Properties

Label 23.13.b
Level 2323
Weight 1313
Character orbit 23.b
Rep. character χ23(22,)\chi_{23}(22,\cdot)
Character field Q\Q
Dimension 2323
Newform subspaces 33
Sturm bound 2626
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 23 23
Weight: k k == 13 13
Character orbit: [χ][\chi] == 23.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 23 23
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 2626
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M13(23,[χ])M_{13}(23, [\chi]).

Total New Old
Modular forms 25 25 0
Cusp forms 23 23 0
Eisenstein series 2 2 0

Trace form

23q+88q2+318q3+48360q4+45651q6+665411q8+3565749q9+2474859q12+8049118q13+132075280q16+159082899q18+76917959q23364991808q241091895337q25++3590387133208q98+O(q100) 23 q + 88 q^{2} + 318 q^{3} + 48360 q^{4} + 45651 q^{6} + 665411 q^{8} + 3565749 q^{9} + 2474859 q^{12} + 8049118 q^{13} + 132075280 q^{16} + 159082899 q^{18} + 76917959 q^{23} - 364991808 q^{24} - 1091895337 q^{25}+ \cdots + 3590387133208 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S13new(23,[χ])S_{13}^{\mathrm{new}}(23, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
23.13.b.a 23.b 23.b 11 21.02221.022 Q\Q Q(23)\Q(\sqrt{-23}) 23.13.b.a 79-79 14-14 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q79q214q3+2145q4+1106q6+q-79q^{2}-14q^{3}+2145q^{4}+1106q^{6}+\cdots
23.13.b.b 23.b 23.b 22 21.02221.022 Q(69)\Q(\sqrt{69}) Q(23)\Q(\sqrt{-23}) 23.13.b.b 7979 1414 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+(29+21β)q2+(159304β)q3+q+(29+21\beta )q^{2}+(159-304\beta )q^{3}+\cdots
23.13.b.c 23.b 23.b 2020 21.02221.022 Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots) None 23.13.b.c 8888 318318 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(4+β1)q2+(15+2β1β3)q3+q+(4+\beta _{1})q^{2}+(15+2\beta _{1}-\beta _{3})q^{3}+\cdots