Properties

Label 23.13
Level 23
Weight 13
Dimension 253
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 572
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 23 \)
Weight: \( k \) = \( 13 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(572\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{13}(\Gamma_1(23))\).

Total New Old
Modular forms 275 275 0
Cusp forms 253 253 0
Eisenstein series 22 22 0

Trace form

\( 253 q - 11 q^{2} - 11 q^{3} - 11 q^{4} - 11 q^{5} - 11 q^{6} - 11 q^{7} - 11 q^{8} - 11 q^{9} - 11 q^{10} - 11 q^{11} - 11 q^{12} - 11 q^{13} - 11 q^{14} - 62475963 q^{15} + 95293429 q^{16} - 80926571 q^{17}+ \cdots - 7415031217451 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{13}^{\mathrm{new}}(\Gamma_1(23))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
23.13.b \(\chi_{23}(22, \cdot)\) 23.13.b.a 1 1
23.13.b.b 2
23.13.b.c 20
23.13.d \(\chi_{23}(5, \cdot)\) 23.13.d.a 230 10