Properties

Label 23.13.b
Level $23$
Weight $13$
Character orbit 23.b
Rep. character $\chi_{23}(22,\cdot)$
Character field $\Q$
Dimension $23$
Newform subspaces $3$
Sturm bound $26$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(26\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{13}(23, [\chi])\).

Total New Old
Modular forms 25 25 0
Cusp forms 23 23 0
Eisenstein series 2 2 0

Trace form

\( 23 q + 88 q^{2} + 318 q^{3} + 48360 q^{4} + 45651 q^{6} + 665411 q^{8} + 3565749 q^{9} + O(q^{10}) \) \( 23 q + 88 q^{2} + 318 q^{3} + 48360 q^{4} + 45651 q^{6} + 665411 q^{8} + 3565749 q^{9} + 2474859 q^{12} + 8049118 q^{13} + 132075280 q^{16} + 159082899 q^{18} + 76917959 q^{23} - 364991808 q^{24} - 1091895337 q^{25} - 764362597 q^{26} - 1698209844 q^{27} - 417897362 q^{29} - 1574125298 q^{31} + 7111022304 q^{32} + 4723363152 q^{35} + 13003973139 q^{36} - 7972710324 q^{39} - 132511250 q^{41} + 62599086544 q^{46} - 45052376402 q^{47} - 27147783645 q^{48} - 24010321657 q^{49} - 57446928200 q^{50} + 59410714059 q^{52} - 131249166093 q^{54} - 12572534832 q^{55} - 49404502069 q^{58} - 169959852866 q^{59} + 266541022211 q^{62} + 492270216707 q^{64} + 7914588558 q^{69} + 590935322064 q^{70} - 40523102210 q^{71} + 725416146243 q^{72} - 449748966242 q^{73} + 2570431278 q^{75} - 345974135760 q^{77} - 1383271429293 q^{78} - 1847691172701 q^{81} - 1172318884789 q^{82} + 1051198266576 q^{85} + 313947423036 q^{87} + 3755301759672 q^{92} + 1120227951516 q^{93} + 22074265235 q^{94} + 3777482201184 q^{95} - 4724527700397 q^{96} + 3590387133208 q^{98} + O(q^{100}) \)

Decomposition of \(S_{13}^{\mathrm{new}}(23, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
23.13.b.a 23.b 23.b $1$ $21.022$ \(\Q\) \(\Q(\sqrt{-23}) \) 23.13.b.a \(-79\) \(-14\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-79q^{2}-14q^{3}+2145q^{4}+1106q^{6}+\cdots\)
23.13.b.b 23.b 23.b $2$ $21.022$ \(\Q(\sqrt{69}) \) \(\Q(\sqrt{-23}) \) 23.13.b.b \(79\) \(14\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(29+21\beta )q^{2}+(159-304\beta )q^{3}+\cdots\)
23.13.b.c 23.b 23.b $20$ $21.022$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 23.13.b.c \(88\) \(318\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(4+\beta _{1})q^{2}+(15+2\beta _{1}-\beta _{3})q^{3}+\cdots\)