L(s) = 1 | − 1.21e3·2-s + 1.42e5·3-s − 1.53e7·4-s − 1.97e8i·5-s − 1.73e8·6-s − 6.84e9i·7-s + 3.89e10·8-s − 2.62e11·9-s + 2.40e11i·10-s + 1.27e12i·11-s − 2.18e12·12-s + 2.21e13·13-s + 8.31e12i·14-s − 2.82e13i·15-s + 2.09e14·16-s − 4.78e13i·17-s + ⋯ |
L(s) = 1 | − 0.296·2-s + 0.268·3-s − 0.912·4-s − 0.810i·5-s − 0.0796·6-s − 0.494i·7-s + 0.566·8-s − 0.927·9-s + 0.240i·10-s + 0.405i·11-s − 0.245·12-s + 0.948·13-s + 0.146i·14-s − 0.217i·15-s + 0.744·16-s − 0.0821i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(25-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+12) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{25}{2})\) |
\(\approx\) |
\(1.259269240\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.259269240\) |
\(L(13)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 23 | \( 1 + (-5.32e15 - 2.12e16i)T \) |
good | 2 | \( 1 + 1.21e3T + 1.67e7T^{2} \) |
| 3 | \( 1 - 1.42e5T + 2.82e11T^{2} \) |
| 5 | \( 1 + 1.97e8iT - 5.96e16T^{2} \) |
| 7 | \( 1 + 6.84e9iT - 1.91e20T^{2} \) |
| 11 | \( 1 - 1.27e12iT - 9.84e24T^{2} \) |
| 13 | \( 1 - 2.21e13T + 5.42e26T^{2} \) |
| 17 | \( 1 + 4.78e13iT - 3.39e29T^{2} \) |
| 19 | \( 1 - 1.36e15iT - 4.89e30T^{2} \) |
| 29 | \( 1 - 5.15e16T + 1.25e35T^{2} \) |
| 31 | \( 1 - 2.06e16T + 6.20e35T^{2} \) |
| 37 | \( 1 + 9.91e18iT - 4.33e37T^{2} \) |
| 41 | \( 1 - 1.69e19T + 5.09e38T^{2} \) |
| 43 | \( 1 - 6.15e19iT - 1.59e39T^{2} \) |
| 47 | \( 1 + 2.09e20T + 1.35e40T^{2} \) |
| 53 | \( 1 - 8.75e20iT - 2.41e41T^{2} \) |
| 59 | \( 1 - 1.74e21T + 3.16e42T^{2} \) |
| 61 | \( 1 + 4.45e21iT - 7.04e42T^{2} \) |
| 67 | \( 1 + 3.08e21iT - 6.69e43T^{2} \) |
| 71 | \( 1 + 1.51e22T + 2.69e44T^{2} \) |
| 73 | \( 1 - 3.28e22T + 5.24e44T^{2} \) |
| 79 | \( 1 + 5.89e22iT - 3.49e45T^{2} \) |
| 83 | \( 1 + 7.31e22iT - 1.14e46T^{2} \) |
| 89 | \( 1 + 1.90e23iT - 6.10e46T^{2} \) |
| 97 | \( 1 + 7.53e23iT - 4.81e47T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.63021973241389318917362090020, −11.03717996290447542463532772888, −9.573006275621762551727600420757, −8.702204182663090679814559972776, −7.74205947950674599734489907515, −5.77933005044937422869813160694, −4.56908274411024733657963791461, −3.41962685125053666150945267930, −1.48796953742934968735615801080, −0.46581585683357340977713310996,
0.804241287490807359313994154611, 2.56768866950692731950051990161, 3.63685725700962329680195220107, 5.23082477268361841302868624715, 6.53819221995981889731381354078, 8.282903332405813919467326639785, 8.912968667032176625457210071565, 10.37204169309626450851533818502, 11.49003819104148276750782860830, 13.15568029278924862689390187743