Properties

Label 23.13
Level 23
Weight 13
Dimension 253
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 572
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 23 23
Weight: k k = 13 13
Nonzero newspaces: 2 2
Newform subspaces: 4 4
Sturm bound: 572572
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M13(Γ1(23))M_{13}(\Gamma_1(23)).

Total New Old
Modular forms 275 275 0
Cusp forms 253 253 0
Eisenstein series 22 22 0

Trace form

253q11q211q311q411q511q611q711q811q911q1011q1111q1211q1311q1462475963q15+95293429q1680926571q17+7415031217451q99+O(q100) 253 q - 11 q^{2} - 11 q^{3} - 11 q^{4} - 11 q^{5} - 11 q^{6} - 11 q^{7} - 11 q^{8} - 11 q^{9} - 11 q^{10} - 11 q^{11} - 11 q^{12} - 11 q^{13} - 11 q^{14} - 62475963 q^{15} + 95293429 q^{16} - 80926571 q^{17}+ \cdots - 7415031217451 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S13new(Γ1(23))S_{13}^{\mathrm{new}}(\Gamma_1(23))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
23.13.b χ23(22,)\chi_{23}(22, \cdot) 23.13.b.a 1 1
23.13.b.b 2
23.13.b.c 20
23.13.d χ23(5,)\chi_{23}(5, \cdot) 23.13.d.a 230 10