Properties

Label 6325.2.a.m.1.4
Level $6325$
Weight $2$
Character 6325.1
Self dual yes
Analytic conductor $50.505$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6325,2,Mod(1,6325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6325 = 5^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.5053792785\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.8639957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 10x^{3} + 6x^{2} - 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.901423\) of defining polynomial
Character \(\chi\) \(=\) 6325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0985770 q^{2} -3.34486 q^{3} -1.99028 q^{4} +0.329726 q^{6} +2.57601 q^{7} +0.393350 q^{8} +8.18807 q^{9} +1.00000 q^{11} +6.65721 q^{12} -4.27358 q^{13} -0.253935 q^{14} +3.94179 q^{16} +7.01179 q^{17} -0.807155 q^{18} -1.72242 q^{19} -8.61637 q^{21} -0.0985770 q^{22} +1.00000 q^{23} -1.31570 q^{24} +0.421276 q^{26} -17.3534 q^{27} -5.12698 q^{28} -8.02757 q^{29} -6.10007 q^{31} -1.17527 q^{32} -3.34486 q^{33} -0.691201 q^{34} -16.2966 q^{36} +6.30964 q^{37} +0.169791 q^{38} +14.2945 q^{39} +4.29179 q^{41} +0.849376 q^{42} -10.3776 q^{43} -1.99028 q^{44} -0.0985770 q^{46} -4.35702 q^{47} -13.1847 q^{48} -0.364192 q^{49} -23.4534 q^{51} +8.50563 q^{52} +1.74607 q^{53} +1.71064 q^{54} +1.01327 q^{56} +5.76125 q^{57} +0.791334 q^{58} +6.74400 q^{59} -1.19907 q^{61} +0.601326 q^{62} +21.0925 q^{63} -7.76773 q^{64} +0.329726 q^{66} +4.78988 q^{67} -13.9554 q^{68} -3.34486 q^{69} +8.69264 q^{71} +3.22078 q^{72} +5.16193 q^{73} -0.621985 q^{74} +3.42811 q^{76} +2.57601 q^{77} -1.40911 q^{78} -7.94736 q^{79} +33.4803 q^{81} -0.423071 q^{82} -1.58243 q^{83} +17.1490 q^{84} +1.02299 q^{86} +26.8511 q^{87} +0.393350 q^{88} +5.85263 q^{89} -11.0088 q^{91} -1.99028 q^{92} +20.4039 q^{93} +0.429502 q^{94} +3.93111 q^{96} -12.8485 q^{97} +0.0359010 q^{98} +8.18807 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 7 q^{3} + 5 q^{4} + 3 q^{6} + q^{7} - 3 q^{8} + 9 q^{9} + 6 q^{11} - 11 q^{12} + 3 q^{13} - 8 q^{14} - q^{16} - 5 q^{17} + 11 q^{18} + q^{19} - 15 q^{21} - 3 q^{22} + 6 q^{23} - 3 q^{24}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0985770 −0.0697044 −0.0348522 0.999392i \(-0.511096\pi\)
−0.0348522 + 0.999392i \(0.511096\pi\)
\(3\) −3.34486 −1.93115 −0.965577 0.260117i \(-0.916239\pi\)
−0.965577 + 0.260117i \(0.916239\pi\)
\(4\) −1.99028 −0.995141
\(5\) 0 0
\(6\) 0.329726 0.134610
\(7\) 2.57601 0.973639 0.486819 0.873503i \(-0.338157\pi\)
0.486819 + 0.873503i \(0.338157\pi\)
\(8\) 0.393350 0.139070
\(9\) 8.18807 2.72936
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 6.65721 1.92177
\(13\) −4.27358 −1.18528 −0.592639 0.805468i \(-0.701914\pi\)
−0.592639 + 0.805468i \(0.701914\pi\)
\(14\) −0.253935 −0.0678669
\(15\) 0 0
\(16\) 3.94179 0.985447
\(17\) 7.01179 1.70061 0.850304 0.526292i \(-0.176418\pi\)
0.850304 + 0.526292i \(0.176418\pi\)
\(18\) −0.807155 −0.190248
\(19\) −1.72242 −0.395151 −0.197575 0.980288i \(-0.563307\pi\)
−0.197575 + 0.980288i \(0.563307\pi\)
\(20\) 0 0
\(21\) −8.61637 −1.88025
\(22\) −0.0985770 −0.0210167
\(23\) 1.00000 0.208514
\(24\) −1.31570 −0.268566
\(25\) 0 0
\(26\) 0.421276 0.0826191
\(27\) −17.3534 −3.33965
\(28\) −5.12698 −0.968908
\(29\) −8.02757 −1.49068 −0.745341 0.666683i \(-0.767713\pi\)
−0.745341 + 0.666683i \(0.767713\pi\)
\(30\) 0 0
\(31\) −6.10007 −1.09560 −0.547802 0.836608i \(-0.684535\pi\)
−0.547802 + 0.836608i \(0.684535\pi\)
\(32\) −1.17527 −0.207760
\(33\) −3.34486 −0.582265
\(34\) −0.691201 −0.118540
\(35\) 0 0
\(36\) −16.2966 −2.71610
\(37\) 6.30964 1.03730 0.518649 0.854987i \(-0.326435\pi\)
0.518649 + 0.854987i \(0.326435\pi\)
\(38\) 0.169791 0.0275437
\(39\) 14.2945 2.28895
\(40\) 0 0
\(41\) 4.29179 0.670265 0.335132 0.942171i \(-0.391219\pi\)
0.335132 + 0.942171i \(0.391219\pi\)
\(42\) 0.849376 0.131062
\(43\) −10.3776 −1.58257 −0.791287 0.611445i \(-0.790588\pi\)
−0.791287 + 0.611445i \(0.790588\pi\)
\(44\) −1.99028 −0.300046
\(45\) 0 0
\(46\) −0.0985770 −0.0145344
\(47\) −4.35702 −0.635537 −0.317769 0.948168i \(-0.602934\pi\)
−0.317769 + 0.948168i \(0.602934\pi\)
\(48\) −13.1847 −1.90305
\(49\) −0.364192 −0.0520274
\(50\) 0 0
\(51\) −23.4534 −3.28414
\(52\) 8.50563 1.17952
\(53\) 1.74607 0.239840 0.119920 0.992784i \(-0.461736\pi\)
0.119920 + 0.992784i \(0.461736\pi\)
\(54\) 1.71064 0.232789
\(55\) 0 0
\(56\) 1.01327 0.135404
\(57\) 5.76125 0.763097
\(58\) 0.791334 0.103907
\(59\) 6.74400 0.877994 0.438997 0.898488i \(-0.355334\pi\)
0.438997 + 0.898488i \(0.355334\pi\)
\(60\) 0 0
\(61\) −1.19907 −0.153525 −0.0767626 0.997049i \(-0.524458\pi\)
−0.0767626 + 0.997049i \(0.524458\pi\)
\(62\) 0.601326 0.0763685
\(63\) 21.0925 2.65741
\(64\) −7.76773 −0.970966
\(65\) 0 0
\(66\) 0.329726 0.0405864
\(67\) 4.78988 0.585177 0.292589 0.956238i \(-0.405483\pi\)
0.292589 + 0.956238i \(0.405483\pi\)
\(68\) −13.9554 −1.69235
\(69\) −3.34486 −0.402673
\(70\) 0 0
\(71\) 8.69264 1.03163 0.515813 0.856701i \(-0.327490\pi\)
0.515813 + 0.856701i \(0.327490\pi\)
\(72\) 3.22078 0.379572
\(73\) 5.16193 0.604159 0.302079 0.953283i \(-0.402319\pi\)
0.302079 + 0.953283i \(0.402319\pi\)
\(74\) −0.621985 −0.0723043
\(75\) 0 0
\(76\) 3.42811 0.393231
\(77\) 2.57601 0.293563
\(78\) −1.40911 −0.159550
\(79\) −7.94736 −0.894148 −0.447074 0.894497i \(-0.647534\pi\)
−0.447074 + 0.894497i \(0.647534\pi\)
\(80\) 0 0
\(81\) 33.4803 3.72003
\(82\) −0.423071 −0.0467204
\(83\) −1.58243 −0.173694 −0.0868471 0.996222i \(-0.527679\pi\)
−0.0868471 + 0.996222i \(0.527679\pi\)
\(84\) 17.1490 1.87111
\(85\) 0 0
\(86\) 1.02299 0.110312
\(87\) 26.8511 2.87874
\(88\) 0.393350 0.0419312
\(89\) 5.85263 0.620377 0.310189 0.950675i \(-0.399608\pi\)
0.310189 + 0.950675i \(0.399608\pi\)
\(90\) 0 0
\(91\) −11.0088 −1.15403
\(92\) −1.99028 −0.207501
\(93\) 20.4039 2.11578
\(94\) 0.429502 0.0442998
\(95\) 0 0
\(96\) 3.93111 0.401217
\(97\) −12.8485 −1.30456 −0.652282 0.757977i \(-0.726188\pi\)
−0.652282 + 0.757977i \(0.726188\pi\)
\(98\) 0.0359010 0.00362654
\(99\) 8.18807 0.822932
\(100\) 0 0
\(101\) −1.05074 −0.104552 −0.0522762 0.998633i \(-0.516648\pi\)
−0.0522762 + 0.998633i \(0.516648\pi\)
\(102\) 2.31197 0.228919
\(103\) 7.29909 0.719200 0.359600 0.933106i \(-0.382913\pi\)
0.359600 + 0.933106i \(0.382913\pi\)
\(104\) −1.68101 −0.164837
\(105\) 0 0
\(106\) −0.172122 −0.0167179
\(107\) −10.4902 −1.01413 −0.507064 0.861908i \(-0.669269\pi\)
−0.507064 + 0.861908i \(0.669269\pi\)
\(108\) 34.5381 3.32343
\(109\) 10.7094 1.02578 0.512888 0.858455i \(-0.328576\pi\)
0.512888 + 0.858455i \(0.328576\pi\)
\(110\) 0 0
\(111\) −21.1048 −2.00318
\(112\) 10.1541 0.959470
\(113\) 0.487507 0.0458608 0.0229304 0.999737i \(-0.492700\pi\)
0.0229304 + 0.999737i \(0.492700\pi\)
\(114\) −0.567927 −0.0531912
\(115\) 0 0
\(116\) 15.9771 1.48344
\(117\) −34.9924 −3.23505
\(118\) −0.664803 −0.0612001
\(119\) 18.0624 1.65578
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0.118201 0.0107014
\(123\) −14.3554 −1.29438
\(124\) 12.1409 1.09028
\(125\) 0 0
\(126\) −2.07924 −0.185233
\(127\) −9.26452 −0.822093 −0.411046 0.911614i \(-0.634837\pi\)
−0.411046 + 0.911614i \(0.634837\pi\)
\(128\) 3.11626 0.275441
\(129\) 34.7117 3.05619
\(130\) 0 0
\(131\) 12.0582 1.05353 0.526766 0.850011i \(-0.323405\pi\)
0.526766 + 0.850011i \(0.323405\pi\)
\(132\) 6.65721 0.579436
\(133\) −4.43697 −0.384734
\(134\) −0.472172 −0.0407895
\(135\) 0 0
\(136\) 2.75809 0.236504
\(137\) −9.54165 −0.815198 −0.407599 0.913161i \(-0.633634\pi\)
−0.407599 + 0.913161i \(0.633634\pi\)
\(138\) 0.329726 0.0280681
\(139\) 0.752437 0.0638209 0.0319104 0.999491i \(-0.489841\pi\)
0.0319104 + 0.999491i \(0.489841\pi\)
\(140\) 0 0
\(141\) 14.5736 1.22732
\(142\) −0.856894 −0.0719089
\(143\) −4.27358 −0.357375
\(144\) 32.2757 2.68964
\(145\) 0 0
\(146\) −0.508848 −0.0421125
\(147\) 1.21817 0.100473
\(148\) −12.5580 −1.03226
\(149\) −0.762211 −0.0624428 −0.0312214 0.999512i \(-0.509940\pi\)
−0.0312214 + 0.999512i \(0.509940\pi\)
\(150\) 0 0
\(151\) 3.02363 0.246060 0.123030 0.992403i \(-0.460739\pi\)
0.123030 + 0.992403i \(0.460739\pi\)
\(152\) −0.677514 −0.0549537
\(153\) 57.4130 4.64157
\(154\) −0.253935 −0.0204627
\(155\) 0 0
\(156\) −28.4501 −2.27783
\(157\) 4.27555 0.341226 0.170613 0.985338i \(-0.445425\pi\)
0.170613 + 0.985338i \(0.445425\pi\)
\(158\) 0.783427 0.0623261
\(159\) −5.84034 −0.463169
\(160\) 0 0
\(161\) 2.57601 0.203018
\(162\) −3.30038 −0.259303
\(163\) −7.12165 −0.557810 −0.278905 0.960319i \(-0.589972\pi\)
−0.278905 + 0.960319i \(0.589972\pi\)
\(164\) −8.54187 −0.667008
\(165\) 0 0
\(166\) 0.155991 0.0121073
\(167\) −4.65914 −0.360535 −0.180268 0.983618i \(-0.557696\pi\)
−0.180268 + 0.983618i \(0.557696\pi\)
\(168\) −3.38925 −0.261486
\(169\) 5.26347 0.404883
\(170\) 0 0
\(171\) −14.1033 −1.07851
\(172\) 20.6544 1.57488
\(173\) 11.3203 0.860668 0.430334 0.902670i \(-0.358396\pi\)
0.430334 + 0.902670i \(0.358396\pi\)
\(174\) −2.64690 −0.200661
\(175\) 0 0
\(176\) 3.94179 0.297124
\(177\) −22.5577 −1.69554
\(178\) −0.576934 −0.0432430
\(179\) −0.975679 −0.0729257 −0.0364628 0.999335i \(-0.511609\pi\)
−0.0364628 + 0.999335i \(0.511609\pi\)
\(180\) 0 0
\(181\) −12.2845 −0.913100 −0.456550 0.889698i \(-0.650915\pi\)
−0.456550 + 0.889698i \(0.650915\pi\)
\(182\) 1.08521 0.0804412
\(183\) 4.01072 0.296481
\(184\) 0.393350 0.0289981
\(185\) 0 0
\(186\) −2.01135 −0.147479
\(187\) 7.01179 0.512753
\(188\) 8.67171 0.632449
\(189\) −44.7023 −3.25162
\(190\) 0 0
\(191\) 10.5415 0.762759 0.381380 0.924418i \(-0.375449\pi\)
0.381380 + 0.924418i \(0.375449\pi\)
\(192\) 25.9819 1.87508
\(193\) 2.78596 0.200537 0.100269 0.994960i \(-0.468030\pi\)
0.100269 + 0.994960i \(0.468030\pi\)
\(194\) 1.26656 0.0909339
\(195\) 0 0
\(196\) 0.724845 0.0517747
\(197\) 17.9830 1.28123 0.640616 0.767861i \(-0.278679\pi\)
0.640616 + 0.767861i \(0.278679\pi\)
\(198\) −0.807155 −0.0573620
\(199\) 0.857794 0.0608074 0.0304037 0.999538i \(-0.490321\pi\)
0.0304037 + 0.999538i \(0.490321\pi\)
\(200\) 0 0
\(201\) −16.0215 −1.13007
\(202\) 0.103579 0.00728777
\(203\) −20.6791 −1.45139
\(204\) 46.6789 3.26818
\(205\) 0 0
\(206\) −0.719522 −0.0501315
\(207\) 8.18807 0.569110
\(208\) −16.8455 −1.16803
\(209\) −1.72242 −0.119142
\(210\) 0 0
\(211\) −20.7330 −1.42732 −0.713658 0.700495i \(-0.752963\pi\)
−0.713658 + 0.700495i \(0.752963\pi\)
\(212\) −3.47516 −0.238675
\(213\) −29.0756 −1.99223
\(214\) 1.03410 0.0706893
\(215\) 0 0
\(216\) −6.82594 −0.464446
\(217\) −15.7138 −1.06672
\(218\) −1.05570 −0.0715012
\(219\) −17.2659 −1.16672
\(220\) 0 0
\(221\) −29.9654 −2.01569
\(222\) 2.08045 0.139631
\(223\) 0.901902 0.0603958 0.0301979 0.999544i \(-0.490386\pi\)
0.0301979 + 0.999544i \(0.490386\pi\)
\(224\) −3.02750 −0.202283
\(225\) 0 0
\(226\) −0.0480570 −0.00319670
\(227\) −10.8182 −0.718028 −0.359014 0.933332i \(-0.616887\pi\)
−0.359014 + 0.933332i \(0.616887\pi\)
\(228\) −11.4665 −0.759389
\(229\) −27.6949 −1.83013 −0.915066 0.403304i \(-0.867862\pi\)
−0.915066 + 0.403304i \(0.867862\pi\)
\(230\) 0 0
\(231\) −8.61637 −0.566916
\(232\) −3.15764 −0.207310
\(233\) −9.85448 −0.645589 −0.322794 0.946469i \(-0.604622\pi\)
−0.322794 + 0.946469i \(0.604622\pi\)
\(234\) 3.44944 0.225497
\(235\) 0 0
\(236\) −13.4225 −0.873728
\(237\) 26.5828 1.72674
\(238\) −1.78054 −0.115415
\(239\) 22.2862 1.44158 0.720788 0.693156i \(-0.243780\pi\)
0.720788 + 0.693156i \(0.243780\pi\)
\(240\) 0 0
\(241\) −8.26747 −0.532555 −0.266277 0.963896i \(-0.585794\pi\)
−0.266277 + 0.963896i \(0.585794\pi\)
\(242\) −0.0985770 −0.00633677
\(243\) −59.9267 −3.84430
\(244\) 2.38649 0.152779
\(245\) 0 0
\(246\) 1.41511 0.0902243
\(247\) 7.36090 0.468363
\(248\) −2.39946 −0.152366
\(249\) 5.29300 0.335430
\(250\) 0 0
\(251\) 7.07648 0.446663 0.223332 0.974743i \(-0.428307\pi\)
0.223332 + 0.974743i \(0.428307\pi\)
\(252\) −41.9801 −2.64450
\(253\) 1.00000 0.0628695
\(254\) 0.913268 0.0573035
\(255\) 0 0
\(256\) 15.2283 0.951766
\(257\) −5.69650 −0.355338 −0.177669 0.984090i \(-0.556856\pi\)
−0.177669 + 0.984090i \(0.556856\pi\)
\(258\) −3.42177 −0.213030
\(259\) 16.2537 1.00995
\(260\) 0 0
\(261\) −65.7303 −4.06860
\(262\) −1.18866 −0.0734358
\(263\) −2.50258 −0.154316 −0.0771579 0.997019i \(-0.524585\pi\)
−0.0771579 + 0.997019i \(0.524585\pi\)
\(264\) −1.31570 −0.0809757
\(265\) 0 0
\(266\) 0.437383 0.0268177
\(267\) −19.5762 −1.19804
\(268\) −9.53322 −0.582334
\(269\) −3.23678 −0.197350 −0.0986749 0.995120i \(-0.531460\pi\)
−0.0986749 + 0.995120i \(0.531460\pi\)
\(270\) 0 0
\(271\) 9.71834 0.590347 0.295173 0.955444i \(-0.404623\pi\)
0.295173 + 0.955444i \(0.404623\pi\)
\(272\) 27.6390 1.67586
\(273\) 36.8227 2.22861
\(274\) 0.940587 0.0568229
\(275\) 0 0
\(276\) 6.65721 0.400717
\(277\) −20.3613 −1.22339 −0.611695 0.791094i \(-0.709512\pi\)
−0.611695 + 0.791094i \(0.709512\pi\)
\(278\) −0.0741730 −0.00444860
\(279\) −49.9478 −2.99030
\(280\) 0 0
\(281\) 27.8912 1.66385 0.831926 0.554887i \(-0.187238\pi\)
0.831926 + 0.554887i \(0.187238\pi\)
\(282\) −1.43662 −0.0855497
\(283\) 32.2777 1.91871 0.959356 0.282198i \(-0.0910636\pi\)
0.959356 + 0.282198i \(0.0910636\pi\)
\(284\) −17.3008 −1.02661
\(285\) 0 0
\(286\) 0.421276 0.0249106
\(287\) 11.0557 0.652596
\(288\) −9.62319 −0.567052
\(289\) 32.1651 1.89207
\(290\) 0 0
\(291\) 42.9763 2.51931
\(292\) −10.2737 −0.601223
\(293\) −0.0837545 −0.00489299 −0.00244650 0.999997i \(-0.500779\pi\)
−0.00244650 + 0.999997i \(0.500779\pi\)
\(294\) −0.120084 −0.00700342
\(295\) 0 0
\(296\) 2.48190 0.144257
\(297\) −17.3534 −1.00694
\(298\) 0.0751365 0.00435254
\(299\) −4.27358 −0.247147
\(300\) 0 0
\(301\) −26.7328 −1.54085
\(302\) −0.298060 −0.0171514
\(303\) 3.51457 0.201907
\(304\) −6.78942 −0.389400
\(305\) 0 0
\(306\) −5.65960 −0.323538
\(307\) −34.7795 −1.98497 −0.992485 0.122367i \(-0.960952\pi\)
−0.992485 + 0.122367i \(0.960952\pi\)
\(308\) −5.12698 −0.292137
\(309\) −24.4144 −1.38889
\(310\) 0 0
\(311\) −25.1850 −1.42811 −0.714054 0.700091i \(-0.753143\pi\)
−0.714054 + 0.700091i \(0.753143\pi\)
\(312\) 5.62274 0.318325
\(313\) 8.68839 0.491097 0.245548 0.969384i \(-0.421032\pi\)
0.245548 + 0.969384i \(0.421032\pi\)
\(314\) −0.421471 −0.0237850
\(315\) 0 0
\(316\) 15.8175 0.889804
\(317\) −8.22291 −0.461845 −0.230922 0.972972i \(-0.574174\pi\)
−0.230922 + 0.972972i \(0.574174\pi\)
\(318\) 0.575723 0.0322849
\(319\) −8.02757 −0.449458
\(320\) 0 0
\(321\) 35.0883 1.95844
\(322\) −0.253935 −0.0141512
\(323\) −12.0772 −0.671996
\(324\) −66.6352 −3.70196
\(325\) 0 0
\(326\) 0.702030 0.0388819
\(327\) −35.8215 −1.98093
\(328\) 1.68817 0.0932138
\(329\) −11.2237 −0.618784
\(330\) 0 0
\(331\) −10.9564 −0.602217 −0.301108 0.953590i \(-0.597357\pi\)
−0.301108 + 0.953590i \(0.597357\pi\)
\(332\) 3.14948 0.172850
\(333\) 51.6637 2.83116
\(334\) 0.459284 0.0251309
\(335\) 0 0
\(336\) −33.9639 −1.85288
\(337\) 32.2285 1.75560 0.877798 0.479031i \(-0.159012\pi\)
0.877798 + 0.479031i \(0.159012\pi\)
\(338\) −0.518857 −0.0282221
\(339\) −1.63064 −0.0885643
\(340\) 0 0
\(341\) −6.10007 −0.330337
\(342\) 1.39026 0.0751767
\(343\) −18.9702 −1.02429
\(344\) −4.08204 −0.220089
\(345\) 0 0
\(346\) −1.11592 −0.0599924
\(347\) 27.4718 1.47476 0.737382 0.675476i \(-0.236062\pi\)
0.737382 + 0.675476i \(0.236062\pi\)
\(348\) −53.4412 −2.86475
\(349\) 13.8793 0.742941 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(350\) 0 0
\(351\) 74.1609 3.95842
\(352\) −1.17527 −0.0626421
\(353\) −3.45719 −0.184008 −0.0920039 0.995759i \(-0.529327\pi\)
−0.0920039 + 0.995759i \(0.529327\pi\)
\(354\) 2.22367 0.118187
\(355\) 0 0
\(356\) −11.6484 −0.617363
\(357\) −60.4162 −3.19756
\(358\) 0.0961795 0.00508324
\(359\) −19.2010 −1.01339 −0.506696 0.862125i \(-0.669133\pi\)
−0.506696 + 0.862125i \(0.669133\pi\)
\(360\) 0 0
\(361\) −16.0333 −0.843856
\(362\) 1.21097 0.0636471
\(363\) −3.34486 −0.175559
\(364\) 21.9106 1.14843
\(365\) 0 0
\(366\) −0.395365 −0.0206660
\(367\) 4.36951 0.228087 0.114043 0.993476i \(-0.463620\pi\)
0.114043 + 0.993476i \(0.463620\pi\)
\(368\) 3.94179 0.205480
\(369\) 35.1415 1.82939
\(370\) 0 0
\(371\) 4.49787 0.233518
\(372\) −40.6094 −2.10550
\(373\) 18.1184 0.938135 0.469068 0.883162i \(-0.344590\pi\)
0.469068 + 0.883162i \(0.344590\pi\)
\(374\) −0.691201 −0.0357411
\(375\) 0 0
\(376\) −1.71384 −0.0883843
\(377\) 34.3065 1.76687
\(378\) 4.40662 0.226652
\(379\) −18.3481 −0.942480 −0.471240 0.882005i \(-0.656194\pi\)
−0.471240 + 0.882005i \(0.656194\pi\)
\(380\) 0 0
\(381\) 30.9885 1.58759
\(382\) −1.03915 −0.0531677
\(383\) −34.2931 −1.75230 −0.876148 0.482042i \(-0.839895\pi\)
−0.876148 + 0.482042i \(0.839895\pi\)
\(384\) −10.4234 −0.531919
\(385\) 0 0
\(386\) −0.274631 −0.0139784
\(387\) −84.9727 −4.31941
\(388\) 25.5721 1.29822
\(389\) 18.2975 0.927720 0.463860 0.885908i \(-0.346464\pi\)
0.463860 + 0.885908i \(0.346464\pi\)
\(390\) 0 0
\(391\) 7.01179 0.354601
\(392\) −0.143255 −0.00723547
\(393\) −40.3330 −2.03453
\(394\) −1.77271 −0.0893076
\(395\) 0 0
\(396\) −16.2966 −0.818934
\(397\) 16.7978 0.843057 0.421528 0.906815i \(-0.361494\pi\)
0.421528 + 0.906815i \(0.361494\pi\)
\(398\) −0.0845587 −0.00423855
\(399\) 14.8410 0.742981
\(400\) 0 0
\(401\) 33.6597 1.68088 0.840442 0.541901i \(-0.182295\pi\)
0.840442 + 0.541901i \(0.182295\pi\)
\(402\) 1.57935 0.0787707
\(403\) 26.0691 1.29860
\(404\) 2.09127 0.104044
\(405\) 0 0
\(406\) 2.03848 0.101168
\(407\) 6.30964 0.312757
\(408\) −9.22540 −0.456725
\(409\) −23.8012 −1.17689 −0.588447 0.808536i \(-0.700260\pi\)
−0.588447 + 0.808536i \(0.700260\pi\)
\(410\) 0 0
\(411\) 31.9155 1.57427
\(412\) −14.5272 −0.715706
\(413\) 17.3726 0.854849
\(414\) −0.807155 −0.0396695
\(415\) 0 0
\(416\) 5.02261 0.246254
\(417\) −2.51679 −0.123248
\(418\) 0.169791 0.00830475
\(419\) −32.1373 −1.57001 −0.785006 0.619489i \(-0.787340\pi\)
−0.785006 + 0.619489i \(0.787340\pi\)
\(420\) 0 0
\(421\) −33.1371 −1.61501 −0.807503 0.589864i \(-0.799181\pi\)
−0.807503 + 0.589864i \(0.799181\pi\)
\(422\) 2.04379 0.0994902
\(423\) −35.6756 −1.73461
\(424\) 0.686815 0.0333547
\(425\) 0 0
\(426\) 2.86619 0.138867
\(427\) −3.08881 −0.149478
\(428\) 20.8785 1.00920
\(429\) 14.2945 0.690145
\(430\) 0 0
\(431\) 9.06476 0.436634 0.218317 0.975878i \(-0.429943\pi\)
0.218317 + 0.975878i \(0.429943\pi\)
\(432\) −68.4033 −3.29105
\(433\) −29.3934 −1.41256 −0.706279 0.707934i \(-0.749627\pi\)
−0.706279 + 0.707934i \(0.749627\pi\)
\(434\) 1.54902 0.0743553
\(435\) 0 0
\(436\) −21.3148 −1.02079
\(437\) −1.72242 −0.0823946
\(438\) 1.70202 0.0813258
\(439\) 7.67129 0.366131 0.183065 0.983101i \(-0.441398\pi\)
0.183065 + 0.983101i \(0.441398\pi\)
\(440\) 0 0
\(441\) −2.98203 −0.142001
\(442\) 2.95390 0.140503
\(443\) 18.8452 0.895362 0.447681 0.894193i \(-0.352250\pi\)
0.447681 + 0.894193i \(0.352250\pi\)
\(444\) 42.0046 1.99345
\(445\) 0 0
\(446\) −0.0889068 −0.00420986
\(447\) 2.54949 0.120587
\(448\) −20.0097 −0.945370
\(449\) −19.2501 −0.908467 −0.454234 0.890883i \(-0.650087\pi\)
−0.454234 + 0.890883i \(0.650087\pi\)
\(450\) 0 0
\(451\) 4.29179 0.202092
\(452\) −0.970276 −0.0456380
\(453\) −10.1136 −0.475179
\(454\) 1.06642 0.0500498
\(455\) 0 0
\(456\) 2.26619 0.106124
\(457\) −14.2597 −0.667041 −0.333520 0.942743i \(-0.608237\pi\)
−0.333520 + 0.942743i \(0.608237\pi\)
\(458\) 2.73008 0.127568
\(459\) −121.678 −5.67944
\(460\) 0 0
\(461\) −6.79786 −0.316608 −0.158304 0.987390i \(-0.550603\pi\)
−0.158304 + 0.987390i \(0.550603\pi\)
\(462\) 0.849376 0.0395165
\(463\) 23.3464 1.08500 0.542499 0.840056i \(-0.317478\pi\)
0.542499 + 0.840056i \(0.317478\pi\)
\(464\) −31.6430 −1.46899
\(465\) 0 0
\(466\) 0.971425 0.0450004
\(467\) −20.0130 −0.926093 −0.463047 0.886334i \(-0.653244\pi\)
−0.463047 + 0.886334i \(0.653244\pi\)
\(468\) 69.6447 3.21933
\(469\) 12.3388 0.569751
\(470\) 0 0
\(471\) −14.3011 −0.658960
\(472\) 2.65275 0.122103
\(473\) −10.3776 −0.477164
\(474\) −2.62045 −0.120361
\(475\) 0 0
\(476\) −35.9493 −1.64773
\(477\) 14.2969 0.654610
\(478\) −2.19691 −0.100484
\(479\) −32.3385 −1.47758 −0.738791 0.673934i \(-0.764603\pi\)
−0.738791 + 0.673934i \(0.764603\pi\)
\(480\) 0 0
\(481\) −26.9647 −1.22949
\(482\) 0.814983 0.0371214
\(483\) −8.61637 −0.392059
\(484\) −1.99028 −0.0904674
\(485\) 0 0
\(486\) 5.90739 0.267965
\(487\) −10.2937 −0.466450 −0.233225 0.972423i \(-0.574928\pi\)
−0.233225 + 0.972423i \(0.574928\pi\)
\(488\) −0.471654 −0.0213508
\(489\) 23.8209 1.07722
\(490\) 0 0
\(491\) −2.44398 −0.110295 −0.0551477 0.998478i \(-0.517563\pi\)
−0.0551477 + 0.998478i \(0.517563\pi\)
\(492\) 28.5713 1.28810
\(493\) −56.2876 −2.53507
\(494\) −0.725615 −0.0326470
\(495\) 0 0
\(496\) −24.0452 −1.07966
\(497\) 22.3923 1.00443
\(498\) −0.521768 −0.0233810
\(499\) −15.7764 −0.706247 −0.353124 0.935577i \(-0.614880\pi\)
−0.353124 + 0.935577i \(0.614880\pi\)
\(500\) 0 0
\(501\) 15.5842 0.696249
\(502\) −0.697578 −0.0311344
\(503\) −37.7052 −1.68119 −0.840595 0.541664i \(-0.817795\pi\)
−0.840595 + 0.541664i \(0.817795\pi\)
\(504\) 8.29674 0.369566
\(505\) 0 0
\(506\) −0.0985770 −0.00438228
\(507\) −17.6056 −0.781891
\(508\) 18.4390 0.818099
\(509\) −15.7070 −0.696201 −0.348101 0.937457i \(-0.613173\pi\)
−0.348101 + 0.937457i \(0.613173\pi\)
\(510\) 0 0
\(511\) 13.2972 0.588232
\(512\) −7.73367 −0.341783
\(513\) 29.8898 1.31967
\(514\) 0.561543 0.0247686
\(515\) 0 0
\(516\) −69.0861 −3.04134
\(517\) −4.35702 −0.191622
\(518\) −1.60224 −0.0703982
\(519\) −37.8648 −1.66208
\(520\) 0 0
\(521\) −29.6576 −1.29932 −0.649661 0.760224i \(-0.725089\pi\)
−0.649661 + 0.760224i \(0.725089\pi\)
\(522\) 6.47950 0.283600
\(523\) 1.12098 0.0490169 0.0245084 0.999700i \(-0.492198\pi\)
0.0245084 + 0.999700i \(0.492198\pi\)
\(524\) −23.9993 −1.04841
\(525\) 0 0
\(526\) 0.246697 0.0107565
\(527\) −42.7724 −1.86319
\(528\) −13.1847 −0.573791
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 55.2204 2.39636
\(532\) 8.83082 0.382865
\(533\) −18.3413 −0.794450
\(534\) 1.92976 0.0835090
\(535\) 0 0
\(536\) 1.88410 0.0813807
\(537\) 3.26351 0.140831
\(538\) 0.319072 0.0137562
\(539\) −0.364192 −0.0156869
\(540\) 0 0
\(541\) 41.1739 1.77020 0.885102 0.465397i \(-0.154088\pi\)
0.885102 + 0.465397i \(0.154088\pi\)
\(542\) −0.958004 −0.0411498
\(543\) 41.0899 1.76334
\(544\) −8.24074 −0.353319
\(545\) 0 0
\(546\) −3.62987 −0.155344
\(547\) 17.2965 0.739546 0.369773 0.929122i \(-0.379435\pi\)
0.369773 + 0.929122i \(0.379435\pi\)
\(548\) 18.9906 0.811237
\(549\) −9.81807 −0.419025
\(550\) 0 0
\(551\) 13.8269 0.589044
\(552\) −1.31570 −0.0559999
\(553\) −20.4725 −0.870577
\(554\) 2.00715 0.0852757
\(555\) 0 0
\(556\) −1.49756 −0.0635108
\(557\) −44.5087 −1.88589 −0.942947 0.332944i \(-0.891958\pi\)
−0.942947 + 0.332944i \(0.891958\pi\)
\(558\) 4.92370 0.208437
\(559\) 44.3496 1.87579
\(560\) 0 0
\(561\) −23.4534 −0.990204
\(562\) −2.74943 −0.115978
\(563\) −20.7078 −0.872732 −0.436366 0.899769i \(-0.643735\pi\)
−0.436366 + 0.899769i \(0.643735\pi\)
\(564\) −29.0056 −1.22136
\(565\) 0 0
\(566\) −3.18184 −0.133743
\(567\) 86.2454 3.62197
\(568\) 3.41925 0.143468
\(569\) −8.30654 −0.348228 −0.174114 0.984725i \(-0.555706\pi\)
−0.174114 + 0.984725i \(0.555706\pi\)
\(570\) 0 0
\(571\) 12.6846 0.530836 0.265418 0.964133i \(-0.414490\pi\)
0.265418 + 0.964133i \(0.414490\pi\)
\(572\) 8.50563 0.355638
\(573\) −35.2600 −1.47301
\(574\) −1.08983 −0.0454888
\(575\) 0 0
\(576\) −63.6027 −2.65011
\(577\) 35.3453 1.47145 0.735723 0.677283i \(-0.236843\pi\)
0.735723 + 0.677283i \(0.236843\pi\)
\(578\) −3.17074 −0.131885
\(579\) −9.31862 −0.387269
\(580\) 0 0
\(581\) −4.07635 −0.169115
\(582\) −4.23647 −0.175607
\(583\) 1.74607 0.0723146
\(584\) 2.03045 0.0840205
\(585\) 0 0
\(586\) 0.00825627 0.000341063 0
\(587\) −15.9955 −0.660205 −0.330103 0.943945i \(-0.607083\pi\)
−0.330103 + 0.943945i \(0.607083\pi\)
\(588\) −2.42450 −0.0999848
\(589\) 10.5069 0.432929
\(590\) 0 0
\(591\) −60.1504 −2.47426
\(592\) 24.8713 1.02220
\(593\) 33.5080 1.37601 0.688005 0.725706i \(-0.258487\pi\)
0.688005 + 0.725706i \(0.258487\pi\)
\(594\) 1.71064 0.0701885
\(595\) 0 0
\(596\) 1.51702 0.0621394
\(597\) −2.86920 −0.117428
\(598\) 0.421276 0.0172273
\(599\) −5.35026 −0.218606 −0.109303 0.994008i \(-0.534862\pi\)
−0.109303 + 0.994008i \(0.534862\pi\)
\(600\) 0 0
\(601\) −36.3268 −1.48180 −0.740901 0.671614i \(-0.765601\pi\)
−0.740901 + 0.671614i \(0.765601\pi\)
\(602\) 2.63524 0.107404
\(603\) 39.2199 1.59716
\(604\) −6.01788 −0.244864
\(605\) 0 0
\(606\) −0.346456 −0.0140738
\(607\) −36.7889 −1.49321 −0.746607 0.665266i \(-0.768318\pi\)
−0.746607 + 0.665266i \(0.768318\pi\)
\(608\) 2.02431 0.0820966
\(609\) 69.1686 2.80285
\(610\) 0 0
\(611\) 18.6201 0.753288
\(612\) −114.268 −4.61901
\(613\) 14.8696 0.600577 0.300288 0.953848i \(-0.402917\pi\)
0.300288 + 0.953848i \(0.402917\pi\)
\(614\) 3.42846 0.138361
\(615\) 0 0
\(616\) 1.01327 0.0408259
\(617\) 23.7451 0.955944 0.477972 0.878375i \(-0.341372\pi\)
0.477972 + 0.878375i \(0.341372\pi\)
\(618\) 2.40670 0.0968116
\(619\) 43.3459 1.74222 0.871110 0.491088i \(-0.163401\pi\)
0.871110 + 0.491088i \(0.163401\pi\)
\(620\) 0 0
\(621\) −17.3534 −0.696366
\(622\) 2.48266 0.0995455
\(623\) 15.0764 0.604023
\(624\) 56.3460 2.25564
\(625\) 0 0
\(626\) −0.856475 −0.0342316
\(627\) 5.76125 0.230082
\(628\) −8.50955 −0.339568
\(629\) 44.2418 1.76404
\(630\) 0 0
\(631\) 19.0544 0.758544 0.379272 0.925285i \(-0.376174\pi\)
0.379272 + 0.925285i \(0.376174\pi\)
\(632\) −3.12609 −0.124349
\(633\) 69.3488 2.75637
\(634\) 0.810590 0.0321926
\(635\) 0 0
\(636\) 11.6239 0.460919
\(637\) 1.55640 0.0616670
\(638\) 0.791334 0.0313292
\(639\) 71.1759 2.81568
\(640\) 0 0
\(641\) −10.6471 −0.420535 −0.210268 0.977644i \(-0.567434\pi\)
−0.210268 + 0.977644i \(0.567434\pi\)
\(642\) −3.45890 −0.136512
\(643\) −19.0246 −0.750258 −0.375129 0.926973i \(-0.622402\pi\)
−0.375129 + 0.926973i \(0.622402\pi\)
\(644\) −5.12698 −0.202031
\(645\) 0 0
\(646\) 1.19054 0.0468411
\(647\) 24.8112 0.975430 0.487715 0.873003i \(-0.337831\pi\)
0.487715 + 0.873003i \(0.337831\pi\)
\(648\) 13.1695 0.517346
\(649\) 6.74400 0.264725
\(650\) 0 0
\(651\) 52.5605 2.06001
\(652\) 14.1741 0.555100
\(653\) 22.1826 0.868072 0.434036 0.900895i \(-0.357089\pi\)
0.434036 + 0.900895i \(0.357089\pi\)
\(654\) 3.53117 0.138080
\(655\) 0 0
\(656\) 16.9173 0.660511
\(657\) 42.2663 1.64896
\(658\) 1.10640 0.0431320
\(659\) 17.1147 0.666692 0.333346 0.942804i \(-0.391822\pi\)
0.333346 + 0.942804i \(0.391822\pi\)
\(660\) 0 0
\(661\) −25.6537 −0.997815 −0.498908 0.866655i \(-0.666265\pi\)
−0.498908 + 0.866655i \(0.666265\pi\)
\(662\) 1.08005 0.0419772
\(663\) 100.230 3.89261
\(664\) −0.622448 −0.0241557
\(665\) 0 0
\(666\) −5.09286 −0.197344
\(667\) −8.02757 −0.310829
\(668\) 9.27301 0.358784
\(669\) −3.01673 −0.116634
\(670\) 0 0
\(671\) −1.19907 −0.0462896
\(672\) 10.1266 0.390641
\(673\) −19.0359 −0.733780 −0.366890 0.930264i \(-0.619578\pi\)
−0.366890 + 0.930264i \(0.619578\pi\)
\(674\) −3.17698 −0.122373
\(675\) 0 0
\(676\) −10.4758 −0.402915
\(677\) 12.5375 0.481856 0.240928 0.970543i \(-0.422548\pi\)
0.240928 + 0.970543i \(0.422548\pi\)
\(678\) 0.160744 0.00617332
\(679\) −33.0977 −1.27017
\(680\) 0 0
\(681\) 36.1853 1.38662
\(682\) 0.601326 0.0230260
\(683\) 5.31521 0.203381 0.101690 0.994816i \(-0.467575\pi\)
0.101690 + 0.994816i \(0.467575\pi\)
\(684\) 28.0696 1.07327
\(685\) 0 0
\(686\) 1.87003 0.0713979
\(687\) 92.6356 3.53427
\(688\) −40.9064 −1.55954
\(689\) −7.46195 −0.284278
\(690\) 0 0
\(691\) −51.1052 −1.94413 −0.972066 0.234706i \(-0.924587\pi\)
−0.972066 + 0.234706i \(0.924587\pi\)
\(692\) −22.5306 −0.856486
\(693\) 21.0925 0.801239
\(694\) −2.70809 −0.102798
\(695\) 0 0
\(696\) 10.5619 0.400347
\(697\) 30.0931 1.13986
\(698\) −1.36818 −0.0517863
\(699\) 32.9618 1.24673
\(700\) 0 0
\(701\) 16.8643 0.636957 0.318479 0.947930i \(-0.396828\pi\)
0.318479 + 0.947930i \(0.396828\pi\)
\(702\) −7.31056 −0.275919
\(703\) −10.8679 −0.409889
\(704\) −7.76773 −0.292757
\(705\) 0 0
\(706\) 0.340800 0.0128262
\(707\) −2.70671 −0.101796
\(708\) 44.8962 1.68730
\(709\) 23.2166 0.871917 0.435958 0.899967i \(-0.356410\pi\)
0.435958 + 0.899967i \(0.356410\pi\)
\(710\) 0 0
\(711\) −65.0735 −2.44045
\(712\) 2.30213 0.0862760
\(713\) −6.10007 −0.228449
\(714\) 5.95564 0.222884
\(715\) 0 0
\(716\) 1.94188 0.0725714
\(717\) −74.5442 −2.78390
\(718\) 1.89278 0.0706379
\(719\) −22.5357 −0.840439 −0.420219 0.907423i \(-0.638047\pi\)
−0.420219 + 0.907423i \(0.638047\pi\)
\(720\) 0 0
\(721\) 18.8025 0.700242
\(722\) 1.58051 0.0588205
\(723\) 27.6535 1.02845
\(724\) 24.4496 0.908664
\(725\) 0 0
\(726\) 0.329726 0.0122373
\(727\) −3.69172 −0.136918 −0.0684592 0.997654i \(-0.521808\pi\)
−0.0684592 + 0.997654i \(0.521808\pi\)
\(728\) −4.33030 −0.160491
\(729\) 100.005 3.70390
\(730\) 0 0
\(731\) −72.7657 −2.69134
\(732\) −7.98246 −0.295040
\(733\) 6.78702 0.250684 0.125342 0.992114i \(-0.459997\pi\)
0.125342 + 0.992114i \(0.459997\pi\)
\(734\) −0.430733 −0.0158987
\(735\) 0 0
\(736\) −1.17527 −0.0433210
\(737\) 4.78988 0.176438
\(738\) −3.46414 −0.127517
\(739\) −30.2153 −1.11149 −0.555743 0.831354i \(-0.687566\pi\)
−0.555743 + 0.831354i \(0.687566\pi\)
\(740\) 0 0
\(741\) −24.6212 −0.904481
\(742\) −0.443387 −0.0162772
\(743\) −20.0638 −0.736070 −0.368035 0.929812i \(-0.619969\pi\)
−0.368035 + 0.929812i \(0.619969\pi\)
\(744\) 8.02586 0.294242
\(745\) 0 0
\(746\) −1.78606 −0.0653922
\(747\) −12.9570 −0.474073
\(748\) −13.9554 −0.510261
\(749\) −27.0229 −0.987395
\(750\) 0 0
\(751\) 27.7596 1.01296 0.506481 0.862251i \(-0.330946\pi\)
0.506481 + 0.862251i \(0.330946\pi\)
\(752\) −17.1745 −0.626289
\(753\) −23.6698 −0.862576
\(754\) −3.38183 −0.123159
\(755\) 0 0
\(756\) 88.9703 3.23582
\(757\) 5.91530 0.214995 0.107498 0.994205i \(-0.465716\pi\)
0.107498 + 0.994205i \(0.465716\pi\)
\(758\) 1.80870 0.0656951
\(759\) −3.34486 −0.121411
\(760\) 0 0
\(761\) −8.67915 −0.314619 −0.157310 0.987549i \(-0.550282\pi\)
−0.157310 + 0.987549i \(0.550282\pi\)
\(762\) −3.05475 −0.110662
\(763\) 27.5875 0.998736
\(764\) −20.9807 −0.759053
\(765\) 0 0
\(766\) 3.38051 0.122143
\(767\) −28.8210 −1.04067
\(768\) −50.9364 −1.83801
\(769\) 52.7197 1.90112 0.950561 0.310538i \(-0.100509\pi\)
0.950561 + 0.310538i \(0.100509\pi\)
\(770\) 0 0
\(771\) 19.0540 0.686212
\(772\) −5.54484 −0.199563
\(773\) −46.4791 −1.67174 −0.835869 0.548928i \(-0.815036\pi\)
−0.835869 + 0.548928i \(0.815036\pi\)
\(774\) 8.37635 0.301082
\(775\) 0 0
\(776\) −5.05394 −0.181426
\(777\) −54.3662 −1.95038
\(778\) −1.80371 −0.0646662
\(779\) −7.39227 −0.264855
\(780\) 0 0
\(781\) 8.69264 0.311047
\(782\) −0.691201 −0.0247173
\(783\) 139.305 4.97837
\(784\) −1.43557 −0.0512703
\(785\) 0 0
\(786\) 3.97591 0.141816
\(787\) 4.85692 0.173131 0.0865653 0.996246i \(-0.472411\pi\)
0.0865653 + 0.996246i \(0.472411\pi\)
\(788\) −35.7912 −1.27501
\(789\) 8.37078 0.298008
\(790\) 0 0
\(791\) 1.25582 0.0446518
\(792\) 3.22078 0.114445
\(793\) 5.12432 0.181970
\(794\) −1.65588 −0.0587648
\(795\) 0 0
\(796\) −1.70725 −0.0605120
\(797\) 6.47756 0.229447 0.114724 0.993397i \(-0.463402\pi\)
0.114724 + 0.993397i \(0.463402\pi\)
\(798\) −1.46298 −0.0517890
\(799\) −30.5505 −1.08080
\(800\) 0 0
\(801\) 47.9217 1.69323
\(802\) −3.31807 −0.117165
\(803\) 5.16193 0.182161
\(804\) 31.8873 1.12458
\(805\) 0 0
\(806\) −2.56981 −0.0905179
\(807\) 10.8266 0.381113
\(808\) −0.413308 −0.0145401
\(809\) −34.9544 −1.22893 −0.614466 0.788943i \(-0.710629\pi\)
−0.614466 + 0.788943i \(0.710629\pi\)
\(810\) 0 0
\(811\) −27.6077 −0.969439 −0.484719 0.874670i \(-0.661078\pi\)
−0.484719 + 0.874670i \(0.661078\pi\)
\(812\) 41.1572 1.44433
\(813\) −32.5065 −1.14005
\(814\) −0.621985 −0.0218006
\(815\) 0 0
\(816\) −92.4485 −3.23634
\(817\) 17.8746 0.625355
\(818\) 2.34625 0.0820347
\(819\) −90.1405 −3.14977
\(820\) 0 0
\(821\) 18.5526 0.647491 0.323745 0.946144i \(-0.395058\pi\)
0.323745 + 0.946144i \(0.395058\pi\)
\(822\) −3.14613 −0.109734
\(823\) −0.337866 −0.0117773 −0.00588863 0.999983i \(-0.501874\pi\)
−0.00588863 + 0.999983i \(0.501874\pi\)
\(824\) 2.87110 0.100019
\(825\) 0 0
\(826\) −1.71254 −0.0595868
\(827\) −43.1299 −1.49977 −0.749887 0.661566i \(-0.769892\pi\)
−0.749887 + 0.661566i \(0.769892\pi\)
\(828\) −16.2966 −0.566345
\(829\) 0.536280 0.0186258 0.00931289 0.999957i \(-0.497036\pi\)
0.00931289 + 0.999957i \(0.497036\pi\)
\(830\) 0 0
\(831\) 68.1056 2.36256
\(832\) 33.1960 1.15086
\(833\) −2.55364 −0.0884783
\(834\) 0.248098 0.00859093
\(835\) 0 0
\(836\) 3.42811 0.118563
\(837\) 105.857 3.65894
\(838\) 3.16800 0.109437
\(839\) 12.8678 0.444246 0.222123 0.975019i \(-0.428701\pi\)
0.222123 + 0.975019i \(0.428701\pi\)
\(840\) 0 0
\(841\) 35.4419 1.22213
\(842\) 3.26656 0.112573
\(843\) −93.2922 −3.21315
\(844\) 41.2644 1.42038
\(845\) 0 0
\(846\) 3.51679 0.120910
\(847\) 2.57601 0.0885126
\(848\) 6.88262 0.236350
\(849\) −107.964 −3.70533
\(850\) 0 0
\(851\) 6.30964 0.216292
\(852\) 57.8687 1.98255
\(853\) −48.4726 −1.65967 −0.829835 0.558009i \(-0.811566\pi\)
−0.829835 + 0.558009i \(0.811566\pi\)
\(854\) 0.304486 0.0104193
\(855\) 0 0
\(856\) −4.12633 −0.141035
\(857\) 12.2020 0.416811 0.208406 0.978042i \(-0.433173\pi\)
0.208406 + 0.978042i \(0.433173\pi\)
\(858\) −1.40911 −0.0481062
\(859\) 24.5683 0.838258 0.419129 0.907927i \(-0.362335\pi\)
0.419129 + 0.907927i \(0.362335\pi\)
\(860\) 0 0
\(861\) −36.9796 −1.26026
\(862\) −0.893577 −0.0304354
\(863\) 29.4190 1.00143 0.500717 0.865611i \(-0.333070\pi\)
0.500717 + 0.865611i \(0.333070\pi\)
\(864\) 20.3949 0.693848
\(865\) 0 0
\(866\) 2.89751 0.0984615
\(867\) −107.588 −3.65387
\(868\) 31.2749 1.06154
\(869\) −7.94736 −0.269596
\(870\) 0 0
\(871\) −20.4699 −0.693598
\(872\) 4.21255 0.142655
\(873\) −105.204 −3.56062
\(874\) 0.169791 0.00574327
\(875\) 0 0
\(876\) 34.3641 1.16105
\(877\) 3.38594 0.114335 0.0571676 0.998365i \(-0.481793\pi\)
0.0571676 + 0.998365i \(0.481793\pi\)
\(878\) −0.756212 −0.0255209
\(879\) 0.280147 0.00944912
\(880\) 0 0
\(881\) 20.3444 0.685420 0.342710 0.939441i \(-0.388655\pi\)
0.342710 + 0.939441i \(0.388655\pi\)
\(882\) 0.293960 0.00989813
\(883\) −48.8737 −1.64473 −0.822365 0.568960i \(-0.807346\pi\)
−0.822365 + 0.568960i \(0.807346\pi\)
\(884\) 59.6397 2.00590
\(885\) 0 0
\(886\) −1.85770 −0.0624107
\(887\) 17.1414 0.575552 0.287776 0.957698i \(-0.407084\pi\)
0.287776 + 0.957698i \(0.407084\pi\)
\(888\) −8.30159 −0.278583
\(889\) −23.8655 −0.800422
\(890\) 0 0
\(891\) 33.4803 1.12163
\(892\) −1.79504 −0.0601024
\(893\) 7.50463 0.251133
\(894\) −0.251321 −0.00840542
\(895\) 0 0
\(896\) 8.02750 0.268180
\(897\) 14.2945 0.477280
\(898\) 1.89761 0.0633242
\(899\) 48.9687 1.63320
\(900\) 0 0
\(901\) 12.2430 0.407875
\(902\) −0.423071 −0.0140867
\(903\) 89.4175 2.97563
\(904\) 0.191761 0.00637787
\(905\) 0 0
\(906\) 0.996969 0.0331221
\(907\) 11.1499 0.370228 0.185114 0.982717i \(-0.440735\pi\)
0.185114 + 0.982717i \(0.440735\pi\)
\(908\) 21.5313 0.714540
\(909\) −8.60352 −0.285361
\(910\) 0 0
\(911\) 6.30489 0.208890 0.104445 0.994531i \(-0.466693\pi\)
0.104445 + 0.994531i \(0.466693\pi\)
\(912\) 22.7097 0.751992
\(913\) −1.58243 −0.0523708
\(914\) 1.40568 0.0464957
\(915\) 0 0
\(916\) 55.1207 1.82124
\(917\) 31.0620 1.02576
\(918\) 11.9946 0.395882
\(919\) −55.3838 −1.82694 −0.913472 0.406902i \(-0.866609\pi\)
−0.913472 + 0.406902i \(0.866609\pi\)
\(920\) 0 0
\(921\) 116.332 3.83328
\(922\) 0.670112 0.0220690
\(923\) −37.1487 −1.22276
\(924\) 17.1490 0.564161
\(925\) 0 0
\(926\) −2.30142 −0.0756292
\(927\) 59.7654 1.96295
\(928\) 9.43456 0.309705
\(929\) 22.6620 0.743517 0.371758 0.928330i \(-0.378755\pi\)
0.371758 + 0.928330i \(0.378755\pi\)
\(930\) 0 0
\(931\) 0.627292 0.0205587
\(932\) 19.6132 0.642452
\(933\) 84.2401 2.75790
\(934\) 1.97283 0.0645528
\(935\) 0 0
\(936\) −13.7642 −0.449898
\(937\) 12.4128 0.405507 0.202754 0.979230i \(-0.435011\pi\)
0.202754 + 0.979230i \(0.435011\pi\)
\(938\) −1.21632 −0.0397142
\(939\) −29.0614 −0.948384
\(940\) 0 0
\(941\) −6.03145 −0.196620 −0.0983098 0.995156i \(-0.531344\pi\)
−0.0983098 + 0.995156i \(0.531344\pi\)
\(942\) 1.40976 0.0459324
\(943\) 4.29179 0.139760
\(944\) 26.5834 0.865217
\(945\) 0 0
\(946\) 1.02299 0.0332604
\(947\) −41.3238 −1.34284 −0.671422 0.741075i \(-0.734316\pi\)
−0.671422 + 0.741075i \(0.734316\pi\)
\(948\) −52.9073 −1.71835
\(949\) −22.0599 −0.716096
\(950\) 0 0
\(951\) 27.5045 0.891893
\(952\) 7.10485 0.230269
\(953\) 31.9472 1.03487 0.517435 0.855722i \(-0.326887\pi\)
0.517435 + 0.855722i \(0.326887\pi\)
\(954\) −1.40935 −0.0456292
\(955\) 0 0
\(956\) −44.3559 −1.43457
\(957\) 26.8511 0.867972
\(958\) 3.18783 0.102994
\(959\) −24.5794 −0.793709
\(960\) 0 0
\(961\) 6.21084 0.200350
\(962\) 2.65810 0.0857006
\(963\) −85.8947 −2.76792
\(964\) 16.4546 0.529967
\(965\) 0 0
\(966\) 0.849376 0.0273282
\(967\) 38.5020 1.23814 0.619071 0.785335i \(-0.287509\pi\)
0.619071 + 0.785335i \(0.287509\pi\)
\(968\) 0.393350 0.0126427
\(969\) 40.3967 1.29773
\(970\) 0 0
\(971\) 46.5026 1.49234 0.746169 0.665756i \(-0.231891\pi\)
0.746169 + 0.665756i \(0.231891\pi\)
\(972\) 119.271 3.82562
\(973\) 1.93828 0.0621385
\(974\) 1.01472 0.0325136
\(975\) 0 0
\(976\) −4.72648 −0.151291
\(977\) 32.3962 1.03645 0.518224 0.855245i \(-0.326593\pi\)
0.518224 + 0.855245i \(0.326593\pi\)
\(978\) −2.34819 −0.0750869
\(979\) 5.85263 0.187051
\(980\) 0 0
\(981\) 87.6895 2.79971
\(982\) 0.240921 0.00768809
\(983\) −41.4597 −1.32236 −0.661179 0.750228i \(-0.729944\pi\)
−0.661179 + 0.750228i \(0.729944\pi\)
\(984\) −5.64670 −0.180010
\(985\) 0 0
\(986\) 5.54866 0.176705
\(987\) 37.5417 1.19497
\(988\) −14.6503 −0.466087
\(989\) −10.3776 −0.329989
\(990\) 0 0
\(991\) 5.48208 0.174144 0.0870720 0.996202i \(-0.472249\pi\)
0.0870720 + 0.996202i \(0.472249\pi\)
\(992\) 7.16922 0.227623
\(993\) 36.6475 1.16297
\(994\) −2.20736 −0.0700133
\(995\) 0 0
\(996\) −10.5346 −0.333801
\(997\) −34.1456 −1.08140 −0.540700 0.841215i \(-0.681841\pi\)
−0.540700 + 0.841215i \(0.681841\pi\)
\(998\) 1.55519 0.0492286
\(999\) −109.493 −3.46422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6325.2.a.m.1.4 6
5.4 even 2 253.2.a.d.1.3 6
15.14 odd 2 2277.2.a.m.1.4 6
20.19 odd 2 4048.2.a.bc.1.1 6
55.54 odd 2 2783.2.a.h.1.4 6
115.114 odd 2 5819.2.a.e.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.a.d.1.3 6 5.4 even 2
2277.2.a.m.1.4 6 15.14 odd 2
2783.2.a.h.1.4 6 55.54 odd 2
4048.2.a.bc.1.1 6 20.19 odd 2
5819.2.a.e.1.3 6 115.114 odd 2
6325.2.a.m.1.4 6 1.1 even 1 trivial