 0.348119i \(0.113180\pi\)
−0.937450 + 0.348119i \(0.886820\pi\)
\(752\) −1.19720e35 −3.66061
\(753\) 1.02269e34i 0.307753i
\(754\) 8.04461e33 0.238259
\(755\) 5.54436e34i 1.61617i
\(756\) 8.40147e33i 0.241042i
\(757\) 1.93694e34i 0.546974i 0.961876 + 0.273487i \(0.0881770\pi\)
−0.961876 + 0.273487i \(0.911823\pi\)
\(758\) 1.12518e34i 0.312745i
\(759\) −2.75263e34 5.34338e34i −0.753089 1.46189i
\(760\) −2.02869e35 −5.46326
\(761\) −1.63435e34 −0.433240 −0.216620 0.976256i \(-0.569503\pi\)
−0.216620 + 0.976256i \(0.569503\pi\)
\(762\) −9.75514e34 −2.54550
\(763\) 7.48430e33 0.192246
\(764\) 1.02935e35i 2.60282i
\(765\) 4.89057e33 0.121737
\(766\) 4.88240e34i 1.19643i
\(767\) 2.29074e34 0.552625
\(768\) −5.49857e34 −1.30592
\(769\) 5.56456e34i 1.30111i 0.759458 + 0.650556i \(0.225464\pi\)
−0.759458 + 0.650556i \(0.774536\pi\)
\(770\) 7.29839e34i 1.68011i
\(771\) 4.47537e34 1.01432
\(772\) −1.35644e35 −3.02687
\(773\) 8.90328e34i 1.95612i −0.208314 0.978062i \(-0.566798\pi\)
0.208314 0.978062i \(-0.433202\pi\)
\(774\) 1.71474e35i 3.70943i
\(775\) 4.34178e34 0.924799
\(776\) 4.94957e34i 1.03807i
\(777\) 6.22011e34 1.28453
\(778\) 1.12835e35i 2.29450i
\(779\) 1.03770e35i 2.07790i
\(780\) 8.86659e34i 1.74832i
\(781\) 5.72445e34i 1.11153i
\(782\) −2.98916e33 5.80254e33i −0.0571569 0.110952i
\(783\) −4.33038e33 −0.0815426
\(784\) 9.91675e34 1.83898
\(785\) −1.77673e34 −0.324478
\(786\) 1.90755e35 3.43088
\(787\) 7.06584e34i 1.25160i −0.779982 0.625802i \(-0.784772\pi\)
0.779982 0.625802i \(-0.215228\pi\)
\(788\) 6.53844e34 1.14067
\(789\) 1.65505e35i 2.84372i
\(790\) 2.31429e35 3.91644
\(791\) −5.27330e34 −0.878950
\(792\) 2.05838e35i 3.37928i
\(793\) 3.36384e34i 0.543947i
\(794\) 5.56630e34 0.886586
\(795\) −1.69726e35 −2.66282
\(796\) 2.47546e35i 3.82559i
\(797\) 1.08128e35i 1.64603i 0.568019 + 0.823015i \(0.307710\pi\)
−0.568019 + 0.823015i \(0.692290\pi\)
\(798\) 1.18340e35 1.77458
\(799\) 6.75574e33i 0.0997956i
\(800\) 2.03877e35 2.96680
\(801\) 5.36449e33i 0.0769020i
\(802\) 2.46319e34i 0.347861i
\(803\) 8.89091e33i 0.123697i
\(804\) 9.83505e34i 1.34804i
\(805\) −5.30602e34 + 2.73338e34i −0.716503 + 0.369105i
\(806\) 2.59219e34 0.344862
\(807\) −7.97009e34 −1.04467
\(808\) −1.17470e35 −1.51702
\(809\) −8.40942e34 −1.07000 −0.535000 0.844852i \(-0.679688\pi\)
−0.535000 + 0.844852i \(0.679688\pi\)
\(810\) 1.99434e35i 2.50023i
\(811\) 5.29013e34 0.653456 0.326728 0.945118i \(-0.394054\pi\)
0.326728 + 0.945118i \(0.394054\pi\)
\(812\) 4.20152e34i 0.511368i
\(813\) 1.08763e34 0.130435
\(814\) 3.06472e35 3.62158
\(815\) 4.87223e34i 0.567332i
\(816\) 2.12143e34i 0.243415i
\(817\) −2.02448e35 −2.28902
\(818\) −7.25930e34 −0.808826
\(819\) 1.61722e34i 0.177567i
\(820\) 5.73226e35i 6.20240i
\(821\) 5.15760e34 0.549958 0.274979 0.961450i \(-0.411329\pi\)
0.274979 + 0.961450i \(0.411329\pi\)
\(822\) 8.22812e34i 0.864647i
\(823\) −4.44982e34 −0.460834 −0.230417 0.973092i \(-0.574009\pi\)
−0.230417 + 0.973092i \(0.574009\pi\)
\(824\) 5.53834e33i 0.0565266i
\(825\) 2.51137e35i 2.52617i
\(826\) 1.68889e35i 1.67433i
\(827\) 4.20884e34i 0.411241i 0.978632 + 0.205621i \(0.0659213\pi\)
−0.978632 + 0.205621i \(0.934079\pi\)
\(828\) −2.54347e35 + 1.31026e35i −2.44941 + 1.26181i
\(829\) 5.72020e34 0.542946 0.271473 0.962446i \(-0.412489\pi\)
0.271473 + 0.962446i \(0.412489\pi\)
\(830\) 1.04953e35 0.981879
\(831\) −1.75312e35 −1.61659
\(832\) 3.75818e34 0.341584
\(833\) 5.59596e33i 0.0501343i
\(834\) 1.09793e35 0.969579
\(835\) 6.04957e34i 0.526607i
\(836\) 4.13047e35 3.54425
\(837\) −1.39536e34 −0.118027
\(838\) 3.50697e34i 0.292418i
\(839\) 2.29875e35i 1.88951i 0.327778 + 0.944755i \(0.393700\pi\)
−0.327778 + 0.944755i \(0.606300\pi\)
\(840\) −3.84614e35 −3.11655
\(841\) −1.03529e35 −0.827008
\(842\) 2.17274e34i 0.171105i
\(843\) 1.51117e35i 1.17323i
\(844\) −4.45335e35 −3.40861
\(845\) 1.90848e35i 1.44014i
\(846\) 4.18028e35 3.11000
\(847\) 1.84301e34i 0.135185i
\(848\) 3.91266e35i 2.82958i
\(849\) 1.78786e35i 1.27480i
\(850\) 2.72717e34i 0.191728i
\(851\) −1.14780e35 2.22809e35i −0.795629 1.54447i
\(852\) −5.12730e35 −3.50440
\(853\) −1.08005e35 −0.727874 −0.363937 0.931424i \(-0.618568\pi\)
−0.363937 + 0.931424i \(0.618568\pi\)
\(854\) 2.48005e35 1.64803
\(855\) 3.57279e35 2.34107
\(856\) 9.42385e34i 0.608896i
\(857\) −1.45055e35 −0.924193 −0.462097 0.886830i \(-0.652903\pi\)
−0.462097 + 0.886830i \(0.652903\pi\)
\(858\) 1.49937e35i 0.942021i
\(859\) −2.52052e34 −0.156161 −0.0780805 0.996947i \(-0.524879\pi\)
−0.0780805 + 0.996947i \(0.524879\pi\)
\(860\) 1.11832e36 6.83258
\(861\) 1.96736e35i 1.18535i
\(862\) 4.13978e35i 2.45975i
\(863\) 2.04820e35 1.20017 0.600085 0.799936i \(-0.295133\pi\)
0.600085 + 0.799936i \(0.295133\pi\)
\(864\) −6.55220e34 −0.378636
\(865\) 1.45759e34i 0.0830694i
\(866\) 3.72405e35i 2.09315i
\(867\) 2.62343e35 1.45425
\(868\) 1.35384e35i 0.740169i
\(869\) −2.77233e35 −1.49488
\(870\) 3.36940e35i 1.79193i
\(871\) 2.24004e34i 0.117500i
\(872\) 1.94331e35i 1.00541i
\(873\) 8.71686e34i 0.444825i
\(874\) −2.18372e35 4.23902e35i −1.09916 2.13367i
\(875\) −8.70411e34 −0.432143
\(876\) −7.96346e34 −0.389989
\(877\) 2.26575e35 1.09450 0.547252 0.836968i \(-0.315674\pi\)
0.547252 + 0.836968i \(0.315674\pi\)
\(878\) 5.54813e35 2.64370
\(879\) 7.77222e34i 0.365324i
\(880\) −9.55815e35 −4.43182
\(881\) 9.51911e34i 0.435397i 0.976016 + 0.217698i \(0.0698549\pi\)
−0.976016 + 0.217698i \(0.930145\pi\)
\(882\) −3.46263e35 −1.56237
\(883\) 2.37106e35 1.05539 0.527697 0.849433i \(-0.323056\pi\)
0.527697 + 0.849433i \(0.323056\pi\)
\(884\) 1.15342e34i 0.0506476i
\(885\) 9.59452e35i 4.15627i
\(886\) −5.99566e35 −2.56231
\(887\) 4.28739e35 1.80763 0.903814 0.427925i \(-0.140755\pi\)
0.903814 + 0.427925i \(0.140755\pi\)
\(888\) 1.61506e36i 6.71791i
\(889\) 1.16042e35i 0.476203i
\(890\) 4.93878e34 0.199958
\(891\) 2.38906e35i 0.954322i
\(892\) −3.99026e34 −0.157262
\(893\) 4.93538e35i 1.91912i
\(894\) 2.60939e35i 1.00113i
\(895\) 1.47360e34i 0.0557833i
\(896\) 1.53894e34i 0.0574810i
\(897\) −1.09006e35 + 5.61541e34i −0.401736 + 0.206953i
\(898\) −5.60405e35 −2.03791
\(899\) 6.97811e34 0.250393
\(900\) −1.19542e36 −4.23263
\(901\) 2.20789e34 0.0771400
\(902\) 9.69342e35i 3.34194i
\(903\) −3.83817e35 −1.30578
\(904\) 1.36922e36i 4.59677i
\(905\) 1.17874e35 0.390514
\(906\) 8.39766e35 2.74549
\(907\) 2.84024e35i 0.916363i −0.888859 0.458182i \(-0.848501\pi\)
0.888859 0.458182i \(-0.151499\pi\)
\(908\) 4.57380e35i 1.45629i
\(909\) 2.06881e35 0.650062
\(910\) −1.48888e35 −0.461705
\(911\) 1.00037e35i 0.306155i 0.988214 + 0.153077i \(0.0489184\pi\)
−0.988214 + 0.153077i \(0.951082\pi\)
\(912\) 1.54980e36i 4.68100i
\(913\) −1.25725e35 −0.374777
\(914\) 2.78400e34i 0.0819058i
\(915\) 1.40891e36 4.09100
\(916\) 8.30010e35i 2.37869i
\(917\) 2.26911e35i 0.641836i
\(918\) 8.76458e33i 0.0244692i
\(919\) 2.23591e35i 0.616124i 0.951366 + 0.308062i \(0.0996804\pi\)
−0.951366 + 0.308062i \(0.900320\pi\)
\(920\) 7.09728e35 + 1.37772e36i 1.93036 + 3.74720i
\(921\) 5.42641e35 1.45679
\(922\) −7.92129e35 −2.09906
\(923\) −1.16780e35 −0.305455
\(924\) 7.83086e35 2.02184
\(925\) 1.04720e36i 2.66887i
\(926\) −9.41501e35 −2.36858
\(927\) 9.75376e33i 0.0242223i
\(928\) 3.27671e35 0.803271
\(929\) 3.21770e35 0.778675 0.389338 0.921095i \(-0.372704\pi\)
0.389338 + 0.921095i \(0.372704\pi\)
\(930\) 1.08571e36i 2.59369i
\(931\) 4.08811e35i 0.964109i
\(932\) −4.48030e35 −1.04308
\(933\) −2.59593e35 −0.596641
\(934\) 3.43474e35i 0.779349i
\(935\) 5.39360e34i 0.120820i
\(936\) −4.19914e35 −0.928647
\(937\) 5.20194e35i 1.13577i 0.823108 + 0.567885i \(0.192238\pi\)
−0.823108 + 0.567885i \(0.807762\pi\)
\(938\) −1.65151e35 −0.355997
\(939\) 1.23211e36i 2.62217i
\(940\) 2.72629e36i 5.72847i
\(941\) 6.58812e34i 0.136674i −0.997662 0.0683371i \(-0.978231\pi\)
0.997662 0.0683371i \(-0.0217693\pi\)
\(942\) 2.69109e35i 0.551211i
\(943\) 7.04724e35 3.63037e35i 1.42521 0.734193i
\(944\) 2.21181e36 4.41655
\(945\) 8.01461e34 0.158016
\(946\) −1.89111e36 −3.68149
\(947\) −9.06536e35 −1.74255 −0.871275 0.490795i \(-0.836706\pi\)
−0.871275 + 0.490795i \(0.836706\pi\)
\(948\) 2.48313e36i 4.71302i
\(949\) −1.81376e34 −0.0339927
\(950\) 1.99232e36i 3.68703i
\(951\) −8.00041e35 −1.46199
\(952\) 5.00327e34 0.0902840
\(953\) 3.40744e34i 0.0607174i −0.999539 0.0303587i \(-0.990335\pi\)
0.999539 0.0303587i \(-0.00966497\pi\)
\(954\) 1.36618e36i 2.40397i
\(955\) 9.81954e35 1.70628
\(956\) −2.03179e36 −3.48646
\(957\) 4.03627e35i 0.683970i
\(958\) 1.33243e36i 2.22977i
\(959\) −9.78771e34 −0.161755
\(960\) 1.57407e36i 2.56904i
\(961\) −3.95559e35 −0.637575
\(962\) 6.25210e35i 0.995233i
\(963\) 1.65967e35i 0.260919i
\(964\) 2.36438e36i 3.67108i
\(965\) 1.29398e36i 1.98427i
\(966\) −4.14007e35 8.03666e35i −0.627021 1.21717i
\(967\) 6.33786e35 0.948036 0.474018 0.880515i \(-0.342803\pi\)
0.474018 + 0.880515i \(0.342803\pi\)
\(968\) 4.78541e35 0.706993
\(969\) −8.74545e34 −0.127614
\(970\) −8.02513e35 −1.15662
\(971\) 1.07342e36i 1.52806i −0.645180 0.764030i \(-0.723218\pi\)
0.645180 0.764030i \(-0.276782\pi\)
\(972\) −2.47857e36 −3.48503
\(973\) 1.30604e35i 0.181385i
\(974\) 5.75379e35 0.789309
\(975\) −5.12324e35 −0.694207
\(976\) 3.24793e36i 4.34720i
\(977\) 1.20936e36i 1.59890i 0.600736 + 0.799448i \(0.294874\pi\)
−0.600736 + 0.799448i \(0.705126\pi\)
\(978\) −7.37964e35 −0.963760
\(979\) −5.91626e34 −0.0763229
\(980\) 2.25826e36i 2.87781i
\(981\) 3.42244e35i 0.430831i
\(982\) 2.08853e36 2.59718
\(983\) 1.89469e35i 0.232754i −0.993205 0.116377i \(-0.962872\pi\)
0.993205 0.116377i \(-0.0371281\pi\)
\(984\) 5.10829e36 6.19918
\(985\) 6.23736e35i 0.747767i
\(986\) 4.38311e34i 0.0519110i
\(987\) 9.35687e35i 1.09477i
\(988\) 8.42624e35i 0.973981i
\(989\) 7.08257e35 + 1.37486e36i 0.808789 + 1.57001i
\(990\) 3.33742e36 3.76521
\(991\) −1.46997e36 −1.63841 −0.819206 0.573499i \(-0.805586\pi\)
−0.819206 + 0.573499i \(0.805586\pi\)
\(992\) 1.05584e36 1.16268
\(993\) 5.80879e35 0.631968
\(994\) 8.60980e35i 0.925458i
\(995\) −2.36147e36 −2.50787
\(996\) 1.12610e36i 1.18159i
\(997\) 3.00297e35 0.311322 0.155661 0.987811i \(-0.450249\pi\)
0.155661 + 0.987811i \(0.450249\pi\)
\(998\) −5.01426e35 −0.513618
\(999\) 3.36548e35i 0.340613i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 23.25.b.c.22.2 yes 44
23.22 odd 2 inner 23.25.b.c.22.1 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.25.b.c.22.1 44 23.22 odd 2 inner
23.25.b.c.22.2 yes 44 1.1 even 1 trivial