L(s) = 1 | − 7.58e3·2-s + 7.76e5·3-s + 4.07e7·4-s + 3.88e8i·5-s − 5.88e9·6-s − 7.00e9i·7-s − 1.81e11·8-s + 3.20e11·9-s − 2.94e12i·10-s + 3.53e12i·11-s + 3.16e13·12-s + 7.20e12·13-s + 5.31e13i·14-s + 3.01e14i·15-s + 6.95e14·16-s − 3.92e13i·17-s + ⋯ |
L(s) = 1 | − 1.85·2-s + 1.46·3-s + 2.42·4-s + 1.59i·5-s − 2.70·6-s − 0.506i·7-s − 2.64·8-s + 1.13·9-s − 2.94i·10-s + 1.12i·11-s + 3.54·12-s + 0.309·13-s + 0.937i·14-s + 2.32i·15-s + 2.47·16-s − 0.0673i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.888 + 0.457i)\, \overline{\Lambda}(25-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+12) \, L(s)\cr =\mathstrut & (-0.888 + 0.457i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{25}{2})\) |
\(\approx\) |
\(0.3479313054\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3479313054\) |
\(L(13)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 23 | \( 1 + (1.94e16 - 1.00e16i)T \) |
good | 2 | \( 1 + 7.58e3T + 1.67e7T^{2} \) |
| 3 | \( 1 - 7.76e5T + 2.82e11T^{2} \) |
| 5 | \( 1 - 3.88e8iT - 5.96e16T^{2} \) |
| 7 | \( 1 + 7.00e9iT - 1.91e20T^{2} \) |
| 11 | \( 1 - 3.53e12iT - 9.84e24T^{2} \) |
| 13 | \( 1 - 7.20e12T + 5.42e26T^{2} \) |
| 17 | \( 1 + 3.92e13iT - 3.39e29T^{2} \) |
| 19 | \( 1 + 2.86e15iT - 4.89e30T^{2} \) |
| 29 | \( 1 + 1.47e17T + 1.25e35T^{2} \) |
| 31 | \( 1 + 4.74e17T + 6.20e35T^{2} \) |
| 37 | \( 1 - 1.14e19iT - 4.33e37T^{2} \) |
| 41 | \( 1 + 3.61e19T + 5.09e38T^{2} \) |
| 43 | \( 1 + 7.05e19iT - 1.59e39T^{2} \) |
| 47 | \( 1 + 1.72e20T + 1.35e40T^{2} \) |
| 53 | \( 1 - 5.62e20iT - 2.41e41T^{2} \) |
| 59 | \( 1 - 3.17e21T + 3.16e42T^{2} \) |
| 61 | \( 1 + 4.66e21iT - 7.04e42T^{2} \) |
| 67 | \( 1 - 3.10e21iT - 6.69e43T^{2} \) |
| 71 | \( 1 + 1.62e22T + 2.69e44T^{2} \) |
| 73 | \( 1 + 2.51e21T + 5.24e44T^{2} \) |
| 79 | \( 1 - 7.84e22iT - 3.49e45T^{2} \) |
| 83 | \( 1 - 3.55e22iT - 1.14e46T^{2} \) |
| 89 | \( 1 - 1.67e22iT - 6.10e46T^{2} \) |
| 97 | \( 1 + 2.72e23iT - 4.81e47T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.69992884456746132411197568667, −11.47851292821426045520039564043, −10.30000125910279344437321608115, −9.637989731795930314121846314997, −8.391026660715717673435569873126, −7.31042262084960011747133357620, −6.82044644731775482137985670529, −3.50179841332748100152375863255, −2.49695949771008637490252763781, −1.71558762380324353214966943465,
0.11133503992824602544037556962, 1.31333958356714595462460701017, 2.12071060575234181922785269805, 3.58344147058115241054300265895, 5.85677481640231471054489370410, 7.82617748554845637654079158422, 8.519892006305117817001377068472, 8.948415617181500482320287974686, 10.00906427278279110549354407021, 11.71246620216612725152812069223