Properties

Label 23.25.b.c.22.19
Level $23$
Weight $25$
Character 23.22
Analytic conductor $83.942$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [23,25,Mod(22,23)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 25, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("23.22"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.9424450193\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 22.19
Character \(\chi\) \(=\) 23.22
Dual form 23.25.b.c.22.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1213.58 q^{2} +142839. q^{3} -1.53044e7 q^{4} -1.97797e8i q^{5} -1.73346e8 q^{6} -6.84832e9i q^{7} +3.89336e10 q^{8} -2.62027e11 q^{9} +2.40042e11i q^{10} +1.27147e12i q^{11} -2.18607e12 q^{12} +2.21048e13 q^{13} +8.31097e12i q^{14} -2.82532e13i q^{15} +2.09517e14 q^{16} -4.78477e13i q^{17} +3.17989e14 q^{18} +1.36683e15i q^{19} +3.02718e15i q^{20} -9.78208e14i q^{21} -1.54302e15i q^{22} +(5.32499e15 + 2.12578e16i) q^{23} +5.56124e15 q^{24} +2.04808e16 q^{25} -2.68258e16 q^{26} -7.77696e16 q^{27} +1.04810e17i q^{28} +5.15564e16 q^{29} +3.42875e16i q^{30} +2.06135e16 q^{31} -9.07462e17 q^{32} +1.81615e17i q^{33} +5.80669e16i q^{34} -1.35458e18 q^{35} +4.01017e18 q^{36} -9.91030e18i q^{37} -1.65876e18i q^{38} +3.15742e18 q^{39} -7.70096e18i q^{40} +1.69211e19 q^{41} +1.18713e18i q^{42} +6.15831e19i q^{43} -1.94591e19i q^{44} +5.18282e19i q^{45} +(-6.46229e18 - 2.57980e19i) q^{46} -2.09678e20 q^{47} +2.99272e19 q^{48} +1.44682e20 q^{49} -2.48550e19 q^{50} -6.83453e18i q^{51} -3.38301e20 q^{52} +8.75928e20i q^{53} +9.43794e19 q^{54} +2.51493e20 q^{55} -2.66630e20i q^{56} +1.95237e20i q^{57} -6.25676e19 q^{58} +1.74453e21 q^{59} +4.32400e20i q^{60} -4.45480e21i q^{61} -2.50160e19 q^{62} +1.79444e21i q^{63} -2.41384e21 q^{64} -4.37227e21i q^{65} -2.20404e20i q^{66} -3.08611e21i q^{67} +7.32283e20i q^{68} +(7.60617e20 + 3.03645e21i) q^{69} +1.64389e21 q^{70} -1.51440e22 q^{71} -1.02016e22 q^{72} +3.28331e22 q^{73} +1.20269e22i q^{74} +2.92546e21 q^{75} -2.09186e22i q^{76} +8.70742e21 q^{77} -3.83178e21 q^{78} -5.89628e22i q^{79} -4.14420e22i q^{80} +6.28955e22 q^{81} -2.05351e22 q^{82} -7.31440e22i q^{83} +1.49709e22i q^{84} -9.46416e21 q^{85} -7.47359e22i q^{86} +7.36427e21 q^{87} +4.95028e22i q^{88} -1.90199e23i q^{89} -6.28975e22i q^{90} -1.51381e23i q^{91} +(-8.14960e22 - 3.25339e23i) q^{92} +2.94441e21 q^{93} +2.54460e23 q^{94} +2.70356e23 q^{95} -1.29621e23 q^{96} -7.53162e23i q^{97} -1.75582e23 q^{98} -3.33158e23i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4232 q^{2} - 434562 q^{3} + 317760360 q^{4} - 8460029520 q^{6} - 198307023760 q^{8} + 4220041988298 q^{9} - 67439597688792 q^{12} + 5771152551358 q^{13} + 18\!\cdots\!92 q^{16} + 18\!\cdots\!68 q^{18}+ \cdots - 20\!\cdots\!92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1213.58 −0.296283 −0.148142 0.988966i \(-0.547329\pi\)
−0.148142 + 0.988966i \(0.547329\pi\)
\(3\) 142839. 0.268777 0.134388 0.990929i \(-0.457093\pi\)
0.134388 + 0.990929i \(0.457093\pi\)
\(4\) −1.53044e7 −0.912216
\(5\) 1.97797e8i 0.810178i −0.914277 0.405089i \(-0.867240\pi\)
0.914277 0.405089i \(-0.132760\pi\)
\(6\) −1.73346e8 −0.0796342
\(7\) 6.84832e9i 0.494775i −0.968917 0.247387i \(-0.920428\pi\)
0.968917 0.247387i \(-0.0795721\pi\)
\(8\) 3.89336e10 0.566558
\(9\) −2.62027e11 −0.927759
\(10\) 2.40042e11i 0.240042i
\(11\) 1.27147e12i 0.405129i 0.979269 + 0.202564i \(0.0649275\pi\)
−0.979269 + 0.202564i \(0.935072\pi\)
\(12\) −2.18607e12 −0.245183
\(13\) 2.21048e13 0.948780 0.474390 0.880315i \(-0.342669\pi\)
0.474390 + 0.880315i \(0.342669\pi\)
\(14\) 8.31097e12i 0.146594i
\(15\) 2.82532e13i 0.217757i
\(16\) 2.09517e14 0.744354
\(17\) 4.78477e13i 0.0821248i −0.999157 0.0410624i \(-0.986926\pi\)
0.999157 0.0410624i \(-0.0130742\pi\)
\(18\) 3.17989e14 0.274880
\(19\) 1.36683e15i 0.617550i 0.951135 + 0.308775i \(0.0999190\pi\)
−0.951135 + 0.308775i \(0.900081\pi\)
\(20\) 3.02718e15i 0.739058i
\(21\) 9.78208e14i 0.132984i
\(22\) 1.54302e15i 0.120033i
\(23\) 5.32499e15 + 2.12578e16i 0.242988 + 0.970029i
\(24\) 5.56124e15 0.152278
\(25\) 2.04808e16 0.343611
\(26\) −2.68258e16 −0.281108
\(27\) −7.77696e16 −0.518137
\(28\) 1.04810e17i 0.451342i
\(29\) 5.15564e16 0.145716 0.0728579 0.997342i \(-0.476788\pi\)
0.0728579 + 0.997342i \(0.476788\pi\)
\(30\) 3.42875e16i 0.0645179i
\(31\) 2.06135e16 0.0261704 0.0130852 0.999914i \(-0.495835\pi\)
0.0130852 + 0.999914i \(0.495835\pi\)
\(32\) −9.07462e17 −0.787098
\(33\) 1.81615e17i 0.108889i
\(34\) 5.80669e16i 0.0243322i
\(35\) −1.35458e18 −0.400856
\(36\) 4.01017e18 0.846317
\(37\) 9.91030e18i 1.50545i −0.658336 0.752724i \(-0.728739\pi\)
0.658336 0.752724i \(-0.271261\pi\)
\(38\) 1.65876e18i 0.182970i
\(39\) 3.15742e18 0.255010
\(40\) 7.70096e18i 0.459013i
\(41\) 1.69211e19 0.749935 0.374967 0.927038i \(-0.377654\pi\)
0.374967 + 0.927038i \(0.377654\pi\)
\(42\) 1.18713e18i 0.0394010i
\(43\) 6.15831e19i 1.54113i 0.637359 + 0.770567i \(0.280027\pi\)
−0.637359 + 0.770567i \(0.719973\pi\)
\(44\) 1.94591e19i 0.369565i
\(45\) 5.18282e19i 0.751650i
\(46\) −6.46229e18 2.57980e19i −0.0719933 0.287404i
\(47\) −2.09678e20 −1.80459 −0.902293 0.431123i \(-0.858118\pi\)
−0.902293 + 0.431123i \(0.858118\pi\)
\(48\) 2.99272e19 0.200065
\(49\) 1.44682e20 0.755198
\(50\) −2.48550e19 −0.101806
\(51\) 6.83453e18i 0.0220733i
\(52\) −3.38301e20 −0.865493
\(53\) 8.75928e20i 1.78303i 0.452994 + 0.891513i \(0.350356\pi\)
−0.452994 + 0.891513i \(0.649644\pi\)
\(54\) 9.43794e19 0.153515
\(55\) 2.51493e20 0.328226
\(56\) 2.66630e20i 0.280319i
\(57\) 1.95237e20i 0.165983i
\(58\) −6.25676e19 −0.0431732
\(59\) 1.74453e21 0.980513 0.490256 0.871578i \(-0.336903\pi\)
0.490256 + 0.871578i \(0.336903\pi\)
\(60\) 4.32400e20i 0.198642i
\(61\) 4.45480e21i 1.67830i −0.543897 0.839152i \(-0.683052\pi\)
0.543897 0.839152i \(-0.316948\pi\)
\(62\) −2.50160e19 −0.00775386
\(63\) 1.79444e21i 0.459032i
\(64\) −2.41384e21 −0.511150
\(65\) 4.37227e21i 0.768681i
\(66\) 2.20404e20i 0.0322621i
\(67\) 3.08611e21i 0.377150i −0.982059 0.188575i \(-0.939613\pi\)
0.982059 0.188575i \(-0.0603868\pi\)
\(68\) 7.32283e20i 0.0749156i
\(69\) 7.60617e20 + 3.03645e21i 0.0653096 + 0.260722i
\(70\) 1.64389e21 0.118767
\(71\) −1.51440e22 −0.922870 −0.461435 0.887174i \(-0.652665\pi\)
−0.461435 + 0.887174i \(0.652665\pi\)
\(72\) −1.02016e22 −0.525629
\(73\) 3.28331e22 1.43363 0.716816 0.697262i \(-0.245599\pi\)
0.716816 + 0.697262i \(0.245599\pi\)
\(74\) 1.20269e22i 0.446040i
\(75\) 2.92546e21 0.0923547
\(76\) 2.09186e22i 0.563339i
\(77\) 8.70742e21 0.200448
\(78\) −3.83178e21 −0.0755553
\(79\) 5.89628e22i 0.997823i −0.866653 0.498911i \(-0.833733\pi\)
0.866653 0.498911i \(-0.166267\pi\)
\(80\) 4.14420e22i 0.603060i
\(81\) 6.28955e22 0.788496
\(82\) −2.05351e22 −0.222193
\(83\) 7.31440e22i 0.684292i −0.939647 0.342146i \(-0.888846\pi\)
0.939647 0.342146i \(-0.111154\pi\)
\(84\) 1.49709e22i 0.121310i
\(85\) −9.46416e21 −0.0665358
\(86\) 7.47359e22i 0.456612i
\(87\) 7.36427e21 0.0391650
\(88\) 4.95028e22i 0.229529i
\(89\) 1.90199e23i 0.770066i −0.922903 0.385033i \(-0.874190\pi\)
0.922903 0.385033i \(-0.125810\pi\)
\(90\) 6.28975e22i 0.222702i
\(91\) 1.51381e23i 0.469433i
\(92\) −8.14960e22 3.25339e23i −0.221658 0.884876i
\(93\) 2.94441e21 0.00703400
\(94\) 2.54460e23 0.534669
\(95\) 2.70356e23 0.500326
\(96\) −1.29621e23 −0.211554
\(97\) 7.53162e23i 1.08550i −0.839896 0.542748i \(-0.817384\pi\)
0.839896 0.542748i \(-0.182616\pi\)
\(98\) −1.75582e23 −0.223753
\(99\) 3.33158e23i 0.375862i
\(100\) −3.13447e23 −0.313447
\(101\) 7.69996e23 0.683332 0.341666 0.939821i \(-0.389009\pi\)
0.341666 + 0.939821i \(0.389009\pi\)
\(102\) 8.29423e21i 0.00653994i
\(103\) 1.13112e24i 0.793342i 0.917961 + 0.396671i \(0.129835\pi\)
−0.917961 + 0.396671i \(0.870165\pi\)
\(104\) 8.60617e23 0.537539
\(105\) −1.93487e23 −0.107741
\(106\) 1.06301e24i 0.528281i
\(107\) 3.28637e24i 1.45919i −0.683882 0.729593i \(-0.739710\pi\)
0.683882 0.729593i \(-0.260290\pi\)
\(108\) 1.19022e24 0.472653
\(109\) 1.96995e24i 0.700384i −0.936678 0.350192i \(-0.886116\pi\)
0.936678 0.350192i \(-0.113884\pi\)
\(110\) −3.05206e23 −0.0972481
\(111\) 1.41558e24i 0.404630i
\(112\) 1.43484e24i 0.368288i
\(113\) 7.13214e24i 1.64543i −0.568456 0.822714i \(-0.692459\pi\)
0.568456 0.822714i \(-0.307541\pi\)
\(114\) 2.36935e23i 0.0491781i
\(115\) 4.20474e24 1.05327e24i 0.785897 0.196864i
\(116\) −7.89042e23 −0.132924
\(117\) −5.79203e24 −0.880239
\(118\) −2.11712e24 −0.290510
\(119\) −3.27677e23 −0.0406333
\(120\) 1.10000e24i 0.123372i
\(121\) 8.23310e24 0.835871
\(122\) 5.40625e24i 0.497254i
\(123\) 2.41700e24 0.201565
\(124\) −3.15477e23 −0.0238731
\(125\) 1.58407e25i 1.08856i
\(126\) 2.17769e24i 0.136004i
\(127\) −4.88388e24 −0.277409 −0.138704 0.990334i \(-0.544294\pi\)
−0.138704 + 0.990334i \(0.544294\pi\)
\(128\) 1.81541e25 0.938543
\(129\) 8.79648e24i 0.414221i
\(130\) 5.30608e24i 0.227748i
\(131\) −1.41943e25 −0.555725 −0.277862 0.960621i \(-0.589626\pi\)
−0.277862 + 0.960621i \(0.589626\pi\)
\(132\) 2.77952e24i 0.0993305i
\(133\) 9.36051e24 0.305548
\(134\) 3.74523e24i 0.111743i
\(135\) 1.53826e25i 0.419784i
\(136\) 1.86288e24i 0.0465285i
\(137\) 6.38517e24i 0.146058i 0.997330 + 0.0730290i \(0.0232666\pi\)
−0.997330 + 0.0730290i \(0.976733\pi\)
\(138\) −9.23067e23 3.68496e24i −0.0193501 0.0772475i
\(139\) −4.77175e25 −0.917276 −0.458638 0.888623i \(-0.651663\pi\)
−0.458638 + 0.888623i \(0.651663\pi\)
\(140\) 2.07311e25 0.365667
\(141\) −2.99502e25 −0.485031
\(142\) 1.83784e25 0.273431
\(143\) 2.81055e25i 0.384378i
\(144\) −5.48990e25 −0.690581
\(145\) 1.01977e25i 0.118056i
\(146\) −3.98455e25 −0.424761
\(147\) 2.06662e25 0.202980
\(148\) 1.51672e26i 1.37329i
\(149\) 1.66762e26i 1.39272i 0.717694 + 0.696359i \(0.245198\pi\)
−0.717694 + 0.696359i \(0.754802\pi\)
\(150\) −3.55027e24 −0.0273632
\(151\) 1.24611e26 0.886818 0.443409 0.896319i \(-0.353769\pi\)
0.443409 + 0.896319i \(0.353769\pi\)
\(152\) 5.32157e25i 0.349878i
\(153\) 1.25374e25i 0.0761920i
\(154\) −1.05671e25 −0.0593893
\(155\) 4.07729e24i 0.0212027i
\(156\) −4.83226e25 −0.232624
\(157\) 2.45163e26i 1.09310i 0.837427 + 0.546549i \(0.184059\pi\)
−0.837427 + 0.546549i \(0.815941\pi\)
\(158\) 7.15560e25i 0.295638i
\(159\) 1.25117e26i 0.479236i
\(160\) 1.79494e26i 0.637690i
\(161\) 1.45580e26 3.64673e25i 0.479946 0.120224i
\(162\) −7.63285e25 −0.233618
\(163\) −4.58499e26 −1.30343 −0.651714 0.758465i \(-0.725950\pi\)
−0.651714 + 0.758465i \(0.725950\pi\)
\(164\) −2.58969e26 −0.684103
\(165\) 3.59230e25 0.0882197
\(166\) 8.87659e25i 0.202744i
\(167\) 2.15069e26 0.457067 0.228534 0.973536i \(-0.426607\pi\)
0.228534 + 0.973536i \(0.426607\pi\)
\(168\) 3.80851e25i 0.0753432i
\(169\) −5.41803e25 −0.0998162
\(170\) 1.14855e25 0.0197134
\(171\) 3.58146e26i 0.572937i
\(172\) 9.42496e26i 1.40585i
\(173\) 2.99134e26 0.416210 0.208105 0.978106i \(-0.433270\pi\)
0.208105 + 0.978106i \(0.433270\pi\)
\(174\) −8.93711e24 −0.0116040
\(175\) 1.40259e26i 0.170010i
\(176\) 2.66394e26i 0.301559i
\(177\) 2.49186e26 0.263539
\(178\) 2.30821e26i 0.228158i
\(179\) 7.94438e26 0.734216 0.367108 0.930178i \(-0.380348\pi\)
0.367108 + 0.930178i \(0.380348\pi\)
\(180\) 7.93202e26i 0.685668i
\(181\) 2.15339e26i 0.174173i 0.996201 + 0.0870863i \(0.0277556\pi\)
−0.996201 + 0.0870863i \(0.972244\pi\)
\(182\) 1.83712e26i 0.139085i
\(183\) 6.36320e26i 0.451089i
\(184\) 2.07321e26 + 8.27643e26i 0.137667 + 0.549578i
\(185\) −1.96023e27 −1.21968
\(186\) −3.57326e24 −0.00208406
\(187\) 6.08368e25 0.0332711
\(188\) 3.20900e27 1.64617
\(189\) 5.32591e26i 0.256361i
\(190\) −3.28098e26 −0.148238
\(191\) 3.34395e27i 1.41860i −0.704908 0.709298i \(-0.749012\pi\)
0.704908 0.709298i \(-0.250988\pi\)
\(192\) −3.44790e26 −0.137385
\(193\) −3.12624e27 −1.17040 −0.585200 0.810889i \(-0.698984\pi\)
−0.585200 + 0.810889i \(0.698984\pi\)
\(194\) 9.14021e26i 0.321614i
\(195\) 6.24530e26i 0.206604i
\(196\) −2.21427e27 −0.688904
\(197\) 4.27484e27 1.25119 0.625597 0.780146i \(-0.284855\pi\)
0.625597 + 0.780146i \(0.284855\pi\)
\(198\) 4.04313e26i 0.111362i
\(199\) 2.46159e27i 0.638231i −0.947716 0.319116i \(-0.896614\pi\)
0.947716 0.319116i \(-0.103386\pi\)
\(200\) 7.97391e26 0.194675
\(201\) 4.40817e26i 0.101369i
\(202\) −9.34449e26 −0.202460
\(203\) 3.53075e26i 0.0720965i
\(204\) 1.04599e26i 0.0201356i
\(205\) 3.34696e27i 0.607581i
\(206\) 1.37270e27i 0.235054i
\(207\) −1.39529e27 5.57011e27i −0.225434 0.899953i
\(208\) 4.63133e27 0.706229
\(209\) −1.73788e27 −0.250187
\(210\) 2.34812e26 0.0319218
\(211\) 4.33655e27 0.556872 0.278436 0.960455i \(-0.410184\pi\)
0.278436 + 0.960455i \(0.410184\pi\)
\(212\) 1.34056e28i 1.62651i
\(213\) −2.16316e27 −0.248046
\(214\) 3.98826e27i 0.432333i
\(215\) 1.21810e28 1.24859
\(216\) −3.02785e27 −0.293555
\(217\) 1.41168e26i 0.0129485i
\(218\) 2.39068e27i 0.207512i
\(219\) 4.68985e27 0.385327
\(220\) −3.84896e27 −0.299413
\(221\) 1.05766e27i 0.0779184i
\(222\) 1.71791e27i 0.119885i
\(223\) −1.49491e28 −0.988456 −0.494228 0.869332i \(-0.664549\pi\)
−0.494228 + 0.869332i \(0.664549\pi\)
\(224\) 6.21459e27i 0.389436i
\(225\) −5.36651e27 −0.318788
\(226\) 8.65541e27i 0.487513i
\(227\) 5.28683e27i 0.282413i 0.989980 + 0.141207i \(0.0450982\pi\)
−0.989980 + 0.141207i \(0.954902\pi\)
\(228\) 2.98800e27i 0.151413i
\(229\) 1.44312e28i 0.693868i 0.937890 + 0.346934i \(0.112777\pi\)
−0.937890 + 0.346934i \(0.887223\pi\)
\(230\) −5.10278e27 + 1.27822e27i −0.232848 + 0.0583274i
\(231\) 1.24376e27 0.0538757
\(232\) 2.00727e27 0.0825564
\(233\) 4.99122e27 0.194956 0.0974778 0.995238i \(-0.468923\pi\)
0.0974778 + 0.995238i \(0.468923\pi\)
\(234\) 7.02908e27 0.260800
\(235\) 4.14737e28i 1.46204i
\(236\) −2.66990e28 −0.894439
\(237\) 8.42220e27i 0.268192i
\(238\) 3.97661e26 0.0120390
\(239\) −8.84057e27 −0.254510 −0.127255 0.991870i \(-0.540617\pi\)
−0.127255 + 0.991870i \(0.540617\pi\)
\(240\) 5.91953e27i 0.162089i
\(241\) 1.11978e28i 0.291695i 0.989307 + 0.145848i \(0.0465909\pi\)
−0.989307 + 0.145848i \(0.953409\pi\)
\(242\) −9.99151e27 −0.247655
\(243\) 3.09484e28 0.730067
\(244\) 6.81783e28i 1.53098i
\(245\) 2.86177e28i 0.611845i
\(246\) −2.93322e27 −0.0597204
\(247\) 3.02135e28i 0.585919i
\(248\) 8.02555e26 0.0148271
\(249\) 1.04478e28i 0.183922i
\(250\) 1.92239e28i 0.322524i
\(251\) 1.89179e28i 0.302544i 0.988492 + 0.151272i \(0.0483369\pi\)
−0.988492 + 0.151272i \(0.951663\pi\)
\(252\) 2.74629e28i 0.418736i
\(253\) −2.70286e28 + 6.77055e27i −0.392987 + 0.0984414i
\(254\) 5.92697e27 0.0821917
\(255\) −1.35185e27 −0.0178833
\(256\) 1.84661e28 0.233075
\(257\) 2.57645e28 0.310330 0.155165 0.987889i \(-0.450409\pi\)
0.155165 + 0.987889i \(0.450409\pi\)
\(258\) 1.06752e28i 0.122727i
\(259\) −6.78689e28 −0.744858
\(260\) 6.69151e28i 0.701203i
\(261\) −1.35091e28 −0.135189
\(262\) 1.72259e28 0.164652
\(263\) 4.25008e28i 0.388086i 0.980993 + 0.194043i \(0.0621601\pi\)
−0.980993 + 0.194043i \(0.937840\pi\)
\(264\) 7.07093e27i 0.0616921i
\(265\) 1.73256e29 1.44457
\(266\) −1.13597e28 −0.0905289
\(267\) 2.71678e28i 0.206976i
\(268\) 4.72312e28i 0.344042i
\(269\) −2.65534e29 −1.84966 −0.924831 0.380377i \(-0.875794\pi\)
−0.924831 + 0.380377i \(0.875794\pi\)
\(270\) 1.86680e28i 0.124375i
\(271\) −1.30488e29 −0.831650 −0.415825 0.909445i \(-0.636507\pi\)
−0.415825 + 0.909445i \(0.636507\pi\)
\(272\) 1.00249e28i 0.0611300i
\(273\) 2.16231e28i 0.126173i
\(274\) 7.74890e27i 0.0432746i
\(275\) 2.60407e28i 0.139207i
\(276\) −1.16408e28 4.64712e28i −0.0595764 0.237834i
\(277\) 2.32708e29 1.14039 0.570196 0.821509i \(-0.306867\pi\)
0.570196 + 0.821509i \(0.306867\pi\)
\(278\) 5.79089e28 0.271774
\(279\) −5.40127e27 −0.0242798
\(280\) −5.27387e28 −0.227108
\(281\) 1.92977e29i 0.796214i −0.917339 0.398107i \(-0.869667\pi\)
0.917339 0.398107i \(-0.130333\pi\)
\(282\) 3.63468e28 0.143707
\(283\) 4.31081e29i 1.63351i −0.576986 0.816754i \(-0.695771\pi\)
0.576986 0.816754i \(-0.304229\pi\)
\(284\) 2.31771e29 0.841857
\(285\) 3.86174e28 0.134476
\(286\) 3.41082e28i 0.113885i
\(287\) 1.15881e29i 0.371049i
\(288\) 2.37779e29 0.730237
\(289\) 3.37159e29 0.993256
\(290\) 1.23757e28i 0.0349780i
\(291\) 1.07581e29i 0.291756i
\(292\) −5.02493e29 −1.30778
\(293\) 3.23912e29i 0.809125i −0.914510 0.404562i \(-0.867424\pi\)
0.914510 0.404562i \(-0.132576\pi\)
\(294\) −2.50800e28 −0.0601395
\(295\) 3.45063e29i 0.794390i
\(296\) 3.85843e29i 0.852924i
\(297\) 9.88815e28i 0.209912i
\(298\) 2.02379e29i 0.412639i
\(299\) 1.17708e29 + 4.69899e29i 0.230542 + 0.920345i
\(300\) −4.47725e28 −0.0842474
\(301\) 4.21741e29 0.762514
\(302\) −1.51226e29 −0.262750
\(303\) 1.09985e29 0.183664
\(304\) 2.86375e29i 0.459676i
\(305\) −8.81149e29 −1.35973
\(306\) 1.52151e28i 0.0225744i
\(307\) −4.04646e29 −0.577318 −0.288659 0.957432i \(-0.593209\pi\)
−0.288659 + 0.957432i \(0.593209\pi\)
\(308\) −1.33262e29 −0.182851
\(309\) 1.61568e29i 0.213232i
\(310\) 4.94810e27i 0.00628201i
\(311\) 7.51635e28 0.0918084 0.0459042 0.998946i \(-0.485383\pi\)
0.0459042 + 0.998946i \(0.485383\pi\)
\(312\) 1.22930e29 0.144478
\(313\) 1.52874e29i 0.172903i 0.996256 + 0.0864516i \(0.0275528\pi\)
−0.996256 + 0.0864516i \(0.972447\pi\)
\(314\) 2.97524e29i 0.323867i
\(315\) 3.54936e29 0.371898
\(316\) 9.02394e29i 0.910230i
\(317\) 1.07646e30 1.04541 0.522707 0.852512i \(-0.324922\pi\)
0.522707 + 0.852512i \(0.324922\pi\)
\(318\) 1.51839e29i 0.141990i
\(319\) 6.55522e28i 0.0590336i
\(320\) 4.77451e29i 0.414123i
\(321\) 4.69421e29i 0.392195i
\(322\) −1.76673e29 + 4.42558e28i −0.142200 + 0.0356205i
\(323\) 6.53998e28 0.0507162
\(324\) −9.62581e29 −0.719278
\(325\) 4.52723e29 0.326011
\(326\) 5.56424e29 0.386184
\(327\) 2.81385e29i 0.188247i
\(328\) 6.58801e29 0.424882
\(329\) 1.43594e30i 0.892864i
\(330\) −4.35954e28 −0.0261380
\(331\) −1.86399e30 −1.07772 −0.538861 0.842395i \(-0.681145\pi\)
−0.538861 + 0.842395i \(0.681145\pi\)
\(332\) 1.11943e30i 0.624222i
\(333\) 2.59676e30i 1.39669i
\(334\) −2.61003e29 −0.135421
\(335\) −6.10425e29 −0.305559
\(336\) 2.04951e29i 0.0989873i
\(337\) 6.82671e28i 0.0318165i 0.999873 + 0.0159083i \(0.00506397\pi\)
−0.999873 + 0.0159083i \(0.994936\pi\)
\(338\) 6.57520e28 0.0295739
\(339\) 1.01875e30i 0.442253i
\(340\) 1.44844e29 0.0606950
\(341\) 2.62093e28i 0.0106024i
\(342\) 4.34638e29i 0.169752i
\(343\) 2.30284e30i 0.868428i
\(344\) 2.39765e30i 0.873142i
\(345\) 6.00602e29 1.50448e29i 0.211231 0.0529124i
\(346\) −3.63022e29 −0.123316
\(347\) −3.35105e30 −1.09958 −0.549791 0.835302i \(-0.685293\pi\)
−0.549791 + 0.835302i \(0.685293\pi\)
\(348\) −1.12706e29 −0.0357270
\(349\) 4.52748e29 0.138660 0.0693301 0.997594i \(-0.477914\pi\)
0.0693301 + 0.997594i \(0.477914\pi\)
\(350\) 1.70215e29i 0.0503712i
\(351\) −1.71908e30 −0.491598
\(352\) 1.15381e30i 0.318876i
\(353\) 3.33239e30 0.890141 0.445070 0.895496i \(-0.353179\pi\)
0.445070 + 0.895496i \(0.353179\pi\)
\(354\) −3.02407e29 −0.0780823
\(355\) 2.99545e30i 0.747690i
\(356\) 2.91089e30i 0.702467i
\(357\) −4.68051e28 −0.0109213
\(358\) −9.64112e29 −0.217536
\(359\) 6.34204e30i 1.38387i 0.721960 + 0.691935i \(0.243242\pi\)
−0.721960 + 0.691935i \(0.756758\pi\)
\(360\) 2.01786e30i 0.425854i
\(361\) 3.03053e30 0.618632
\(362\) 2.61330e29i 0.0516044i
\(363\) 1.17601e30 0.224663
\(364\) 2.31680e30i 0.428224i
\(365\) 6.49431e30i 1.16150i
\(366\) 7.72224e29i 0.133650i
\(367\) 9.52719e30i 1.59578i −0.602805 0.797888i \(-0.705950\pi\)
0.602805 0.797888i \(-0.294050\pi\)
\(368\) 1.11568e30 + 4.45388e30i 0.180869 + 0.722045i
\(369\) −4.43379e30 −0.695759
\(370\) 2.37889e30 0.361372
\(371\) 5.99864e30 0.882197
\(372\) −4.50625e28 −0.00641653
\(373\) 3.38315e30i 0.466461i −0.972422 0.233230i \(-0.925070\pi\)
0.972422 0.233230i \(-0.0749296\pi\)
\(374\) −7.38302e28 −0.00985768
\(375\) 2.26267e30i 0.292581i
\(376\) −8.16350e30 −1.02240
\(377\) 1.13964e30 0.138252
\(378\) 6.46341e29i 0.0759556i
\(379\) 1.25362e31i 1.42723i −0.700537 0.713616i \(-0.747056\pi\)
0.700537 0.713616i \(-0.252944\pi\)
\(380\) −4.13765e30 −0.456405
\(381\) −6.97609e29 −0.0745611
\(382\) 4.05814e30i 0.420307i
\(383\) 1.47792e30i 0.148342i −0.997246 0.0741710i \(-0.976369\pi\)
0.997246 0.0741710i \(-0.0236311\pi\)
\(384\) 2.59311e30 0.252259
\(385\) 1.72231e30i 0.162398i
\(386\) 3.79393e30 0.346770
\(387\) 1.61364e31i 1.42980i
\(388\) 1.15267e31i 0.990206i
\(389\) 7.33614e30i 0.611043i −0.952185 0.305522i \(-0.901169\pi\)
0.952185 0.305522i \(-0.0988309\pi\)
\(390\) 7.57916e29i 0.0612133i
\(391\) 1.01714e30 2.54789e29i 0.0796635 0.0199553i
\(392\) 5.63298e30 0.427863
\(393\) −2.02751e30 −0.149366
\(394\) −5.18785e30 −0.370708
\(395\) −1.16627e31 −0.808414
\(396\) 5.09880e30i 0.342867i
\(397\) 1.95177e31 1.27334 0.636668 0.771138i \(-0.280312\pi\)
0.636668 + 0.771138i \(0.280312\pi\)
\(398\) 2.98733e30i 0.189097i
\(399\) 1.33705e30 0.0821243
\(400\) 4.29108e30 0.255768
\(401\) 6.33891e30i 0.366675i −0.983050 0.183338i \(-0.941310\pi\)
0.983050 0.183338i \(-0.0586902\pi\)
\(402\) 5.34966e29i 0.0300340i
\(403\) 4.55655e29 0.0248300
\(404\) −1.17844e31 −0.623347
\(405\) 1.24406e31i 0.638822i
\(406\) 4.28483e29i 0.0213610i
\(407\) 1.26006e31 0.609900
\(408\) 2.66093e29i 0.0125058i
\(409\) 1.80953e31 0.825823 0.412911 0.910771i \(-0.364512\pi\)
0.412911 + 0.910771i \(0.364512\pi\)
\(410\) 4.06179e30i 0.180016i
\(411\) 9.12052e29i 0.0392570i
\(412\) 1.73111e31i 0.723699i
\(413\) 1.19471e31i 0.485133i
\(414\) 1.69329e30 + 6.75976e30i 0.0667925 + 0.266641i
\(415\) −1.44677e31 −0.554399
\(416\) −2.00592e31 −0.746783
\(417\) −6.81592e30 −0.246543
\(418\) 2.10905e30 0.0741263
\(419\) 4.14884e31i 1.41696i −0.705730 0.708481i \(-0.749381\pi\)
0.705730 0.708481i \(-0.250619\pi\)
\(420\) 2.96121e30 0.0982829
\(421\) 2.29365e31i 0.739846i −0.929062 0.369923i \(-0.879384\pi\)
0.929062 0.369923i \(-0.120616\pi\)
\(422\) −5.26274e30 −0.164992
\(423\) 5.49411e31 1.67422
\(424\) 3.41030e31i 1.01019i
\(425\) 9.79960e29i 0.0282190i
\(426\) 2.62516e30 0.0734920
\(427\) −3.05079e31 −0.830383
\(428\) 5.02960e31i 1.33109i
\(429\) 4.01456e30i 0.103312i
\(430\) −1.47826e31 −0.369938
\(431\) 4.50665e30i 0.109680i 0.998495 + 0.0548399i \(0.0174649\pi\)
−0.998495 + 0.0548399i \(0.982535\pi\)
\(432\) −1.62941e31 −0.385678
\(433\) 8.56845e30i 0.197264i −0.995124 0.0986319i \(-0.968553\pi\)
0.995124 0.0986319i \(-0.0314466\pi\)
\(434\) 1.71318e29i 0.00383642i
\(435\) 1.45663e30i 0.0317307i
\(436\) 3.01489e31i 0.638902i
\(437\) −2.90559e31 + 7.27837e30i −0.599041 + 0.150057i
\(438\) −5.69150e30 −0.114166
\(439\) 6.42516e31 1.25403 0.627017 0.779005i \(-0.284275\pi\)
0.627017 + 0.779005i \(0.284275\pi\)
\(440\) 9.79152e30 0.185959
\(441\) −3.79104e31 −0.700641
\(442\) 1.28356e30i 0.0230859i
\(443\) −2.82886e31 −0.495183 −0.247592 0.968864i \(-0.579639\pi\)
−0.247592 + 0.968864i \(0.579639\pi\)
\(444\) 2.16646e31i 0.369110i
\(445\) −3.76209e31 −0.623891
\(446\) 1.81419e31 0.292863
\(447\) 2.38202e31i 0.374330i
\(448\) 1.65307e31i 0.252904i
\(449\) 4.88889e31 0.728206 0.364103 0.931359i \(-0.381376\pi\)
0.364103 + 0.931359i \(0.381376\pi\)
\(450\) 6.51268e30 0.0944516
\(451\) 2.15147e31i 0.303820i
\(452\) 1.09154e32i 1.50099i
\(453\) 1.77994e31 0.238356
\(454\) 6.41598e30i 0.0836744i
\(455\) −2.99427e31 −0.380324
\(456\) 7.60128e30i 0.0940391i
\(457\) 1.52304e32i 1.83534i 0.397346 + 0.917669i \(0.369931\pi\)
−0.397346 + 0.917669i \(0.630069\pi\)
\(458\) 1.75134e31i 0.205582i
\(459\) 3.72110e30i 0.0425519i
\(460\) −6.43513e31 + 1.61197e31i −0.716908 + 0.179582i
\(461\) 1.91122e31 0.207443 0.103722 0.994606i \(-0.466925\pi\)
0.103722 + 0.994606i \(0.466925\pi\)
\(462\) −1.50940e30 −0.0159625
\(463\) −7.01519e31 −0.722883 −0.361441 0.932395i \(-0.617715\pi\)
−0.361441 + 0.932395i \(0.617715\pi\)
\(464\) 1.08019e31 0.108464
\(465\) 5.82396e29i 0.00569880i
\(466\) −6.05723e30 −0.0577621
\(467\) 8.79547e31i 0.817441i 0.912660 + 0.408721i \(0.134025\pi\)
−0.912660 + 0.408721i \(0.865975\pi\)
\(468\) 8.86439e31 0.802968
\(469\) −2.11347e31 −0.186604
\(470\) 5.03315e31i 0.433177i
\(471\) 3.50188e31i 0.293799i
\(472\) 6.79206e31 0.555517
\(473\) −7.83009e31 −0.624357
\(474\) 1.02210e31i 0.0794608i
\(475\) 2.79938e31i 0.212197i
\(476\) 5.01491e30 0.0370664
\(477\) 2.29516e32i 1.65422i
\(478\) 1.07287e31 0.0754072
\(479\) 1.87722e32i 1.28674i −0.765557 0.643368i \(-0.777536\pi\)
0.765557 0.643368i \(-0.222464\pi\)
\(480\) 2.56387e31i 0.171396i
\(481\) 2.19065e32i 1.42834i
\(482\) 1.35894e31i 0.0864245i
\(483\) 2.07946e31 5.20895e30i 0.128998 0.0323135i
\(484\) −1.26003e32 −0.762495
\(485\) −1.48974e32 −0.879445
\(486\) −3.75582e31 −0.216307
\(487\) 3.29697e32 1.85254 0.926270 0.376861i \(-0.122997\pi\)
0.926270 + 0.376861i \(0.122997\pi\)
\(488\) 1.73441e32i 0.950856i
\(489\) −6.54916e31 −0.350331
\(490\) 3.47298e31i 0.181280i
\(491\) 2.26325e32 1.15280 0.576401 0.817167i \(-0.304456\pi\)
0.576401 + 0.817167i \(0.304456\pi\)
\(492\) −3.69909e31 −0.183871
\(493\) 2.46686e30i 0.0119669i
\(494\) 3.66664e31i 0.173598i
\(495\) −6.58978e31 −0.304515
\(496\) 4.31887e30 0.0194801
\(497\) 1.03711e32i 0.456613i
\(498\) 1.26792e31i 0.0544930i
\(499\) 1.09590e32 0.459796 0.229898 0.973215i \(-0.426161\pi\)
0.229898 + 0.973215i \(0.426161\pi\)
\(500\) 2.42433e32i 0.993006i
\(501\) 3.07202e31 0.122849
\(502\) 2.29584e31i 0.0896388i
\(503\) 1.39551e32i 0.532008i −0.963972 0.266004i \(-0.914297\pi\)
0.963972 0.266004i \(-0.0857034\pi\)
\(504\) 6.98640e31i 0.260068i
\(505\) 1.52303e32i 0.553621i
\(506\) 3.28013e31 8.21659e30i 0.116435 0.0291666i
\(507\) −7.73907e30 −0.0268283
\(508\) 7.47451e31 0.253057
\(509\) 5.29450e31 0.175070 0.0875350 0.996161i \(-0.472101\pi\)
0.0875350 + 0.996161i \(0.472101\pi\)
\(510\) 1.64058e30 0.00529852
\(511\) 2.24852e32i 0.709325i
\(512\) −3.26985e32 −1.00760
\(513\) 1.06298e32i 0.319976i
\(514\) −3.12672e31 −0.0919458
\(515\) 2.23732e32 0.642749
\(516\) 1.34625e32i 0.377859i
\(517\) 2.66598e32i 0.731090i
\(518\) 8.23642e31 0.220689
\(519\) 4.27280e31 0.111868
\(520\) 1.70228e32i 0.435503i
\(521\) 7.04983e32i 1.76249i 0.472662 + 0.881244i \(0.343293\pi\)
−0.472662 + 0.881244i \(0.656707\pi\)
\(522\) 1.63944e31 0.0400543
\(523\) 7.69688e32i 1.83778i −0.394509 0.918892i \(-0.629085\pi\)
0.394509 0.918892i \(-0.370915\pi\)
\(524\) 2.17237e32 0.506941
\(525\) 2.00345e31i 0.0456948i
\(526\) 5.15779e31i 0.114983i
\(527\) 9.86307e29i 0.00214924i
\(528\) 3.80515e31i 0.0810522i
\(529\) −4.23540e32 + 2.26395e32i −0.881914 + 0.471411i
\(530\) −2.10260e32 −0.428002
\(531\) −4.57112e32 −0.909679
\(532\) −1.43257e32 −0.278726
\(533\) 3.74038e32 0.711523
\(534\) 3.29703e31i 0.0613236i
\(535\) −6.50035e32 −1.18220
\(536\) 1.20153e32i 0.213677i
\(537\) 1.13477e32 0.197340
\(538\) 3.22246e32 0.548025
\(539\) 1.83958e32i 0.305952i
\(540\) 2.35423e32i 0.382933i
\(541\) 9.42773e32 1.49982 0.749911 0.661538i \(-0.230096\pi\)
0.749911 + 0.661538i \(0.230096\pi\)
\(542\) 1.58358e32 0.246404
\(543\) 3.07588e31i 0.0468136i
\(544\) 4.34200e31i 0.0646403i
\(545\) −3.89650e32 −0.567436
\(546\) 2.62412e31i 0.0373829i
\(547\) 6.54411e32 0.912017 0.456008 0.889976i \(-0.349279\pi\)
0.456008 + 0.889976i \(0.349279\pi\)
\(548\) 9.77215e31i 0.133237i
\(549\) 1.16728e33i 1.55706i
\(550\) 3.16024e31i 0.0412446i
\(551\) 7.04689e31i 0.0899867i
\(552\) 2.96135e31 + 1.18220e32i 0.0370017 + 0.147714i
\(553\) −4.03797e32 −0.493698
\(554\) −2.82409e32 −0.337879
\(555\) −2.79998e32 −0.327822
\(556\) 7.30290e32 0.836754
\(557\) 3.54272e32i 0.397259i −0.980075 0.198630i \(-0.936351\pi\)
0.980075 0.198630i \(-0.0636491\pi\)
\(558\) 6.55486e30 0.00719371
\(559\) 1.36128e33i 1.46220i
\(560\) −2.83808e32 −0.298379
\(561\) 8.68988e30 0.00894251
\(562\) 2.34193e32i 0.235905i
\(563\) 5.90081e32i 0.581850i 0.956746 + 0.290925i \(0.0939630\pi\)
−0.956746 + 0.290925i \(0.906037\pi\)
\(564\) 4.58371e32 0.442453
\(565\) −1.41072e33 −1.33309
\(566\) 5.23150e32i 0.483982i
\(567\) 4.30729e32i 0.390128i
\(568\) −5.89610e32 −0.522860
\(569\) 2.05714e33i 1.78615i 0.449911 + 0.893073i \(0.351456\pi\)
−0.449911 + 0.893073i \(0.648544\pi\)
\(570\) −4.68652e31 −0.0398430
\(571\) 4.18816e32i 0.348650i −0.984688 0.174325i \(-0.944226\pi\)
0.984688 0.174325i \(-0.0557744\pi\)
\(572\) 4.30139e32i 0.350636i
\(573\) 4.77646e32i 0.381286i
\(574\) 1.40631e32i 0.109936i
\(575\) 1.09060e32 + 4.35377e32i 0.0834933 + 0.333313i
\(576\) 6.32490e32 0.474224
\(577\) −6.83508e32 −0.501919 −0.250960 0.967998i \(-0.580746\pi\)
−0.250960 + 0.967998i \(0.580746\pi\)
\(578\) −4.09169e32 −0.294285
\(579\) −4.46549e32 −0.314577
\(580\) 1.56070e32i 0.107692i
\(581\) −5.00914e32 −0.338571
\(582\) 1.30558e32i 0.0864425i
\(583\) −1.11371e33 −0.722355
\(584\) 1.27831e33 0.812236
\(585\) 1.14565e33i 0.713151i
\(586\) 3.93092e32i 0.239730i
\(587\) −2.47853e32 −0.148094 −0.0740469 0.997255i \(-0.523591\pi\)
−0.0740469 + 0.997255i \(0.523591\pi\)
\(588\) −3.16285e32 −0.185161
\(589\) 2.81751e31i 0.0161615i
\(590\) 4.18760e32i 0.235365i
\(591\) 6.10614e32 0.336292
\(592\) 2.07638e33i 1.12059i
\(593\) 2.91239e33 1.54026 0.770129 0.637889i \(-0.220192\pi\)
0.770129 + 0.637889i \(0.220192\pi\)
\(594\) 1.20000e32i 0.0621935i
\(595\) 6.48136e31i 0.0329202i
\(596\) 2.55221e33i 1.27046i
\(597\) 3.51611e32i 0.171542i
\(598\) −1.42847e32 5.70259e32i −0.0683058 0.272683i
\(599\) −8.62686e32 −0.404325 −0.202163 0.979352i \(-0.564797\pi\)
−0.202163 + 0.979352i \(0.564797\pi\)
\(600\) 1.13899e32 0.0523243
\(601\) 2.90463e33 1.30797 0.653985 0.756507i \(-0.273096\pi\)
0.653985 + 0.756507i \(0.273096\pi\)
\(602\) −5.11815e32 −0.225920
\(603\) 8.08643e32i 0.349904i
\(604\) −1.90711e33 −0.808970
\(605\) 1.62849e33i 0.677205i
\(606\) −1.33476e32 −0.0544166
\(607\) 3.74668e33 1.49755 0.748776 0.662823i \(-0.230642\pi\)
0.748776 + 0.662823i \(0.230642\pi\)
\(608\) 1.24035e33i 0.486072i
\(609\) 5.04329e31i 0.0193779i
\(610\) 1.06934e33 0.402864
\(611\) −4.63487e33 −1.71216
\(612\) 1.91878e32i 0.0695036i
\(613\) 8.91527e32i 0.316671i −0.987385 0.158336i \(-0.949387\pi\)
0.987385 0.158336i \(-0.0506128\pi\)
\(614\) 4.91069e32 0.171050
\(615\) 4.78077e32i 0.163304i
\(616\) 3.39011e32 0.113565
\(617\) 3.47885e33i 1.14291i 0.820632 + 0.571457i \(0.193622\pi\)
−0.820632 + 0.571457i \(0.806378\pi\)
\(618\) 1.96075e32i 0.0631771i
\(619\) 3.87781e33i 1.22546i 0.790293 + 0.612729i \(0.209928\pi\)
−0.790293 + 0.612729i \(0.790072\pi\)
\(620\) 6.24006e31i 0.0193414i
\(621\) −4.14122e32 1.65321e33i −0.125901 0.502608i
\(622\) −9.12167e31 −0.0272013
\(623\) −1.30254e33 −0.381010
\(624\) 6.61534e32 0.189818
\(625\) −1.91250e33 −0.538321
\(626\) 1.85525e32i 0.0512283i
\(627\) −2.48238e32 −0.0672445
\(628\) 3.75208e33i 0.997141i
\(629\) −4.74185e32 −0.123635
\(630\) −4.30742e32 −0.110187
\(631\) 6.60078e32i 0.165670i −0.996563 0.0828348i \(-0.973603\pi\)
0.996563 0.0828348i \(-0.0263974\pi\)
\(632\) 2.29563e33i 0.565324i
\(633\) 6.19429e32 0.149674
\(634\) −1.30637e33 −0.309739
\(635\) 9.66019e32i 0.224751i
\(636\) 1.91484e33i 0.437167i
\(637\) 3.19815e33 0.716517
\(638\) 7.95527e31i 0.0174907i
\(639\) 3.96813e33 0.856201
\(640\) 3.59083e33i 0.760388i
\(641\) 4.06809e33i 0.845463i −0.906255 0.422731i \(-0.861071\pi\)
0.906255 0.422731i \(-0.138929\pi\)
\(642\) 5.69679e32i 0.116201i
\(643\) 2.38172e33i 0.476825i −0.971164 0.238412i \(-0.923373\pi\)
0.971164 0.238412i \(-0.0766270\pi\)
\(644\) −2.22803e33 + 5.58111e32i −0.437815 + 0.109671i
\(645\) 1.73992e33 0.335593
\(646\) −7.93678e31 −0.0150264
\(647\) −5.26703e33 −0.978847 −0.489423 0.872046i \(-0.662793\pi\)
−0.489423 + 0.872046i \(0.662793\pi\)
\(648\) 2.44875e33 0.446729
\(649\) 2.21811e33i 0.397234i
\(650\) −5.49415e32 −0.0965917
\(651\) 2.01642e31i 0.00348025i
\(652\) 7.01707e33 1.18901
\(653\) 5.26239e33 0.875437 0.437719 0.899112i \(-0.355787\pi\)
0.437719 + 0.899112i \(0.355787\pi\)
\(654\) 3.41483e32i 0.0557745i
\(655\) 2.80761e33i 0.450236i
\(656\) 3.54527e33 0.558217
\(657\) −8.60314e33 −1.33006
\(658\) 1.74262e33i 0.264541i
\(659\) 7.02936e33i 1.04783i −0.851771 0.523915i \(-0.824471\pi\)
0.851771 0.523915i \(-0.175529\pi\)
\(660\) −5.49782e32 −0.0804754
\(661\) 6.72454e33i 0.966596i 0.875456 + 0.483298i \(0.160561\pi\)
−0.875456 + 0.483298i \(0.839439\pi\)
\(662\) 2.26209e33 0.319311
\(663\) 1.51076e32i 0.0209427i
\(664\) 2.84776e33i 0.387691i
\(665\) 1.85149e33i 0.247549i
\(666\) 3.15137e33i 0.413817i
\(667\) 2.74537e32 + 1.09598e33i 0.0354072 + 0.141349i
\(668\) −3.29151e33 −0.416944
\(669\) −2.13532e33 −0.265674
\(670\) 7.40798e32 0.0905320
\(671\) 5.66414e33 0.679929
\(672\) 8.87687e32i 0.104672i
\(673\) −9.11866e33 −1.05621 −0.528105 0.849179i \(-0.677097\pi\)
−0.528105 + 0.849179i \(0.677097\pi\)
\(674\) 8.28474e31i 0.00942671i
\(675\) −1.59278e33 −0.178038
\(676\) 8.29200e32 0.0910540
\(677\) 1.42511e33i 0.153739i −0.997041 0.0768697i \(-0.975507\pi\)
0.997041 0.0768697i \(-0.0244925\pi\)
\(678\) 1.23633e33i 0.131032i
\(679\) −5.15790e33 −0.537076
\(680\) −3.68474e32 −0.0376964
\(681\) 7.55166e32i 0.0759062i
\(682\) 3.18070e31i 0.00314131i
\(683\) 1.24170e34 1.20495 0.602473 0.798139i \(-0.294182\pi\)
0.602473 + 0.798139i \(0.294182\pi\)
\(684\) 5.48123e33i 0.522643i
\(685\) 1.26297e33 0.118333
\(686\) 2.79467e33i 0.257301i
\(687\) 2.06134e33i 0.186496i
\(688\) 1.29027e34i 1.14715i
\(689\) 1.93622e34i 1.69170i
\(690\) −7.28877e32 + 1.82580e32i −0.0625842 + 0.0156771i
\(691\) −2.27630e34 −1.92085 −0.960425 0.278539i \(-0.910150\pi\)
−0.960425 + 0.278539i \(0.910150\pi\)
\(692\) −4.57808e33 −0.379674
\(693\) −2.28157e33 −0.185967
\(694\) 4.06676e33 0.325788
\(695\) 9.43840e33i 0.743157i
\(696\) 2.86717e32 0.0221893
\(697\) 8.09639e32i 0.0615883i
\(698\) −5.49445e32 −0.0410827
\(699\) 7.12941e32 0.0523996
\(700\) 2.14659e33i 0.155086i
\(701\) 4.24110e33i 0.301205i 0.988594 + 0.150602i \(0.0481213\pi\)
−0.988594 + 0.150602i \(0.951879\pi\)
\(702\) 2.08623e33 0.145652
\(703\) 1.35457e34 0.929690
\(704\) 3.06912e33i 0.207082i
\(705\) 5.92406e33i 0.392962i
\(706\) −4.04411e33 −0.263734
\(707\) 5.27318e33i 0.338096i
\(708\) −3.81366e33 −0.240405
\(709\) 9.36367e33i 0.580352i 0.956973 + 0.290176i \(0.0937138\pi\)
−0.956973 + 0.290176i \(0.906286\pi\)
\(710\) 3.63521e33i 0.221528i
\(711\) 1.54498e34i 0.925739i
\(712\) 7.40513e33i 0.436287i
\(713\) 1.09766e32 + 4.38197e32i 0.00635909 + 0.0253861i
\(714\) 5.68015e31 0.00323580
\(715\) 5.55919e33 0.311415
\(716\) −1.21584e34 −0.669763
\(717\) −1.26278e33 −0.0684065
\(718\) 7.69655e33i 0.410018i
\(719\) 1.30145e34 0.681836 0.340918 0.940093i \(-0.389262\pi\)
0.340918 + 0.940093i \(0.389262\pi\)
\(720\) 1.08589e34i 0.559494i
\(721\) 7.74625e33 0.392526
\(722\) −3.67778e33 −0.183290
\(723\) 1.59949e33i 0.0784009i
\(724\) 3.29564e33i 0.158883i
\(725\) 1.05592e33 0.0500695
\(726\) −1.42718e33 −0.0665639
\(727\) 1.35053e34i 0.619571i −0.950806 0.309785i \(-0.899743\pi\)
0.950806 0.309785i \(-0.100257\pi\)
\(728\) 5.89379e33i 0.265961i
\(729\) −1.33429e34 −0.592271
\(730\) 7.88134e33i 0.344133i
\(731\) 2.94661e33 0.126565
\(732\) 9.73853e33i 0.411491i
\(733\) 1.64865e34i 0.685298i −0.939463 0.342649i \(-0.888676\pi\)
0.939463 0.342649i \(-0.111324\pi\)
\(734\) 1.15620e34i 0.472802i
\(735\) 4.08772e33i 0.164450i
\(736\) −4.83223e33 1.92907e34i −0.191255 0.763508i
\(737\) 3.92389e33 0.152794
\(738\) 5.38075e33 0.206142
\(739\) −2.05312e34 −0.773893 −0.386946 0.922102i \(-0.626470\pi\)
−0.386946 + 0.922102i \(0.626470\pi\)
\(740\) 3.00003e34 1.11261
\(741\) 4.31567e33i 0.157482i
\(742\) −7.27981e33 −0.261380
\(743\) 7.63497e33i 0.269738i −0.990863 0.134869i \(-0.956939\pi\)
0.990863 0.134869i \(-0.0430613\pi\)
\(744\) 1.14636e32 0.00398517
\(745\) 3.29852e34 1.12835
\(746\) 4.10571e33i 0.138205i
\(747\) 1.91657e34i 0.634858i
\(748\) −9.31074e32 −0.0303504
\(749\) −2.25061e34 −0.721968
\(750\) 2.74593e33i 0.0866869i
\(751\) 5.39179e34i 1.67515i −0.546322 0.837575i \(-0.683973\pi\)
0.546322 0.837575i \(-0.316027\pi\)
\(752\) −4.39310e34 −1.34325
\(753\) 2.70222e33i 0.0813169i
\(754\) −1.38304e33 −0.0409618
\(755\) 2.46478e34i 0.718481i
\(756\) 8.15102e33i 0.233857i
\(757\) 5.16966e34i 1.45986i −0.683522 0.729930i \(-0.739553\pi\)
0.683522 0.729930i \(-0.260447\pi\)
\(758\) 1.52136e34i 0.422865i
\(759\) −3.86074e33 + 9.67099e32i −0.105626 + 0.0264588i
\(760\) 1.05259e34 0.283464
\(761\) 2.57540e34 0.682699 0.341349 0.939937i \(-0.389116\pi\)
0.341349 + 0.939937i \(0.389116\pi\)
\(762\) 8.46602e32 0.0220912
\(763\) −1.34908e34 −0.346533
\(764\) 5.11773e34i 1.29407i
\(765\) 2.47986e33 0.0617291
\(766\) 1.79356e33i 0.0439513i
\(767\) 3.85623e34 0.930291
\(768\) 2.63769e33 0.0626453
\(769\) 7.15399e34i 1.67275i −0.548155 0.836377i \(-0.684670\pi\)
0.548155 0.836377i \(-0.315330\pi\)
\(770\) 2.09015e33i 0.0481159i
\(771\) 3.68018e33 0.0834097
\(772\) 4.78454e34 1.06766
\(773\) 6.86816e34i 1.50899i −0.656305 0.754495i \(-0.727882\pi\)
0.656305 0.754495i \(-0.272118\pi\)
\(774\) 1.95828e34i 0.423626i
\(775\) 4.22180e32 0.00899243
\(776\) 2.93233e34i 0.614996i
\(777\) −9.69433e33 −0.200201
\(778\) 8.90297e33i 0.181042i
\(779\) 2.31284e34i 0.463122i
\(780\) 9.55809e33i 0.188467i
\(781\) 1.92551e34i 0.373881i
\(782\) −1.23438e33 + 3.09206e32i −0.0236030 + 0.00591244i
\(783\) −4.00952e33 −0.0755007
\(784\) 3.03133e34 0.562135
\(785\) 4.84926e34 0.885604
\(786\) 2.46054e33 0.0442547
\(787\) 4.17202e34i 0.739008i −0.929229 0.369504i \(-0.879528\pi\)
0.929229 0.369504i \(-0.120472\pi\)
\(788\) −6.54240e34 −1.14136
\(789\) 6.07077e33i 0.104308i
\(790\) 1.41536e34 0.239520
\(791\) −4.88432e34 −0.814116
\(792\) 1.29710e34i 0.212947i
\(793\) 9.84724e34i 1.59234i
\(794\) −2.36863e34 −0.377269
\(795\) 2.47478e34 0.388267
\(796\) 3.76732e34i 0.582205i
\(797\) 7.04181e34i 1.07198i 0.844226 + 0.535988i \(0.180061\pi\)
−0.844226 + 0.535988i \(0.819939\pi\)
\(798\) −1.62261e33 −0.0243321
\(799\) 1.00326e34i 0.148201i
\(800\) −1.85856e34 −0.270455
\(801\) 4.98372e34i 0.714436i
\(802\) 7.69275e33i 0.108640i
\(803\) 4.17462e34i 0.580805i
\(804\) 6.74646e33i 0.0924706i
\(805\) −7.21313e33 2.87954e34i −0.0974032 0.388842i
\(806\) −5.52973e32 −0.00735671
\(807\) −3.79286e34 −0.497147
\(808\) 2.99787e34 0.387147
\(809\) −7.27114e34 −0.925167 −0.462583 0.886576i \(-0.653077\pi\)
−0.462583 + 0.886576i \(0.653077\pi\)
\(810\) 1.50976e34i 0.189272i
\(811\) 8.57949e34 1.05977 0.529885 0.848070i \(-0.322235\pi\)
0.529885 + 0.848070i \(0.322235\pi\)
\(812\) 5.40361e33i 0.0657676i
\(813\) −1.86389e34 −0.223528
\(814\) −1.52918e34 −0.180703
\(815\) 9.06899e34i 1.05601i
\(816\) 1.43195e33i 0.0164303i
\(817\) −8.41738e34 −0.951727
\(818\) −2.19601e34 −0.244678
\(819\) 3.96657e34i 0.435520i
\(820\) 5.12234e34i 0.554245i
\(821\) −4.58370e34 −0.488763 −0.244381 0.969679i \(-0.578585\pi\)
−0.244381 + 0.969679i \(0.578585\pi\)
\(822\) 1.10685e33i 0.0116312i
\(823\) 5.91700e34 0.612778 0.306389 0.951906i \(-0.400879\pi\)
0.306389 + 0.951906i \(0.400879\pi\)
\(824\) 4.40384e34i 0.449474i
\(825\) 3.71963e33i 0.0374155i
\(826\) 1.44987e34i 0.143737i
\(827\) 1.50059e34i 0.146621i −0.997309 0.0733104i \(-0.976644\pi\)
0.997309 0.0733104i \(-0.0233564\pi\)
\(828\) 2.13541e34 + 8.52475e34i 0.205645 + 0.820952i
\(829\) 1.23552e35 1.17272 0.586362 0.810049i \(-0.300560\pi\)
0.586362 + 0.810049i \(0.300560\pi\)
\(830\) 1.75577e34 0.164259
\(831\) 3.32398e34 0.306511
\(832\) −5.33573e34 −0.484969
\(833\) 6.92269e33i 0.0620205i
\(834\) 8.27165e33 0.0730465
\(835\) 4.25401e34i 0.370306i
\(836\) 2.65973e34 0.228225
\(837\) −1.60310e33 −0.0135599
\(838\) 5.03494e34i 0.419823i
\(839\) 8.55405e34i 0.703118i 0.936166 + 0.351559i \(0.114348\pi\)
−0.936166 + 0.351559i \(0.885652\pi\)
\(840\) −7.53314e33 −0.0610415
\(841\) −1.22527e35 −0.978767
\(842\) 2.78352e34i 0.219204i
\(843\) 2.75647e34i 0.214004i
\(844\) −6.63685e34 −0.507987
\(845\) 1.07167e34i 0.0808690i
\(846\) −6.66752e34 −0.496044
\(847\) 5.63830e34i 0.413568i
\(848\) 1.83522e35i 1.32720i
\(849\) 6.15752e34i 0.439049i
\(850\) 1.18926e33i 0.00836082i
\(851\) 2.10671e35 5.27722e34i 1.46033 0.365806i
\(852\) 3.31059e34 0.226272
\(853\) 1.94173e35 1.30858 0.654291 0.756243i \(-0.272967\pi\)
0.654291 + 0.756243i \(0.272967\pi\)
\(854\) 3.70237e34 0.246029
\(855\) −7.08404e34 −0.464182
\(856\) 1.27950e35i 0.826713i
\(857\) 5.31180e34 0.338432 0.169216 0.985579i \(-0.445876\pi\)
0.169216 + 0.985579i \(0.445876\pi\)
\(858\) 4.87198e33i 0.0306096i
\(859\) −1.11138e35 −0.688564 −0.344282 0.938866i \(-0.611878\pi\)
−0.344282 + 0.938866i \(0.611878\pi\)
\(860\) −1.86423e35 −1.13899
\(861\) 1.65524e34i 0.0997294i
\(862\) 5.46917e33i 0.0324963i
\(863\) −2.71590e35 −1.59142 −0.795708 0.605680i \(-0.792901\pi\)
−0.795708 + 0.605680i \(0.792901\pi\)
\(864\) 7.05730e34 0.407825
\(865\) 5.91680e34i 0.337204i
\(866\) 1.03985e34i 0.0584460i
\(867\) 4.81595e34 0.266964
\(868\) 2.16049e33i 0.0118118i
\(869\) 7.49693e34 0.404246
\(870\) 1.76774e33i 0.00940127i
\(871\) 6.82177e34i 0.357832i
\(872\) 7.66971e34i 0.396808i
\(873\) 1.97349e35i 1.00708i
\(874\) 3.52616e34 8.83286e33i 0.177486 0.0444595i
\(875\) −1.08482e35 −0.538595
\(876\) −7.17756e34 −0.351502
\(877\) −1.41519e35 −0.683628 −0.341814 0.939768i \(-0.611041\pi\)
−0.341814 + 0.939768i \(0.611041\pi\)
\(878\) −7.79743e34 −0.371550
\(879\) 4.62673e34i 0.217474i
\(880\) 5.26921e34 0.244317
\(881\) 3.71287e35i 1.69824i 0.528199 + 0.849120i \(0.322867\pi\)
−0.528199 + 0.849120i \(0.677133\pi\)
\(882\) 4.60072e34 0.207588
\(883\) −1.09213e35 −0.486123 −0.243062 0.970011i \(-0.578152\pi\)
−0.243062 + 0.970011i \(0.578152\pi\)
\(884\) 1.61869e34i 0.0710784i
\(885\) 4.92884e34i 0.213514i
\(886\) 3.43303e34 0.146715
\(887\) 4.00908e35 1.69029 0.845145 0.534537i \(-0.179514\pi\)
0.845145 + 0.534537i \(0.179514\pi\)
\(888\) 5.51135e34i 0.229246i
\(889\) 3.34464e34i 0.137255i
\(890\) 4.56558e34 0.184849
\(891\) 7.99696e34i 0.319442i
\(892\) 2.28788e35 0.901686
\(893\) 2.86594e35i 1.11442i
\(894\) 2.89076e34i 0.110908i
\(895\) 1.57138e35i 0.594846i
\(896\) 1.24325e35i 0.464368i
\(897\) 1.68133e34 + 6.71200e34i 0.0619644 + 0.247367i
\(898\) −5.93305e34 −0.215756
\(899\) 1.06275e33 0.00381344
\(900\) 8.21315e34 0.290804
\(901\) 4.19112e34 0.146431
\(902\) 2.61097e34i 0.0900169i
\(903\) 6.02411e34 0.204946
\(904\) 2.77680e35i 0.932230i
\(905\) 4.25935e34 0.141111
\(906\) −2.16009e34 −0.0706210
\(907\) 1.48093e35i 0.477801i −0.971044 0.238900i \(-0.923213\pi\)
0.971044 0.238900i \(-0.0767869\pi\)
\(908\) 8.09121e34i 0.257622i
\(909\) −2.01759e35 −0.633967
\(910\) 3.63378e34 0.112684
\(911\) 6.01697e35i 1.84144i 0.390225 + 0.920720i \(0.372397\pi\)
−0.390225 + 0.920720i \(0.627603\pi\)
\(912\) 4.09055e34i 0.123550i
\(913\) 9.30002e34 0.277226
\(914\) 1.84832e35i 0.543780i
\(915\) −1.25863e35 −0.365463
\(916\) 2.20862e35i 0.632958i
\(917\) 9.72074e34i 0.274959i
\(918\) 4.51584e33i 0.0126074i
\(919\) 4.70407e35i 1.29625i −0.761535 0.648124i \(-0.775554\pi\)
0.761535 0.648124i \(-0.224446\pi\)
\(920\) 1.63706e35 4.10076e34i 0.445256 0.111535i
\(921\) −5.77993e34 −0.155170
\(922\) −2.31941e34 −0.0614620
\(923\) −3.34755e35 −0.875601
\(924\) −1.90351e34 −0.0491463
\(925\) 2.02971e35i 0.517289i
\(926\) 8.51348e34 0.214178
\(927\) 2.96382e35i 0.736030i
\(928\) −4.67855e34 −0.114693
\(929\) 1.10644e35 0.267756 0.133878 0.990998i \(-0.457257\pi\)
0.133878 + 0.990998i \(0.457257\pi\)
\(930\) 7.06783e32i 0.00168846i
\(931\) 1.97756e35i 0.466372i
\(932\) −7.63879e34 −0.177842
\(933\) 1.07363e34 0.0246760
\(934\) 1.06740e35i 0.242194i
\(935\) 1.20334e34i 0.0269555i
\(936\) −2.25505e35 −0.498707
\(937\) 6.73987e35i 1.47155i −0.677224 0.735777i \(-0.736817\pi\)
0.677224 0.735777i \(-0.263183\pi\)
\(938\) 2.56486e34 0.0552878
\(939\) 2.18364e34i 0.0464724i
\(940\) 6.34732e35i 1.33369i
\(941\) 1.12839e35i 0.234090i −0.993127 0.117045i \(-0.962658\pi\)
0.993127 0.117045i \(-0.0373421\pi\)
\(942\) 4.24981e34i 0.0870479i
\(943\) 9.01049e34 + 3.59707e35i 0.182225 + 0.727459i
\(944\) 3.65508e35 0.729849
\(945\) 1.05345e35 0.207698
\(946\) 9.50242e34 0.184987
\(947\) −2.27923e35 −0.438116 −0.219058 0.975712i \(-0.570298\pi\)
−0.219058 + 0.975712i \(0.570298\pi\)
\(948\) 1.28897e35i 0.244649i
\(949\) 7.25768e35 1.36020
\(950\) 3.39727e34i 0.0628704i
\(951\) 1.53761e35 0.280983
\(952\) −1.27576e34 −0.0230211
\(953\) 8.30697e35i 1.48023i 0.672483 + 0.740113i \(0.265228\pi\)
−0.672483 + 0.740113i \(0.734772\pi\)
\(954\) 2.78536e35i 0.490118i
\(955\) −6.61424e35 −1.14932
\(956\) 1.35300e35 0.232168
\(957\) 9.36342e33i 0.0158669i
\(958\) 2.27815e35i 0.381239i
\(959\) 4.37277e34 0.0722659
\(960\) 6.81987e34i 0.111307i
\(961\) −6.19988e35 −0.999315
\(962\) 2.65852e35i 0.423194i
\(963\) 8.61115e35i 1.35377i
\(964\) 1.71377e35i 0.266089i
\(965\) 6.18362e35i 0.948234i
\(966\) −2.52358e34 + 6.32146e33i −0.0382201 + 0.00957397i
\(967\) 1.17440e35 0.175670 0.0878349 0.996135i \(-0.472005\pi\)
0.0878349 + 0.996135i \(0.472005\pi\)
\(968\) 3.20544e35 0.473569
\(969\) 9.34165e33 0.0136313
\(970\) 1.80791e35 0.260565
\(971\) 2.46321e35i 0.350647i −0.984511 0.175324i \(-0.943903\pi\)
0.984511 0.175324i \(-0.0560972\pi\)
\(972\) −4.73648e35 −0.665979
\(973\) 3.26785e35i 0.453845i
\(974\) −4.00113e35 −0.548877
\(975\) 6.46666e34 0.0876243
\(976\) 9.33358e35i 1.24925i
\(977\) 1.96607e35i 0.259935i 0.991518 + 0.129967i \(0.0414873\pi\)
−0.991518 + 0.129967i \(0.958513\pi\)
\(978\) 7.94791e34 0.103797
\(979\) 2.41832e35 0.311976
\(980\) 4.37978e35i 0.558135i
\(981\) 5.16178e35i 0.649788i
\(982\) −2.74663e35 −0.341556
\(983\) 1.06276e36i 1.30554i 0.757555 + 0.652772i \(0.226394\pi\)
−0.757555 + 0.652772i \(0.773606\pi\)
\(984\) 9.41025e34 0.114198
\(985\) 8.45552e35i 1.01369i
\(986\) 2.99372e33i 0.00354559i
\(987\) 2.05108e35i 0.239981i
\(988\) 4.62401e35i 0.534485i
\(989\) −1.30912e36 + 3.27930e35i −1.49494 + 0.374477i
\(990\) 7.99721e34 0.0902228
\(991\) 5.53394e35 0.616808 0.308404 0.951255i \(-0.400205\pi\)
0.308404 + 0.951255i \(0.400205\pi\)
\(992\) −1.87059e34 −0.0205987
\(993\) −2.66250e35 −0.289667
\(994\) 1.25861e35i 0.135287i
\(995\) −4.86896e35 −0.517081
\(996\) 1.59898e35i 0.167777i
\(997\) 1.42803e36 1.48046 0.740230 0.672354i \(-0.234717\pi\)
0.740230 + 0.672354i \(0.234717\pi\)
\(998\) −1.32996e35 −0.136230
\(999\) 7.70720e35i 0.780029i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 23.25.b.c.22.19 44
23.22 odd 2 inner 23.25.b.c.22.20 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.25.b.c.22.19 44 1.1 even 1 trivial
23.25.b.c.22.20 yes 44 23.22 odd 2 inner