Properties

Label 2277.2.a.m.1.4
Level $2277$
Weight $2$
Character 2277.1
Self dual yes
Analytic conductor $18.182$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,5,-3,0,-1,-3,0,-6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.8639957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 10x^{3} + 6x^{2} - 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.901423\) of defining polynomial
Character \(\chi\) \(=\) 2277.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0985770 q^{2} -1.99028 q^{4} -1.39335 q^{5} -2.57601 q^{7} +0.393350 q^{8} +0.137352 q^{10} -1.00000 q^{11} +4.27358 q^{13} +0.253935 q^{14} +3.94179 q^{16} +7.01179 q^{17} -1.72242 q^{19} +2.77316 q^{20} +0.0985770 q^{22} +1.00000 q^{23} -3.05858 q^{25} -0.421276 q^{26} +5.12698 q^{28} +8.02757 q^{29} -6.10007 q^{31} -1.17527 q^{32} -0.691201 q^{34} +3.58928 q^{35} -6.30964 q^{37} +0.169791 q^{38} -0.548074 q^{40} -4.29179 q^{41} +10.3776 q^{43} +1.99028 q^{44} -0.0985770 q^{46} -4.35702 q^{47} -0.364192 q^{49} +0.301505 q^{50} -8.50563 q^{52} +1.74607 q^{53} +1.39335 q^{55} -1.01327 q^{56} -0.791334 q^{58} -6.74400 q^{59} -1.19907 q^{61} +0.601326 q^{62} -7.76773 q^{64} -5.95459 q^{65} -4.78988 q^{67} -13.9554 q^{68} -0.353820 q^{70} -8.69264 q^{71} -5.16193 q^{73} +0.621985 q^{74} +3.42811 q^{76} +2.57601 q^{77} -7.94736 q^{79} -5.49229 q^{80} +0.423071 q^{82} -1.58243 q^{83} -9.76987 q^{85} -1.02299 q^{86} -0.393350 q^{88} -5.85263 q^{89} -11.0088 q^{91} -1.99028 q^{92} +0.429502 q^{94} +2.39994 q^{95} +12.8485 q^{97} +0.0359010 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 5 q^{4} - 3 q^{5} - q^{7} - 3 q^{8} - 6 q^{10} - 6 q^{11} - 3 q^{13} + 8 q^{14} - q^{16} - 5 q^{17} + q^{19} + 7 q^{20} + 3 q^{22} + 6 q^{23} + 3 q^{25} - 15 q^{26} - 6 q^{29} - 8 q^{31}+ \cdots - 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0985770 −0.0697044 −0.0348522 0.999392i \(-0.511096\pi\)
−0.0348522 + 0.999392i \(0.511096\pi\)
\(3\) 0 0
\(4\) −1.99028 −0.995141
\(5\) −1.39335 −0.623125 −0.311563 0.950226i \(-0.600852\pi\)
−0.311563 + 0.950226i \(0.600852\pi\)
\(6\) 0 0
\(7\) −2.57601 −0.973639 −0.486819 0.873503i \(-0.661843\pi\)
−0.486819 + 0.873503i \(0.661843\pi\)
\(8\) 0.393350 0.139070
\(9\) 0 0
\(10\) 0.137352 0.0434346
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.27358 1.18528 0.592639 0.805468i \(-0.298086\pi\)
0.592639 + 0.805468i \(0.298086\pi\)
\(14\) 0.253935 0.0678669
\(15\) 0 0
\(16\) 3.94179 0.985447
\(17\) 7.01179 1.70061 0.850304 0.526292i \(-0.176418\pi\)
0.850304 + 0.526292i \(0.176418\pi\)
\(18\) 0 0
\(19\) −1.72242 −0.395151 −0.197575 0.980288i \(-0.563307\pi\)
−0.197575 + 0.980288i \(0.563307\pi\)
\(20\) 2.77316 0.620097
\(21\) 0 0
\(22\) 0.0985770 0.0210167
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) −3.05858 −0.611715
\(26\) −0.421276 −0.0826191
\(27\) 0 0
\(28\) 5.12698 0.968908
\(29\) 8.02757 1.49068 0.745341 0.666683i \(-0.232287\pi\)
0.745341 + 0.666683i \(0.232287\pi\)
\(30\) 0 0
\(31\) −6.10007 −1.09560 −0.547802 0.836608i \(-0.684535\pi\)
−0.547802 + 0.836608i \(0.684535\pi\)
\(32\) −1.17527 −0.207760
\(33\) 0 0
\(34\) −0.691201 −0.118540
\(35\) 3.58928 0.606699
\(36\) 0 0
\(37\) −6.30964 −1.03730 −0.518649 0.854987i \(-0.673565\pi\)
−0.518649 + 0.854987i \(0.673565\pi\)
\(38\) 0.169791 0.0275437
\(39\) 0 0
\(40\) −0.548074 −0.0866581
\(41\) −4.29179 −0.670265 −0.335132 0.942171i \(-0.608781\pi\)
−0.335132 + 0.942171i \(0.608781\pi\)
\(42\) 0 0
\(43\) 10.3776 1.58257 0.791287 0.611445i \(-0.209412\pi\)
0.791287 + 0.611445i \(0.209412\pi\)
\(44\) 1.99028 0.300046
\(45\) 0 0
\(46\) −0.0985770 −0.0145344
\(47\) −4.35702 −0.635537 −0.317769 0.948168i \(-0.602934\pi\)
−0.317769 + 0.948168i \(0.602934\pi\)
\(48\) 0 0
\(49\) −0.364192 −0.0520274
\(50\) 0.301505 0.0426393
\(51\) 0 0
\(52\) −8.50563 −1.17952
\(53\) 1.74607 0.239840 0.119920 0.992784i \(-0.461736\pi\)
0.119920 + 0.992784i \(0.461736\pi\)
\(54\) 0 0
\(55\) 1.39335 0.187879
\(56\) −1.01327 −0.135404
\(57\) 0 0
\(58\) −0.791334 −0.103907
\(59\) −6.74400 −0.877994 −0.438997 0.898488i \(-0.644666\pi\)
−0.438997 + 0.898488i \(0.644666\pi\)
\(60\) 0 0
\(61\) −1.19907 −0.153525 −0.0767626 0.997049i \(-0.524458\pi\)
−0.0767626 + 0.997049i \(0.524458\pi\)
\(62\) 0.601326 0.0763685
\(63\) 0 0
\(64\) −7.76773 −0.970966
\(65\) −5.95459 −0.738576
\(66\) 0 0
\(67\) −4.78988 −0.585177 −0.292589 0.956238i \(-0.594517\pi\)
−0.292589 + 0.956238i \(0.594517\pi\)
\(68\) −13.9554 −1.69235
\(69\) 0 0
\(70\) −0.353820 −0.0422896
\(71\) −8.69264 −1.03163 −0.515813 0.856701i \(-0.672510\pi\)
−0.515813 + 0.856701i \(0.672510\pi\)
\(72\) 0 0
\(73\) −5.16193 −0.604159 −0.302079 0.953283i \(-0.597681\pi\)
−0.302079 + 0.953283i \(0.597681\pi\)
\(74\) 0.621985 0.0723043
\(75\) 0 0
\(76\) 3.42811 0.393231
\(77\) 2.57601 0.293563
\(78\) 0 0
\(79\) −7.94736 −0.894148 −0.447074 0.894497i \(-0.647534\pi\)
−0.447074 + 0.894497i \(0.647534\pi\)
\(80\) −5.49229 −0.614057
\(81\) 0 0
\(82\) 0.423071 0.0467204
\(83\) −1.58243 −0.173694 −0.0868471 0.996222i \(-0.527679\pi\)
−0.0868471 + 0.996222i \(0.527679\pi\)
\(84\) 0 0
\(85\) −9.76987 −1.05969
\(86\) −1.02299 −0.110312
\(87\) 0 0
\(88\) −0.393350 −0.0419312
\(89\) −5.85263 −0.620377 −0.310189 0.950675i \(-0.600392\pi\)
−0.310189 + 0.950675i \(0.600392\pi\)
\(90\) 0 0
\(91\) −11.0088 −1.15403
\(92\) −1.99028 −0.207501
\(93\) 0 0
\(94\) 0.429502 0.0442998
\(95\) 2.39994 0.246228
\(96\) 0 0
\(97\) 12.8485 1.30456 0.652282 0.757977i \(-0.273812\pi\)
0.652282 + 0.757977i \(0.273812\pi\)
\(98\) 0.0359010 0.00362654
\(99\) 0 0
\(100\) 6.08743 0.608743
\(101\) 1.05074 0.104552 0.0522762 0.998633i \(-0.483352\pi\)
0.0522762 + 0.998633i \(0.483352\pi\)
\(102\) 0 0
\(103\) −7.29909 −0.719200 −0.359600 0.933106i \(-0.617087\pi\)
−0.359600 + 0.933106i \(0.617087\pi\)
\(104\) 1.68101 0.164837
\(105\) 0 0
\(106\) −0.172122 −0.0167179
\(107\) −10.4902 −1.01413 −0.507064 0.861908i \(-0.669269\pi\)
−0.507064 + 0.861908i \(0.669269\pi\)
\(108\) 0 0
\(109\) 10.7094 1.02578 0.512888 0.858455i \(-0.328576\pi\)
0.512888 + 0.858455i \(0.328576\pi\)
\(110\) −0.137352 −0.0130960
\(111\) 0 0
\(112\) −10.1541 −0.959470
\(113\) 0.487507 0.0458608 0.0229304 0.999737i \(-0.492700\pi\)
0.0229304 + 0.999737i \(0.492700\pi\)
\(114\) 0 0
\(115\) −1.39335 −0.129931
\(116\) −15.9771 −1.48344
\(117\) 0 0
\(118\) 0.664803 0.0612001
\(119\) −18.0624 −1.65578
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0.118201 0.0107014
\(123\) 0 0
\(124\) 12.1409 1.09028
\(125\) 11.2284 1.00430
\(126\) 0 0
\(127\) 9.26452 0.822093 0.411046 0.911614i \(-0.365163\pi\)
0.411046 + 0.911614i \(0.365163\pi\)
\(128\) 3.11626 0.275441
\(129\) 0 0
\(130\) 0.586985 0.0514820
\(131\) −12.0582 −1.05353 −0.526766 0.850011i \(-0.676595\pi\)
−0.526766 + 0.850011i \(0.676595\pi\)
\(132\) 0 0
\(133\) 4.43697 0.384734
\(134\) 0.472172 0.0407895
\(135\) 0 0
\(136\) 2.75809 0.236504
\(137\) −9.54165 −0.815198 −0.407599 0.913161i \(-0.633634\pi\)
−0.407599 + 0.913161i \(0.633634\pi\)
\(138\) 0 0
\(139\) 0.752437 0.0638209 0.0319104 0.999491i \(-0.489841\pi\)
0.0319104 + 0.999491i \(0.489841\pi\)
\(140\) −7.14368 −0.603751
\(141\) 0 0
\(142\) 0.856894 0.0719089
\(143\) −4.27358 −0.357375
\(144\) 0 0
\(145\) −11.1852 −0.928882
\(146\) 0.508848 0.0421125
\(147\) 0 0
\(148\) 12.5580 1.03226
\(149\) 0.762211 0.0624428 0.0312214 0.999512i \(-0.490060\pi\)
0.0312214 + 0.999512i \(0.490060\pi\)
\(150\) 0 0
\(151\) 3.02363 0.246060 0.123030 0.992403i \(-0.460739\pi\)
0.123030 + 0.992403i \(0.460739\pi\)
\(152\) −0.677514 −0.0549537
\(153\) 0 0
\(154\) −0.253935 −0.0204627
\(155\) 8.49953 0.682699
\(156\) 0 0
\(157\) −4.27555 −0.341226 −0.170613 0.985338i \(-0.554575\pi\)
−0.170613 + 0.985338i \(0.554575\pi\)
\(158\) 0.783427 0.0623261
\(159\) 0 0
\(160\) 1.63756 0.129461
\(161\) −2.57601 −0.203018
\(162\) 0 0
\(163\) 7.12165 0.557810 0.278905 0.960319i \(-0.410028\pi\)
0.278905 + 0.960319i \(0.410028\pi\)
\(164\) 8.54187 0.667008
\(165\) 0 0
\(166\) 0.155991 0.0121073
\(167\) −4.65914 −0.360535 −0.180268 0.983618i \(-0.557696\pi\)
−0.180268 + 0.983618i \(0.557696\pi\)
\(168\) 0 0
\(169\) 5.26347 0.404883
\(170\) 0.963084 0.0738652
\(171\) 0 0
\(172\) −20.6544 −1.57488
\(173\) 11.3203 0.860668 0.430334 0.902670i \(-0.358396\pi\)
0.430334 + 0.902670i \(0.358396\pi\)
\(174\) 0 0
\(175\) 7.87891 0.595590
\(176\) −3.94179 −0.297124
\(177\) 0 0
\(178\) 0.576934 0.0432430
\(179\) 0.975679 0.0729257 0.0364628 0.999335i \(-0.488391\pi\)
0.0364628 + 0.999335i \(0.488391\pi\)
\(180\) 0 0
\(181\) −12.2845 −0.913100 −0.456550 0.889698i \(-0.650915\pi\)
−0.456550 + 0.889698i \(0.650915\pi\)
\(182\) 1.08521 0.0804412
\(183\) 0 0
\(184\) 0.393350 0.0289981
\(185\) 8.79153 0.646366
\(186\) 0 0
\(187\) −7.01179 −0.512753
\(188\) 8.67171 0.632449
\(189\) 0 0
\(190\) −0.236578 −0.0171632
\(191\) −10.5415 −0.762759 −0.381380 0.924418i \(-0.624551\pi\)
−0.381380 + 0.924418i \(0.624551\pi\)
\(192\) 0 0
\(193\) −2.78596 −0.200537 −0.100269 0.994960i \(-0.531970\pi\)
−0.100269 + 0.994960i \(0.531970\pi\)
\(194\) −1.26656 −0.0909339
\(195\) 0 0
\(196\) 0.724845 0.0517747
\(197\) 17.9830 1.28123 0.640616 0.767861i \(-0.278679\pi\)
0.640616 + 0.767861i \(0.278679\pi\)
\(198\) 0 0
\(199\) 0.857794 0.0608074 0.0304037 0.999538i \(-0.490321\pi\)
0.0304037 + 0.999538i \(0.490321\pi\)
\(200\) −1.20309 −0.0850714
\(201\) 0 0
\(202\) −0.103579 −0.00728777
\(203\) −20.6791 −1.45139
\(204\) 0 0
\(205\) 5.97996 0.417659
\(206\) 0.719522 0.0501315
\(207\) 0 0
\(208\) 16.8455 1.16803
\(209\) 1.72242 0.119142
\(210\) 0 0
\(211\) −20.7330 −1.42732 −0.713658 0.700495i \(-0.752963\pi\)
−0.713658 + 0.700495i \(0.752963\pi\)
\(212\) −3.47516 −0.238675
\(213\) 0 0
\(214\) 1.03410 0.0706893
\(215\) −14.4597 −0.986141
\(216\) 0 0
\(217\) 15.7138 1.06672
\(218\) −1.05570 −0.0715012
\(219\) 0 0
\(220\) −2.77316 −0.186966
\(221\) 29.9654 2.01569
\(222\) 0 0
\(223\) −0.901902 −0.0603958 −0.0301979 0.999544i \(-0.509614\pi\)
−0.0301979 + 0.999544i \(0.509614\pi\)
\(224\) 3.02750 0.202283
\(225\) 0 0
\(226\) −0.0480570 −0.00319670
\(227\) −10.8182 −0.718028 −0.359014 0.933332i \(-0.616887\pi\)
−0.359014 + 0.933332i \(0.616887\pi\)
\(228\) 0 0
\(229\) −27.6949 −1.83013 −0.915066 0.403304i \(-0.867862\pi\)
−0.915066 + 0.403304i \(0.867862\pi\)
\(230\) 0.137352 0.00905674
\(231\) 0 0
\(232\) 3.15764 0.207310
\(233\) −9.85448 −0.645589 −0.322794 0.946469i \(-0.604622\pi\)
−0.322794 + 0.946469i \(0.604622\pi\)
\(234\) 0 0
\(235\) 6.07086 0.396019
\(236\) 13.4225 0.873728
\(237\) 0 0
\(238\) 1.78054 0.115415
\(239\) −22.2862 −1.44158 −0.720788 0.693156i \(-0.756220\pi\)
−0.720788 + 0.693156i \(0.756220\pi\)
\(240\) 0 0
\(241\) −8.26747 −0.532555 −0.266277 0.963896i \(-0.585794\pi\)
−0.266277 + 0.963896i \(0.585794\pi\)
\(242\) −0.0985770 −0.00633677
\(243\) 0 0
\(244\) 2.38649 0.152779
\(245\) 0.507447 0.0324196
\(246\) 0 0
\(247\) −7.36090 −0.468363
\(248\) −2.39946 −0.152366
\(249\) 0 0
\(250\) −1.10686 −0.0700042
\(251\) −7.07648 −0.446663 −0.223332 0.974743i \(-0.571693\pi\)
−0.223332 + 0.974743i \(0.571693\pi\)
\(252\) 0 0
\(253\) −1.00000 −0.0628695
\(254\) −0.913268 −0.0573035
\(255\) 0 0
\(256\) 15.2283 0.951766
\(257\) −5.69650 −0.355338 −0.177669 0.984090i \(-0.556856\pi\)
−0.177669 + 0.984090i \(0.556856\pi\)
\(258\) 0 0
\(259\) 16.2537 1.00995
\(260\) 11.8513 0.734988
\(261\) 0 0
\(262\) 1.18866 0.0734358
\(263\) −2.50258 −0.154316 −0.0771579 0.997019i \(-0.524585\pi\)
−0.0771579 + 0.997019i \(0.524585\pi\)
\(264\) 0 0
\(265\) −2.43288 −0.149451
\(266\) −0.437383 −0.0268177
\(267\) 0 0
\(268\) 9.53322 0.582334
\(269\) 3.23678 0.197350 0.0986749 0.995120i \(-0.468540\pi\)
0.0986749 + 0.995120i \(0.468540\pi\)
\(270\) 0 0
\(271\) 9.71834 0.590347 0.295173 0.955444i \(-0.404623\pi\)
0.295173 + 0.955444i \(0.404623\pi\)
\(272\) 27.6390 1.67586
\(273\) 0 0
\(274\) 0.940587 0.0568229
\(275\) 3.05858 0.184439
\(276\) 0 0
\(277\) 20.3613 1.22339 0.611695 0.791094i \(-0.290488\pi\)
0.611695 + 0.791094i \(0.290488\pi\)
\(278\) −0.0741730 −0.00444860
\(279\) 0 0
\(280\) 1.41184 0.0843737
\(281\) −27.8912 −1.66385 −0.831926 0.554887i \(-0.812762\pi\)
−0.831926 + 0.554887i \(0.812762\pi\)
\(282\) 0 0
\(283\) −32.2777 −1.91871 −0.959356 0.282198i \(-0.908936\pi\)
−0.959356 + 0.282198i \(0.908936\pi\)
\(284\) 17.3008 1.02661
\(285\) 0 0
\(286\) 0.421276 0.0249106
\(287\) 11.0557 0.652596
\(288\) 0 0
\(289\) 32.1651 1.89207
\(290\) 1.10260 0.0647472
\(291\) 0 0
\(292\) 10.2737 0.601223
\(293\) −0.0837545 −0.00489299 −0.00244650 0.999997i \(-0.500779\pi\)
−0.00244650 + 0.999997i \(0.500779\pi\)
\(294\) 0 0
\(295\) 9.39676 0.547100
\(296\) −2.48190 −0.144257
\(297\) 0 0
\(298\) −0.0751365 −0.00435254
\(299\) 4.27358 0.247147
\(300\) 0 0
\(301\) −26.7328 −1.54085
\(302\) −0.298060 −0.0171514
\(303\) 0 0
\(304\) −6.78942 −0.389400
\(305\) 1.67072 0.0956654
\(306\) 0 0
\(307\) 34.7795 1.98497 0.992485 0.122367i \(-0.0390485\pi\)
0.992485 + 0.122367i \(0.0390485\pi\)
\(308\) −5.12698 −0.292137
\(309\) 0 0
\(310\) −0.837858 −0.0475871
\(311\) 25.1850 1.42811 0.714054 0.700091i \(-0.246857\pi\)
0.714054 + 0.700091i \(0.246857\pi\)
\(312\) 0 0
\(313\) −8.68839 −0.491097 −0.245548 0.969384i \(-0.578968\pi\)
−0.245548 + 0.969384i \(0.578968\pi\)
\(314\) 0.421471 0.0237850
\(315\) 0 0
\(316\) 15.8175 0.889804
\(317\) −8.22291 −0.461845 −0.230922 0.972972i \(-0.574174\pi\)
−0.230922 + 0.972972i \(0.574174\pi\)
\(318\) 0 0
\(319\) −8.02757 −0.449458
\(320\) 10.8232 0.605033
\(321\) 0 0
\(322\) 0.253935 0.0141512
\(323\) −12.0772 −0.671996
\(324\) 0 0
\(325\) −13.0711 −0.725052
\(326\) −0.702030 −0.0388819
\(327\) 0 0
\(328\) −1.68817 −0.0932138
\(329\) 11.2237 0.618784
\(330\) 0 0
\(331\) −10.9564 −0.602217 −0.301108 0.953590i \(-0.597357\pi\)
−0.301108 + 0.953590i \(0.597357\pi\)
\(332\) 3.14948 0.172850
\(333\) 0 0
\(334\) 0.459284 0.0251309
\(335\) 6.67398 0.364639
\(336\) 0 0
\(337\) −32.2285 −1.75560 −0.877798 0.479031i \(-0.840988\pi\)
−0.877798 + 0.479031i \(0.840988\pi\)
\(338\) −0.518857 −0.0282221
\(339\) 0 0
\(340\) 19.4448 1.05454
\(341\) 6.10007 0.330337
\(342\) 0 0
\(343\) 18.9702 1.02429
\(344\) 4.08204 0.220089
\(345\) 0 0
\(346\) −1.11592 −0.0599924
\(347\) 27.4718 1.47476 0.737382 0.675476i \(-0.236062\pi\)
0.737382 + 0.675476i \(0.236062\pi\)
\(348\) 0 0
\(349\) 13.8793 0.742941 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(350\) −0.776679 −0.0415152
\(351\) 0 0
\(352\) 1.17527 0.0626421
\(353\) −3.45719 −0.184008 −0.0920039 0.995759i \(-0.529327\pi\)
−0.0920039 + 0.995759i \(0.529327\pi\)
\(354\) 0 0
\(355\) 12.1119 0.642832
\(356\) 11.6484 0.617363
\(357\) 0 0
\(358\) −0.0961795 −0.00508324
\(359\) 19.2010 1.01339 0.506696 0.862125i \(-0.330867\pi\)
0.506696 + 0.862125i \(0.330867\pi\)
\(360\) 0 0
\(361\) −16.0333 −0.843856
\(362\) 1.21097 0.0636471
\(363\) 0 0
\(364\) 21.9106 1.14843
\(365\) 7.19238 0.376466
\(366\) 0 0
\(367\) −4.36951 −0.228087 −0.114043 0.993476i \(-0.536380\pi\)
−0.114043 + 0.993476i \(0.536380\pi\)
\(368\) 3.94179 0.205480
\(369\) 0 0
\(370\) −0.866643 −0.0450546
\(371\) −4.49787 −0.233518
\(372\) 0 0
\(373\) −18.1184 −0.938135 −0.469068 0.883162i \(-0.655410\pi\)
−0.469068 + 0.883162i \(0.655410\pi\)
\(374\) 0.691201 0.0357411
\(375\) 0 0
\(376\) −1.71384 −0.0883843
\(377\) 34.3065 1.76687
\(378\) 0 0
\(379\) −18.3481 −0.942480 −0.471240 0.882005i \(-0.656194\pi\)
−0.471240 + 0.882005i \(0.656194\pi\)
\(380\) −4.77655 −0.245032
\(381\) 0 0
\(382\) 1.03915 0.0531677
\(383\) −34.2931 −1.75230 −0.876148 0.482042i \(-0.839895\pi\)
−0.876148 + 0.482042i \(0.839895\pi\)
\(384\) 0 0
\(385\) −3.58928 −0.182927
\(386\) 0.274631 0.0139784
\(387\) 0 0
\(388\) −25.5721 −1.29822
\(389\) −18.2975 −0.927720 −0.463860 0.885908i \(-0.653536\pi\)
−0.463860 + 0.885908i \(0.653536\pi\)
\(390\) 0 0
\(391\) 7.01179 0.354601
\(392\) −0.143255 −0.00723547
\(393\) 0 0
\(394\) −1.77271 −0.0893076
\(395\) 11.0735 0.557166
\(396\) 0 0
\(397\) −16.7978 −0.843057 −0.421528 0.906815i \(-0.638506\pi\)
−0.421528 + 0.906815i \(0.638506\pi\)
\(398\) −0.0845587 −0.00423855
\(399\) 0 0
\(400\) −12.0563 −0.602813
\(401\) −33.6597 −1.68088 −0.840442 0.541901i \(-0.817705\pi\)
−0.840442 + 0.541901i \(0.817705\pi\)
\(402\) 0 0
\(403\) −26.0691 −1.29860
\(404\) −2.09127 −0.104044
\(405\) 0 0
\(406\) 2.03848 0.101168
\(407\) 6.30964 0.312757
\(408\) 0 0
\(409\) −23.8012 −1.17689 −0.588447 0.808536i \(-0.700260\pi\)
−0.588447 + 0.808536i \(0.700260\pi\)
\(410\) −0.589487 −0.0291127
\(411\) 0 0
\(412\) 14.5272 0.715706
\(413\) 17.3726 0.854849
\(414\) 0 0
\(415\) 2.20488 0.108233
\(416\) −5.02261 −0.246254
\(417\) 0 0
\(418\) −0.169791 −0.00830475
\(419\) 32.1373 1.57001 0.785006 0.619489i \(-0.212660\pi\)
0.785006 + 0.619489i \(0.212660\pi\)
\(420\) 0 0
\(421\) −33.1371 −1.61501 −0.807503 0.589864i \(-0.799181\pi\)
−0.807503 + 0.589864i \(0.799181\pi\)
\(422\) 2.04379 0.0994902
\(423\) 0 0
\(424\) 0.686815 0.0333547
\(425\) −21.4461 −1.04029
\(426\) 0 0
\(427\) 3.08881 0.149478
\(428\) 20.8785 1.00920
\(429\) 0 0
\(430\) 1.42539 0.0687384
\(431\) −9.06476 −0.436634 −0.218317 0.975878i \(-0.570057\pi\)
−0.218317 + 0.975878i \(0.570057\pi\)
\(432\) 0 0
\(433\) 29.3934 1.41256 0.706279 0.707934i \(-0.250373\pi\)
0.706279 + 0.707934i \(0.250373\pi\)
\(434\) −1.54902 −0.0743553
\(435\) 0 0
\(436\) −21.3148 −1.02079
\(437\) −1.72242 −0.0823946
\(438\) 0 0
\(439\) 7.67129 0.366131 0.183065 0.983101i \(-0.441398\pi\)
0.183065 + 0.983101i \(0.441398\pi\)
\(440\) 0.548074 0.0261284
\(441\) 0 0
\(442\) −2.95390 −0.140503
\(443\) 18.8452 0.895362 0.447681 0.894193i \(-0.352250\pi\)
0.447681 + 0.894193i \(0.352250\pi\)
\(444\) 0 0
\(445\) 8.15476 0.386573
\(446\) 0.0889068 0.00420986
\(447\) 0 0
\(448\) 20.0097 0.945370
\(449\) 19.2501 0.908467 0.454234 0.890883i \(-0.349913\pi\)
0.454234 + 0.890883i \(0.349913\pi\)
\(450\) 0 0
\(451\) 4.29179 0.202092
\(452\) −0.970276 −0.0456380
\(453\) 0 0
\(454\) 1.06642 0.0500498
\(455\) 15.3391 0.719106
\(456\) 0 0
\(457\) 14.2597 0.667041 0.333520 0.942743i \(-0.391763\pi\)
0.333520 + 0.942743i \(0.391763\pi\)
\(458\) 2.73008 0.127568
\(459\) 0 0
\(460\) 2.77316 0.129299
\(461\) 6.79786 0.316608 0.158304 0.987390i \(-0.449397\pi\)
0.158304 + 0.987390i \(0.449397\pi\)
\(462\) 0 0
\(463\) −23.3464 −1.08500 −0.542499 0.840056i \(-0.682522\pi\)
−0.542499 + 0.840056i \(0.682522\pi\)
\(464\) 31.6430 1.46899
\(465\) 0 0
\(466\) 0.971425 0.0450004
\(467\) −20.0130 −0.926093 −0.463047 0.886334i \(-0.653244\pi\)
−0.463047 + 0.886334i \(0.653244\pi\)
\(468\) 0 0
\(469\) 12.3388 0.569751
\(470\) −0.598447 −0.0276043
\(471\) 0 0
\(472\) −2.65275 −0.122103
\(473\) −10.3776 −0.477164
\(474\) 0 0
\(475\) 5.26816 0.241720
\(476\) 35.9493 1.64773
\(477\) 0 0
\(478\) 2.19691 0.100484
\(479\) 32.3385 1.47758 0.738791 0.673934i \(-0.235397\pi\)
0.738791 + 0.673934i \(0.235397\pi\)
\(480\) 0 0
\(481\) −26.9647 −1.22949
\(482\) 0.814983 0.0371214
\(483\) 0 0
\(484\) −1.99028 −0.0904674
\(485\) −17.9024 −0.812906
\(486\) 0 0
\(487\) 10.2937 0.466450 0.233225 0.972423i \(-0.425072\pi\)
0.233225 + 0.972423i \(0.425072\pi\)
\(488\) −0.471654 −0.0213508
\(489\) 0 0
\(490\) −0.0500226 −0.00225979
\(491\) 2.44398 0.110295 0.0551477 0.998478i \(-0.482437\pi\)
0.0551477 + 0.998478i \(0.482437\pi\)
\(492\) 0 0
\(493\) 56.2876 2.53507
\(494\) 0.725615 0.0326470
\(495\) 0 0
\(496\) −24.0452 −1.07966
\(497\) 22.3923 1.00443
\(498\) 0 0
\(499\) −15.7764 −0.706247 −0.353124 0.935577i \(-0.614880\pi\)
−0.353124 + 0.935577i \(0.614880\pi\)
\(500\) −22.3477 −0.999420
\(501\) 0 0
\(502\) 0.697578 0.0311344
\(503\) −37.7052 −1.68119 −0.840595 0.541664i \(-0.817795\pi\)
−0.840595 + 0.541664i \(0.817795\pi\)
\(504\) 0 0
\(505\) −1.46405 −0.0651492
\(506\) 0.0985770 0.00438228
\(507\) 0 0
\(508\) −18.4390 −0.818099
\(509\) 15.7070 0.696201 0.348101 0.937457i \(-0.386827\pi\)
0.348101 + 0.937457i \(0.386827\pi\)
\(510\) 0 0
\(511\) 13.2972 0.588232
\(512\) −7.73367 −0.341783
\(513\) 0 0
\(514\) 0.561543 0.0247686
\(515\) 10.1702 0.448152
\(516\) 0 0
\(517\) 4.35702 0.191622
\(518\) −1.60224 −0.0703982
\(519\) 0 0
\(520\) −2.34224 −0.102714
\(521\) 29.6576 1.29932 0.649661 0.760224i \(-0.274911\pi\)
0.649661 + 0.760224i \(0.274911\pi\)
\(522\) 0 0
\(523\) −1.12098 −0.0490169 −0.0245084 0.999700i \(-0.507802\pi\)
−0.0245084 + 0.999700i \(0.507802\pi\)
\(524\) 23.9993 1.04841
\(525\) 0 0
\(526\) 0.246697 0.0107565
\(527\) −42.7724 −1.86319
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0.239826 0.0104174
\(531\) 0 0
\(532\) −8.83082 −0.382865
\(533\) −18.3413 −0.794450
\(534\) 0 0
\(535\) 14.6166 0.631929
\(536\) −1.88410 −0.0813807
\(537\) 0 0
\(538\) −0.319072 −0.0137562
\(539\) 0.364192 0.0156869
\(540\) 0 0
\(541\) 41.1739 1.77020 0.885102 0.465397i \(-0.154088\pi\)
0.885102 + 0.465397i \(0.154088\pi\)
\(542\) −0.958004 −0.0411498
\(543\) 0 0
\(544\) −8.24074 −0.353319
\(545\) −14.9220 −0.639187
\(546\) 0 0
\(547\) −17.2965 −0.739546 −0.369773 0.929122i \(-0.620565\pi\)
−0.369773 + 0.929122i \(0.620565\pi\)
\(548\) 18.9906 0.811237
\(549\) 0 0
\(550\) −0.301505 −0.0128562
\(551\) −13.8269 −0.589044
\(552\) 0 0
\(553\) 20.4725 0.870577
\(554\) −2.00715 −0.0852757
\(555\) 0 0
\(556\) −1.49756 −0.0635108
\(557\) −44.5087 −1.88589 −0.942947 0.332944i \(-0.891958\pi\)
−0.942947 + 0.332944i \(0.891958\pi\)
\(558\) 0 0
\(559\) 44.3496 1.87579
\(560\) 14.1482 0.597870
\(561\) 0 0
\(562\) 2.74943 0.115978
\(563\) −20.7078 −0.872732 −0.436366 0.899769i \(-0.643735\pi\)
−0.436366 + 0.899769i \(0.643735\pi\)
\(564\) 0 0
\(565\) −0.679268 −0.0285770
\(566\) 3.18184 0.133743
\(567\) 0 0
\(568\) −3.41925 −0.143468
\(569\) 8.30654 0.348228 0.174114 0.984725i \(-0.444294\pi\)
0.174114 + 0.984725i \(0.444294\pi\)
\(570\) 0 0
\(571\) 12.6846 0.530836 0.265418 0.964133i \(-0.414490\pi\)
0.265418 + 0.964133i \(0.414490\pi\)
\(572\) 8.50563 0.355638
\(573\) 0 0
\(574\) −1.08983 −0.0454888
\(575\) −3.05858 −0.127551
\(576\) 0 0
\(577\) −35.3453 −1.47145 −0.735723 0.677283i \(-0.763157\pi\)
−0.735723 + 0.677283i \(0.763157\pi\)
\(578\) −3.17074 −0.131885
\(579\) 0 0
\(580\) 22.2617 0.924369
\(581\) 4.07635 0.169115
\(582\) 0 0
\(583\) −1.74607 −0.0723146
\(584\) −2.03045 −0.0840205
\(585\) 0 0
\(586\) 0.00825627 0.000341063 0
\(587\) −15.9955 −0.660205 −0.330103 0.943945i \(-0.607083\pi\)
−0.330103 + 0.943945i \(0.607083\pi\)
\(588\) 0 0
\(589\) 10.5069 0.432929
\(590\) −0.926304 −0.0381353
\(591\) 0 0
\(592\) −24.8713 −1.02220
\(593\) 33.5080 1.37601 0.688005 0.725706i \(-0.258487\pi\)
0.688005 + 0.725706i \(0.258487\pi\)
\(594\) 0 0
\(595\) 25.1672 1.03176
\(596\) −1.51702 −0.0621394
\(597\) 0 0
\(598\) −0.421276 −0.0172273
\(599\) 5.35026 0.218606 0.109303 0.994008i \(-0.465138\pi\)
0.109303 + 0.994008i \(0.465138\pi\)
\(600\) 0 0
\(601\) −36.3268 −1.48180 −0.740901 0.671614i \(-0.765601\pi\)
−0.740901 + 0.671614i \(0.765601\pi\)
\(602\) 2.63524 0.107404
\(603\) 0 0
\(604\) −6.01788 −0.244864
\(605\) −1.39335 −0.0566477
\(606\) 0 0
\(607\) 36.7889 1.49321 0.746607 0.665266i \(-0.231682\pi\)
0.746607 + 0.665266i \(0.231682\pi\)
\(608\) 2.02431 0.0820966
\(609\) 0 0
\(610\) −0.164695 −0.00666830
\(611\) −18.6201 −0.753288
\(612\) 0 0
\(613\) −14.8696 −0.600577 −0.300288 0.953848i \(-0.597083\pi\)
−0.300288 + 0.953848i \(0.597083\pi\)
\(614\) −3.42846 −0.138361
\(615\) 0 0
\(616\) 1.01327 0.0408259
\(617\) 23.7451 0.955944 0.477972 0.878375i \(-0.341372\pi\)
0.477972 + 0.878375i \(0.341372\pi\)
\(618\) 0 0
\(619\) 43.3459 1.74222 0.871110 0.491088i \(-0.163401\pi\)
0.871110 + 0.491088i \(0.163401\pi\)
\(620\) −16.9165 −0.679382
\(621\) 0 0
\(622\) −2.48266 −0.0995455
\(623\) 15.0764 0.604023
\(624\) 0 0
\(625\) −0.352234 −0.0140893
\(626\) 0.856475 0.0342316
\(627\) 0 0
\(628\) 8.50955 0.339568
\(629\) −44.2418 −1.76404
\(630\) 0 0
\(631\) 19.0544 0.758544 0.379272 0.925285i \(-0.376174\pi\)
0.379272 + 0.925285i \(0.376174\pi\)
\(632\) −3.12609 −0.124349
\(633\) 0 0
\(634\) 0.810590 0.0321926
\(635\) −12.9087 −0.512267
\(636\) 0 0
\(637\) −1.55640 −0.0616670
\(638\) 0.791334 0.0313292
\(639\) 0 0
\(640\) −4.34204 −0.171634
\(641\) 10.6471 0.420535 0.210268 0.977644i \(-0.432566\pi\)
0.210268 + 0.977644i \(0.432566\pi\)
\(642\) 0 0
\(643\) 19.0246 0.750258 0.375129 0.926973i \(-0.377598\pi\)
0.375129 + 0.926973i \(0.377598\pi\)
\(644\) 5.12698 0.202031
\(645\) 0 0
\(646\) 1.19054 0.0468411
\(647\) 24.8112 0.975430 0.487715 0.873003i \(-0.337831\pi\)
0.487715 + 0.873003i \(0.337831\pi\)
\(648\) 0 0
\(649\) 6.74400 0.264725
\(650\) 1.28851 0.0505394
\(651\) 0 0
\(652\) −14.1741 −0.555100
\(653\) 22.1826 0.868072 0.434036 0.900895i \(-0.357089\pi\)
0.434036 + 0.900895i \(0.357089\pi\)
\(654\) 0 0
\(655\) 16.8013 0.656482
\(656\) −16.9173 −0.660511
\(657\) 0 0
\(658\) −1.10640 −0.0431320
\(659\) −17.1147 −0.666692 −0.333346 0.942804i \(-0.608178\pi\)
−0.333346 + 0.942804i \(0.608178\pi\)
\(660\) 0 0
\(661\) −25.6537 −0.997815 −0.498908 0.866655i \(-0.666265\pi\)
−0.498908 + 0.866655i \(0.666265\pi\)
\(662\) 1.08005 0.0419772
\(663\) 0 0
\(664\) −0.622448 −0.0241557
\(665\) −6.18225 −0.239737
\(666\) 0 0
\(667\) 8.02757 0.310829
\(668\) 9.27301 0.358784
\(669\) 0 0
\(670\) −0.657901 −0.0254169
\(671\) 1.19907 0.0462896
\(672\) 0 0
\(673\) 19.0359 0.733780 0.366890 0.930264i \(-0.380422\pi\)
0.366890 + 0.930264i \(0.380422\pi\)
\(674\) 3.17698 0.122373
\(675\) 0 0
\(676\) −10.4758 −0.402915
\(677\) 12.5375 0.481856 0.240928 0.970543i \(-0.422548\pi\)
0.240928 + 0.970543i \(0.422548\pi\)
\(678\) 0 0
\(679\) −33.0977 −1.27017
\(680\) −3.84298 −0.147371
\(681\) 0 0
\(682\) −0.601326 −0.0230260
\(683\) 5.31521 0.203381 0.101690 0.994816i \(-0.467575\pi\)
0.101690 + 0.994816i \(0.467575\pi\)
\(684\) 0 0
\(685\) 13.2949 0.507970
\(686\) −1.87003 −0.0713979
\(687\) 0 0
\(688\) 40.9064 1.55954
\(689\) 7.46195 0.284278
\(690\) 0 0
\(691\) −51.1052 −1.94413 −0.972066 0.234706i \(-0.924587\pi\)
−0.972066 + 0.234706i \(0.924587\pi\)
\(692\) −22.5306 −0.856486
\(693\) 0 0
\(694\) −2.70809 −0.102798
\(695\) −1.04841 −0.0397684
\(696\) 0 0
\(697\) −30.0931 −1.13986
\(698\) −1.36818 −0.0517863
\(699\) 0 0
\(700\) −15.6813 −0.592696
\(701\) −16.8643 −0.636957 −0.318479 0.947930i \(-0.603172\pi\)
−0.318479 + 0.947930i \(0.603172\pi\)
\(702\) 0 0
\(703\) 10.8679 0.409889
\(704\) 7.76773 0.292757
\(705\) 0 0
\(706\) 0.340800 0.0128262
\(707\) −2.70671 −0.101796
\(708\) 0 0
\(709\) 23.2166 0.871917 0.435958 0.899967i \(-0.356410\pi\)
0.435958 + 0.899967i \(0.356410\pi\)
\(710\) −1.19395 −0.0448082
\(711\) 0 0
\(712\) −2.30213 −0.0862760
\(713\) −6.10007 −0.228449
\(714\) 0 0
\(715\) 5.95459 0.222689
\(716\) −1.94188 −0.0725714
\(717\) 0 0
\(718\) −1.89278 −0.0706379
\(719\) 22.5357 0.840439 0.420219 0.907423i \(-0.361953\pi\)
0.420219 + 0.907423i \(0.361953\pi\)
\(720\) 0 0
\(721\) 18.8025 0.700242
\(722\) 1.58051 0.0588205
\(723\) 0 0
\(724\) 24.4496 0.908664
\(725\) −24.5529 −0.911873
\(726\) 0 0
\(727\) 3.69172 0.136918 0.0684592 0.997654i \(-0.478192\pi\)
0.0684592 + 0.997654i \(0.478192\pi\)
\(728\) −4.33030 −0.160491
\(729\) 0 0
\(730\) −0.709003 −0.0262414
\(731\) 72.7657 2.69134
\(732\) 0 0
\(733\) −6.78702 −0.250684 −0.125342 0.992114i \(-0.540003\pi\)
−0.125342 + 0.992114i \(0.540003\pi\)
\(734\) 0.430733 0.0158987
\(735\) 0 0
\(736\) −1.17527 −0.0433210
\(737\) 4.78988 0.176438
\(738\) 0 0
\(739\) −30.2153 −1.11149 −0.555743 0.831354i \(-0.687566\pi\)
−0.555743 + 0.831354i \(0.687566\pi\)
\(740\) −17.4976 −0.643226
\(741\) 0 0
\(742\) 0.443387 0.0162772
\(743\) −20.0638 −0.736070 −0.368035 0.929812i \(-0.619969\pi\)
−0.368035 + 0.929812i \(0.619969\pi\)
\(744\) 0 0
\(745\) −1.06203 −0.0389097
\(746\) 1.78606 0.0653922
\(747\) 0 0
\(748\) 13.9554 0.510261
\(749\) 27.0229 0.987395
\(750\) 0 0
\(751\) 27.7596 1.01296 0.506481 0.862251i \(-0.330946\pi\)
0.506481 + 0.862251i \(0.330946\pi\)
\(752\) −17.1745 −0.626289
\(753\) 0 0
\(754\) −3.38183 −0.123159
\(755\) −4.21298 −0.153326
\(756\) 0 0
\(757\) −5.91530 −0.214995 −0.107498 0.994205i \(-0.534284\pi\)
−0.107498 + 0.994205i \(0.534284\pi\)
\(758\) 1.80870 0.0656951
\(759\) 0 0
\(760\) 0.944015 0.0342430
\(761\) 8.67915 0.314619 0.157310 0.987549i \(-0.449718\pi\)
0.157310 + 0.987549i \(0.449718\pi\)
\(762\) 0 0
\(763\) −27.5875 −0.998736
\(764\) 20.9807 0.759053
\(765\) 0 0
\(766\) 3.38051 0.122143
\(767\) −28.8210 −1.04067
\(768\) 0 0
\(769\) 52.7197 1.90112 0.950561 0.310538i \(-0.100509\pi\)
0.950561 + 0.310538i \(0.100509\pi\)
\(770\) 0.353820 0.0127508
\(771\) 0 0
\(772\) 5.54484 0.199563
\(773\) −46.4791 −1.67174 −0.835869 0.548928i \(-0.815036\pi\)
−0.835869 + 0.548928i \(0.815036\pi\)
\(774\) 0 0
\(775\) 18.6575 0.670198
\(776\) 5.05394 0.181426
\(777\) 0 0
\(778\) 1.80371 0.0646662
\(779\) 7.39227 0.264855
\(780\) 0 0
\(781\) 8.69264 0.311047
\(782\) −0.691201 −0.0247173
\(783\) 0 0
\(784\) −1.43557 −0.0512703
\(785\) 5.95734 0.212626
\(786\) 0 0
\(787\) −4.85692 −0.173131 −0.0865653 0.996246i \(-0.527589\pi\)
−0.0865653 + 0.996246i \(0.527589\pi\)
\(788\) −35.7912 −1.27501
\(789\) 0 0
\(790\) −1.09159 −0.0388369
\(791\) −1.25582 −0.0446518
\(792\) 0 0
\(793\) −5.12432 −0.181970
\(794\) 1.65588 0.0587648
\(795\) 0 0
\(796\) −1.70725 −0.0605120
\(797\) 6.47756 0.229447 0.114724 0.993397i \(-0.463402\pi\)
0.114724 + 0.993397i \(0.463402\pi\)
\(798\) 0 0
\(799\) −30.5505 −1.08080
\(800\) 3.59465 0.127090
\(801\) 0 0
\(802\) 3.31807 0.117165
\(803\) 5.16193 0.182161
\(804\) 0 0
\(805\) 3.58928 0.126505
\(806\) 2.56981 0.0905179
\(807\) 0 0
\(808\) 0.413308 0.0145401
\(809\) 34.9544 1.22893 0.614466 0.788943i \(-0.289371\pi\)
0.614466 + 0.788943i \(0.289371\pi\)
\(810\) 0 0
\(811\) −27.6077 −0.969439 −0.484719 0.874670i \(-0.661078\pi\)
−0.484719 + 0.874670i \(0.661078\pi\)
\(812\) 41.1572 1.44433
\(813\) 0 0
\(814\) −0.621985 −0.0218006
\(815\) −9.92294 −0.347586
\(816\) 0 0
\(817\) −17.8746 −0.625355
\(818\) 2.34625 0.0820347
\(819\) 0 0
\(820\) −11.9018 −0.415629
\(821\) −18.5526 −0.647491 −0.323745 0.946144i \(-0.604942\pi\)
−0.323745 + 0.946144i \(0.604942\pi\)
\(822\) 0 0
\(823\) 0.337866 0.0117773 0.00588863 0.999983i \(-0.498126\pi\)
0.00588863 + 0.999983i \(0.498126\pi\)
\(824\) −2.87110 −0.100019
\(825\) 0 0
\(826\) −1.71254 −0.0595868
\(827\) −43.1299 −1.49977 −0.749887 0.661566i \(-0.769892\pi\)
−0.749887 + 0.661566i \(0.769892\pi\)
\(828\) 0 0
\(829\) 0.536280 0.0186258 0.00931289 0.999957i \(-0.497036\pi\)
0.00931289 + 0.999957i \(0.497036\pi\)
\(830\) −0.217350 −0.00754433
\(831\) 0 0
\(832\) −33.1960 −1.15086
\(833\) −2.55364 −0.0884783
\(834\) 0 0
\(835\) 6.49182 0.224659
\(836\) −3.42811 −0.118563
\(837\) 0 0
\(838\) −3.16800 −0.109437
\(839\) −12.8678 −0.444246 −0.222123 0.975019i \(-0.571299\pi\)
−0.222123 + 0.975019i \(0.571299\pi\)
\(840\) 0 0
\(841\) 35.4419 1.22213
\(842\) 3.26656 0.112573
\(843\) 0 0
\(844\) 41.2644 1.42038
\(845\) −7.33386 −0.252293
\(846\) 0 0
\(847\) −2.57601 −0.0885126
\(848\) 6.88262 0.236350
\(849\) 0 0
\(850\) 2.11409 0.0725127
\(851\) −6.30964 −0.216292
\(852\) 0 0
\(853\) 48.4726 1.65967 0.829835 0.558009i \(-0.188434\pi\)
0.829835 + 0.558009i \(0.188434\pi\)
\(854\) −0.304486 −0.0104193
\(855\) 0 0
\(856\) −4.12633 −0.141035
\(857\) 12.2020 0.416811 0.208406 0.978042i \(-0.433173\pi\)
0.208406 + 0.978042i \(0.433173\pi\)
\(858\) 0 0
\(859\) 24.5683 0.838258 0.419129 0.907927i \(-0.362335\pi\)
0.419129 + 0.907927i \(0.362335\pi\)
\(860\) 28.7788 0.981350
\(861\) 0 0
\(862\) 0.893577 0.0304354
\(863\) 29.4190 1.00143 0.500717 0.865611i \(-0.333070\pi\)
0.500717 + 0.865611i \(0.333070\pi\)
\(864\) 0 0
\(865\) −15.7732 −0.536304
\(866\) −2.89751 −0.0984615
\(867\) 0 0
\(868\) −31.2749 −1.06154
\(869\) 7.94736 0.269596
\(870\) 0 0
\(871\) −20.4699 −0.693598
\(872\) 4.21255 0.142655
\(873\) 0 0
\(874\) 0.169791 0.00574327
\(875\) −28.9245 −0.977826
\(876\) 0 0
\(877\) −3.38594 −0.114335 −0.0571676 0.998365i \(-0.518207\pi\)
−0.0571676 + 0.998365i \(0.518207\pi\)
\(878\) −0.756212 −0.0255209
\(879\) 0 0
\(880\) 5.49229 0.185145
\(881\) −20.3444 −0.685420 −0.342710 0.939441i \(-0.611345\pi\)
−0.342710 + 0.939441i \(0.611345\pi\)
\(882\) 0 0
\(883\) 48.8737 1.64473 0.822365 0.568960i \(-0.192654\pi\)
0.822365 + 0.568960i \(0.192654\pi\)
\(884\) −59.6397 −2.00590
\(885\) 0 0
\(886\) −1.85770 −0.0624107
\(887\) 17.1414 0.575552 0.287776 0.957698i \(-0.407084\pi\)
0.287776 + 0.957698i \(0.407084\pi\)
\(888\) 0 0
\(889\) −23.8655 −0.800422
\(890\) −0.803871 −0.0269458
\(891\) 0 0
\(892\) 1.79504 0.0601024
\(893\) 7.50463 0.251133
\(894\) 0 0
\(895\) −1.35946 −0.0454418
\(896\) −8.02750 −0.268180
\(897\) 0 0
\(898\) −1.89761 −0.0633242
\(899\) −48.9687 −1.63320
\(900\) 0 0
\(901\) 12.2430 0.407875
\(902\) −0.423071 −0.0140867
\(903\) 0 0
\(904\) 0.191761 0.00637787
\(905\) 17.1166 0.568976
\(906\) 0 0
\(907\) −11.1499 −0.370228 −0.185114 0.982717i \(-0.559265\pi\)
−0.185114 + 0.982717i \(0.559265\pi\)
\(908\) 21.5313 0.714540
\(909\) 0 0
\(910\) −1.51208 −0.0501249
\(911\) −6.30489 −0.208890 −0.104445 0.994531i \(-0.533307\pi\)
−0.104445 + 0.994531i \(0.533307\pi\)
\(912\) 0 0
\(913\) 1.58243 0.0523708
\(914\) −1.40568 −0.0464957
\(915\) 0 0
\(916\) 55.1207 1.82124
\(917\) 31.0620 1.02576
\(918\) 0 0
\(919\) −55.3838 −1.82694 −0.913472 0.406902i \(-0.866609\pi\)
−0.913472 + 0.406902i \(0.866609\pi\)
\(920\) −0.548074 −0.0180695
\(921\) 0 0
\(922\) −0.670112 −0.0220690
\(923\) −37.1487 −1.22276
\(924\) 0 0
\(925\) 19.2985 0.634531
\(926\) 2.30142 0.0756292
\(927\) 0 0
\(928\) −9.43456 −0.309705
\(929\) −22.6620 −0.743517 −0.371758 0.928330i \(-0.621245\pi\)
−0.371758 + 0.928330i \(0.621245\pi\)
\(930\) 0 0
\(931\) 0.627292 0.0205587
\(932\) 19.6132 0.642452
\(933\) 0 0
\(934\) 1.97283 0.0645528
\(935\) 9.76987 0.319509
\(936\) 0 0
\(937\) −12.4128 −0.405507 −0.202754 0.979230i \(-0.564989\pi\)
−0.202754 + 0.979230i \(0.564989\pi\)
\(938\) −1.21632 −0.0397142
\(939\) 0 0
\(940\) −12.0827 −0.394095
\(941\) 6.03145 0.196620 0.0983098 0.995156i \(-0.468656\pi\)
0.0983098 + 0.995156i \(0.468656\pi\)
\(942\) 0 0
\(943\) −4.29179 −0.139760
\(944\) −26.5834 −0.865217
\(945\) 0 0
\(946\) 1.02299 0.0332604
\(947\) −41.3238 −1.34284 −0.671422 0.741075i \(-0.734316\pi\)
−0.671422 + 0.741075i \(0.734316\pi\)
\(948\) 0 0
\(949\) −22.0599 −0.716096
\(950\) −0.519319 −0.0168489
\(951\) 0 0
\(952\) −7.10485 −0.230269
\(953\) 31.9472 1.03487 0.517435 0.855722i \(-0.326887\pi\)
0.517435 + 0.855722i \(0.326887\pi\)
\(954\) 0 0
\(955\) 14.6881 0.475295
\(956\) 44.3559 1.43457
\(957\) 0 0
\(958\) −3.18783 −0.102994
\(959\) 24.5794 0.793709
\(960\) 0 0
\(961\) 6.21084 0.200350
\(962\) 2.65810 0.0857006
\(963\) 0 0
\(964\) 16.4546 0.529967
\(965\) 3.88181 0.124960
\(966\) 0 0
\(967\) −38.5020 −1.23814 −0.619071 0.785335i \(-0.712491\pi\)
−0.619071 + 0.785335i \(0.712491\pi\)
\(968\) 0.393350 0.0126427
\(969\) 0 0
\(970\) 1.76476 0.0566632
\(971\) −46.5026 −1.49234 −0.746169 0.665756i \(-0.768109\pi\)
−0.746169 + 0.665756i \(0.768109\pi\)
\(972\) 0 0
\(973\) −1.93828 −0.0621385
\(974\) −1.01472 −0.0325136
\(975\) 0 0
\(976\) −4.72648 −0.151291
\(977\) 32.3962 1.03645 0.518224 0.855245i \(-0.326593\pi\)
0.518224 + 0.855245i \(0.326593\pi\)
\(978\) 0 0
\(979\) 5.85263 0.187051
\(980\) −1.00996 −0.0322621
\(981\) 0 0
\(982\) −0.240921 −0.00768809
\(983\) −41.4597 −1.32236 −0.661179 0.750228i \(-0.729944\pi\)
−0.661179 + 0.750228i \(0.729944\pi\)
\(984\) 0 0
\(985\) −25.0566 −0.798368
\(986\) −5.54866 −0.176705
\(987\) 0 0
\(988\) 14.6503 0.466087
\(989\) 10.3776 0.329989
\(990\) 0 0
\(991\) 5.48208 0.174144 0.0870720 0.996202i \(-0.472249\pi\)
0.0870720 + 0.996202i \(0.472249\pi\)
\(992\) 7.16922 0.227623
\(993\) 0 0
\(994\) −2.20736 −0.0700133
\(995\) −1.19521 −0.0378906
\(996\) 0 0
\(997\) 34.1456 1.08140 0.540700 0.841215i \(-0.318159\pi\)
0.540700 + 0.841215i \(0.318159\pi\)
\(998\) 1.55519 0.0492286
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2277.2.a.m.1.4 6
3.2 odd 2 253.2.a.d.1.3 6
12.11 even 2 4048.2.a.bc.1.1 6
15.14 odd 2 6325.2.a.m.1.4 6
33.32 even 2 2783.2.a.h.1.4 6
69.68 even 2 5819.2.a.e.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.a.d.1.3 6 3.2 odd 2
2277.2.a.m.1.4 6 1.1 even 1 trivial
2783.2.a.h.1.4 6 33.32 even 2
4048.2.a.bc.1.1 6 12.11 even 2
5819.2.a.e.1.3 6 69.68 even 2
6325.2.a.m.1.4 6 15.14 odd 2