Properties

Label 2277.2.a.l.1.3
Level $2277$
Weight $2$
Character 2277.1
Self dual yes
Analytic conductor $18.182$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,4,0,6,3,0,-3,6,0,-6,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.170701.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.281423\) of defining polynomial
Character \(\chi\) \(=\) 2277.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28142 q^{2} -0.357954 q^{4} -3.80110 q^{5} -1.85610 q^{7} -3.02154 q^{8} -4.87082 q^{10} +1.00000 q^{11} -5.27194 q^{13} -2.37845 q^{14} -3.15596 q^{16} +3.86848 q^{17} +0.195412 q^{19} +1.36062 q^{20} +1.28142 q^{22} +1.00000 q^{23} +9.44840 q^{25} -6.75559 q^{26} +0.664399 q^{28} +4.42266 q^{29} -2.08520 q^{31} +1.99896 q^{32} +4.95715 q^{34} +7.05522 q^{35} -4.77980 q^{37} +0.250406 q^{38} +11.4852 q^{40} +5.28296 q^{41} +3.21324 q^{43} -0.357954 q^{44} +1.28142 q^{46} +2.30911 q^{47} -3.55490 q^{49} +12.1074 q^{50} +1.88712 q^{52} +0.819313 q^{53} -3.80110 q^{55} +5.60827 q^{56} +5.66730 q^{58} +13.0628 q^{59} +1.76409 q^{61} -2.67202 q^{62} +8.87343 q^{64} +20.0392 q^{65} -0.481852 q^{67} -1.38474 q^{68} +9.04073 q^{70} -12.8100 q^{71} +1.48889 q^{73} -6.12494 q^{74} -0.0699487 q^{76} -1.85610 q^{77} -11.3518 q^{79} +11.9961 q^{80} +6.76970 q^{82} +15.8886 q^{83} -14.7045 q^{85} +4.11752 q^{86} -3.02154 q^{88} -1.51554 q^{89} +9.78524 q^{91} -0.357954 q^{92} +2.95895 q^{94} -0.742782 q^{95} -3.96654 q^{97} -4.55533 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 6 q^{4} + 3 q^{5} - 3 q^{7} + 6 q^{8} - 6 q^{10} + 5 q^{11} - 15 q^{13} - 4 q^{14} + 8 q^{16} + 9 q^{17} - 5 q^{19} + 17 q^{20} + 4 q^{22} + 5 q^{23} + 12 q^{25} - 5 q^{26} + 8 q^{29} - 4 q^{31}+ \cdots + 33 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28142 0.906103 0.453052 0.891484i \(-0.350335\pi\)
0.453052 + 0.891484i \(0.350335\pi\)
\(3\) 0 0
\(4\) −0.357954 −0.178977
\(5\) −3.80110 −1.69991 −0.849953 0.526859i \(-0.823370\pi\)
−0.849953 + 0.526859i \(0.823370\pi\)
\(6\) 0 0
\(7\) −1.85610 −0.701539 −0.350770 0.936462i \(-0.614080\pi\)
−0.350770 + 0.936462i \(0.614080\pi\)
\(8\) −3.02154 −1.06827
\(9\) 0 0
\(10\) −4.87082 −1.54029
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −5.27194 −1.46217 −0.731087 0.682284i \(-0.760987\pi\)
−0.731087 + 0.682284i \(0.760987\pi\)
\(14\) −2.37845 −0.635667
\(15\) 0 0
\(16\) −3.15596 −0.788990
\(17\) 3.86848 0.938243 0.469122 0.883134i \(-0.344571\pi\)
0.469122 + 0.883134i \(0.344571\pi\)
\(18\) 0 0
\(19\) 0.195412 0.0448306 0.0224153 0.999749i \(-0.492864\pi\)
0.0224153 + 0.999749i \(0.492864\pi\)
\(20\) 1.36062 0.304244
\(21\) 0 0
\(22\) 1.28142 0.273200
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 9.44840 1.88968
\(26\) −6.75559 −1.32488
\(27\) 0 0
\(28\) 0.664399 0.125560
\(29\) 4.42266 0.821267 0.410633 0.911801i \(-0.365308\pi\)
0.410633 + 0.911801i \(0.365308\pi\)
\(30\) 0 0
\(31\) −2.08520 −0.374512 −0.187256 0.982311i \(-0.559959\pi\)
−0.187256 + 0.982311i \(0.559959\pi\)
\(32\) 1.99896 0.353369
\(33\) 0 0
\(34\) 4.95715 0.850145
\(35\) 7.05522 1.19255
\(36\) 0 0
\(37\) −4.77980 −0.785794 −0.392897 0.919583i \(-0.628527\pi\)
−0.392897 + 0.919583i \(0.628527\pi\)
\(38\) 0.250406 0.0406212
\(39\) 0 0
\(40\) 11.4852 1.81597
\(41\) 5.28296 0.825059 0.412530 0.910944i \(-0.364645\pi\)
0.412530 + 0.910944i \(0.364645\pi\)
\(42\) 0 0
\(43\) 3.21324 0.490014 0.245007 0.969521i \(-0.421210\pi\)
0.245007 + 0.969521i \(0.421210\pi\)
\(44\) −0.357954 −0.0539637
\(45\) 0 0
\(46\) 1.28142 0.188936
\(47\) 2.30911 0.336819 0.168409 0.985717i \(-0.446137\pi\)
0.168409 + 0.985717i \(0.446137\pi\)
\(48\) 0 0
\(49\) −3.55490 −0.507843
\(50\) 12.1074 1.71224
\(51\) 0 0
\(52\) 1.88712 0.261696
\(53\) 0.819313 0.112541 0.0562707 0.998416i \(-0.482079\pi\)
0.0562707 + 0.998416i \(0.482079\pi\)
\(54\) 0 0
\(55\) −3.80110 −0.512541
\(56\) 5.60827 0.749437
\(57\) 0 0
\(58\) 5.66730 0.744152
\(59\) 13.0628 1.70063 0.850313 0.526278i \(-0.176413\pi\)
0.850313 + 0.526278i \(0.176413\pi\)
\(60\) 0 0
\(61\) 1.76409 0.225869 0.112934 0.993602i \(-0.463975\pi\)
0.112934 + 0.993602i \(0.463975\pi\)
\(62\) −2.67202 −0.339347
\(63\) 0 0
\(64\) 8.87343 1.10918
\(65\) 20.0392 2.48556
\(66\) 0 0
\(67\) −0.481852 −0.0588676 −0.0294338 0.999567i \(-0.509370\pi\)
−0.0294338 + 0.999567i \(0.509370\pi\)
\(68\) −1.38474 −0.167924
\(69\) 0 0
\(70\) 9.04073 1.08057
\(71\) −12.8100 −1.52027 −0.760134 0.649767i \(-0.774867\pi\)
−0.760134 + 0.649767i \(0.774867\pi\)
\(72\) 0 0
\(73\) 1.48889 0.174262 0.0871309 0.996197i \(-0.472230\pi\)
0.0871309 + 0.996197i \(0.472230\pi\)
\(74\) −6.12494 −0.712010
\(75\) 0 0
\(76\) −0.0699487 −0.00802366
\(77\) −1.85610 −0.211522
\(78\) 0 0
\(79\) −11.3518 −1.27718 −0.638589 0.769548i \(-0.720482\pi\)
−0.638589 + 0.769548i \(0.720482\pi\)
\(80\) 11.9961 1.34121
\(81\) 0 0
\(82\) 6.76970 0.747589
\(83\) 15.8886 1.74401 0.872003 0.489501i \(-0.162821\pi\)
0.872003 + 0.489501i \(0.162821\pi\)
\(84\) 0 0
\(85\) −14.7045 −1.59492
\(86\) 4.11752 0.444003
\(87\) 0 0
\(88\) −3.02154 −0.322097
\(89\) −1.51554 −0.160647 −0.0803233 0.996769i \(-0.525595\pi\)
−0.0803233 + 0.996769i \(0.525595\pi\)
\(90\) 0 0
\(91\) 9.78524 1.02577
\(92\) −0.357954 −0.0373193
\(93\) 0 0
\(94\) 2.95895 0.305192
\(95\) −0.742782 −0.0762079
\(96\) 0 0
\(97\) −3.96654 −0.402742 −0.201371 0.979515i \(-0.564540\pi\)
−0.201371 + 0.979515i \(0.564540\pi\)
\(98\) −4.55533 −0.460158
\(99\) 0 0
\(100\) −3.38210 −0.338210
\(101\) −6.46599 −0.643390 −0.321695 0.946843i \(-0.604253\pi\)
−0.321695 + 0.946843i \(0.604253\pi\)
\(102\) 0 0
\(103\) 16.7876 1.65413 0.827065 0.562106i \(-0.190009\pi\)
0.827065 + 0.562106i \(0.190009\pi\)
\(104\) 15.9294 1.56200
\(105\) 0 0
\(106\) 1.04989 0.101974
\(107\) −5.73210 −0.554143 −0.277072 0.960849i \(-0.589364\pi\)
−0.277072 + 0.960849i \(0.589364\pi\)
\(108\) 0 0
\(109\) 4.12494 0.395098 0.197549 0.980293i \(-0.436702\pi\)
0.197549 + 0.980293i \(0.436702\pi\)
\(110\) −4.87082 −0.464415
\(111\) 0 0
\(112\) 5.85777 0.553507
\(113\) −4.53730 −0.426834 −0.213417 0.976961i \(-0.568459\pi\)
−0.213417 + 0.976961i \(0.568459\pi\)
\(114\) 0 0
\(115\) −3.80110 −0.354455
\(116\) −1.58311 −0.146988
\(117\) 0 0
\(118\) 16.7389 1.54094
\(119\) −7.18027 −0.658214
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 2.26055 0.204660
\(123\) 0 0
\(124\) 0.746405 0.0670292
\(125\) −16.9088 −1.51237
\(126\) 0 0
\(127\) −13.7670 −1.22163 −0.610813 0.791775i \(-0.709157\pi\)
−0.610813 + 0.791775i \(0.709157\pi\)
\(128\) 7.37271 0.651661
\(129\) 0 0
\(130\) 25.6787 2.25217
\(131\) −6.96530 −0.608561 −0.304280 0.952583i \(-0.598416\pi\)
−0.304280 + 0.952583i \(0.598416\pi\)
\(132\) 0 0
\(133\) −0.362704 −0.0314504
\(134\) −0.617456 −0.0533401
\(135\) 0 0
\(136\) −11.6887 −1.00230
\(137\) 14.9495 1.27723 0.638613 0.769528i \(-0.279508\pi\)
0.638613 + 0.769528i \(0.279508\pi\)
\(138\) 0 0
\(139\) 8.06585 0.684137 0.342068 0.939675i \(-0.388873\pi\)
0.342068 + 0.939675i \(0.388873\pi\)
\(140\) −2.52545 −0.213439
\(141\) 0 0
\(142\) −16.4150 −1.37752
\(143\) −5.27194 −0.440862
\(144\) 0 0
\(145\) −16.8110 −1.39608
\(146\) 1.90790 0.157899
\(147\) 0 0
\(148\) 1.71095 0.140639
\(149\) 19.1168 1.56611 0.783056 0.621951i \(-0.213660\pi\)
0.783056 + 0.621951i \(0.213660\pi\)
\(150\) 0 0
\(151\) −0.136973 −0.0111467 −0.00557333 0.999984i \(-0.501774\pi\)
−0.00557333 + 0.999984i \(0.501774\pi\)
\(152\) −0.590445 −0.0478914
\(153\) 0 0
\(154\) −2.37845 −0.191661
\(155\) 7.92605 0.636635
\(156\) 0 0
\(157\) −0.0660065 −0.00526789 −0.00263395 0.999997i \(-0.500838\pi\)
−0.00263395 + 0.999997i \(0.500838\pi\)
\(158\) −14.5465 −1.15725
\(159\) 0 0
\(160\) −7.59824 −0.600693
\(161\) −1.85610 −0.146281
\(162\) 0 0
\(163\) 16.7047 1.30841 0.654207 0.756316i \(-0.273003\pi\)
0.654207 + 0.756316i \(0.273003\pi\)
\(164\) −1.89106 −0.147667
\(165\) 0 0
\(166\) 20.3601 1.58025
\(167\) −12.4899 −0.966495 −0.483248 0.875484i \(-0.660543\pi\)
−0.483248 + 0.875484i \(0.660543\pi\)
\(168\) 0 0
\(169\) 14.7934 1.13795
\(170\) −18.8427 −1.44517
\(171\) 0 0
\(172\) −1.15019 −0.0877014
\(173\) 20.3094 1.54410 0.772048 0.635564i \(-0.219232\pi\)
0.772048 + 0.635564i \(0.219232\pi\)
\(174\) 0 0
\(175\) −17.5371 −1.32568
\(176\) −3.15596 −0.237889
\(177\) 0 0
\(178\) −1.94204 −0.145562
\(179\) −3.24632 −0.242641 −0.121321 0.992613i \(-0.538713\pi\)
−0.121321 + 0.992613i \(0.538713\pi\)
\(180\) 0 0
\(181\) 10.7943 0.802333 0.401167 0.916005i \(-0.368605\pi\)
0.401167 + 0.916005i \(0.368605\pi\)
\(182\) 12.5390 0.929455
\(183\) 0 0
\(184\) −3.02154 −0.222751
\(185\) 18.1685 1.33578
\(186\) 0 0
\(187\) 3.86848 0.282891
\(188\) −0.826557 −0.0602829
\(189\) 0 0
\(190\) −0.951818 −0.0690522
\(191\) −14.7625 −1.06817 −0.534087 0.845429i \(-0.679345\pi\)
−0.534087 + 0.845429i \(0.679345\pi\)
\(192\) 0 0
\(193\) 10.4829 0.754579 0.377289 0.926095i \(-0.376856\pi\)
0.377289 + 0.926095i \(0.376856\pi\)
\(194\) −5.08282 −0.364925
\(195\) 0 0
\(196\) 1.27249 0.0908923
\(197\) −6.05359 −0.431301 −0.215650 0.976471i \(-0.569187\pi\)
−0.215650 + 0.976471i \(0.569187\pi\)
\(198\) 0 0
\(199\) 7.18451 0.509297 0.254648 0.967034i \(-0.418040\pi\)
0.254648 + 0.967034i \(0.418040\pi\)
\(200\) −28.5487 −2.01870
\(201\) 0 0
\(202\) −8.28567 −0.582978
\(203\) −8.20889 −0.576151
\(204\) 0 0
\(205\) −20.0811 −1.40252
\(206\) 21.5120 1.49881
\(207\) 0 0
\(208\) 16.6380 1.15364
\(209\) 0.195412 0.0135169
\(210\) 0 0
\(211\) −23.1873 −1.59628 −0.798140 0.602472i \(-0.794183\pi\)
−0.798140 + 0.602472i \(0.794183\pi\)
\(212\) −0.293277 −0.0201423
\(213\) 0 0
\(214\) −7.34525 −0.502111
\(215\) −12.2139 −0.832978
\(216\) 0 0
\(217\) 3.87033 0.262735
\(218\) 5.28580 0.357999
\(219\) 0 0
\(220\) 1.36062 0.0917331
\(221\) −20.3944 −1.37187
\(222\) 0 0
\(223\) 11.3673 0.761209 0.380605 0.924738i \(-0.375716\pi\)
0.380605 + 0.924738i \(0.375716\pi\)
\(224\) −3.71026 −0.247902
\(225\) 0 0
\(226\) −5.81421 −0.386755
\(227\) 25.1503 1.66929 0.834643 0.550791i \(-0.185674\pi\)
0.834643 + 0.550791i \(0.185674\pi\)
\(228\) 0 0
\(229\) −27.7272 −1.83227 −0.916133 0.400874i \(-0.868707\pi\)
−0.916133 + 0.400874i \(0.868707\pi\)
\(230\) −4.87082 −0.321173
\(231\) 0 0
\(232\) −13.3632 −0.877339
\(233\) −25.1145 −1.64531 −0.822654 0.568543i \(-0.807507\pi\)
−0.822654 + 0.568543i \(0.807507\pi\)
\(234\) 0 0
\(235\) −8.77718 −0.572560
\(236\) −4.67587 −0.304373
\(237\) 0 0
\(238\) −9.20096 −0.596410
\(239\) −2.60259 −0.168348 −0.0841739 0.996451i \(-0.526825\pi\)
−0.0841739 + 0.996451i \(0.526825\pi\)
\(240\) 0 0
\(241\) 22.7867 1.46782 0.733911 0.679246i \(-0.237693\pi\)
0.733911 + 0.679246i \(0.237693\pi\)
\(242\) 1.28142 0.0823730
\(243\) 0 0
\(244\) −0.631464 −0.0404253
\(245\) 13.5125 0.863285
\(246\) 0 0
\(247\) −1.03020 −0.0655502
\(248\) 6.30050 0.400082
\(249\) 0 0
\(250\) −21.6674 −1.37036
\(251\) −7.91155 −0.499373 −0.249686 0.968327i \(-0.580328\pi\)
−0.249686 + 0.968327i \(0.580328\pi\)
\(252\) 0 0
\(253\) 1.00000 0.0628695
\(254\) −17.6414 −1.10692
\(255\) 0 0
\(256\) −8.29930 −0.518706
\(257\) −7.26003 −0.452868 −0.226434 0.974027i \(-0.572707\pi\)
−0.226434 + 0.974027i \(0.572707\pi\)
\(258\) 0 0
\(259\) 8.87177 0.551265
\(260\) −7.17312 −0.444858
\(261\) 0 0
\(262\) −8.92549 −0.551419
\(263\) −3.69770 −0.228010 −0.114005 0.993480i \(-0.536368\pi\)
−0.114005 + 0.993480i \(0.536368\pi\)
\(264\) 0 0
\(265\) −3.11430 −0.191310
\(266\) −0.464778 −0.0284973
\(267\) 0 0
\(268\) 0.172481 0.0105360
\(269\) 31.9537 1.94825 0.974126 0.226005i \(-0.0725666\pi\)
0.974126 + 0.226005i \(0.0725666\pi\)
\(270\) 0 0
\(271\) 0.579921 0.0352277 0.0176138 0.999845i \(-0.494393\pi\)
0.0176138 + 0.999845i \(0.494393\pi\)
\(272\) −12.2088 −0.740264
\(273\) 0 0
\(274\) 19.1567 1.15730
\(275\) 9.44840 0.569760
\(276\) 0 0
\(277\) 6.91340 0.415386 0.207693 0.978194i \(-0.433404\pi\)
0.207693 + 0.978194i \(0.433404\pi\)
\(278\) 10.3358 0.619898
\(279\) 0 0
\(280\) −21.3176 −1.27397
\(281\) 16.0724 0.958799 0.479399 0.877597i \(-0.340855\pi\)
0.479399 + 0.877597i \(0.340855\pi\)
\(282\) 0 0
\(283\) 3.57436 0.212473 0.106237 0.994341i \(-0.466120\pi\)
0.106237 + 0.994341i \(0.466120\pi\)
\(284\) 4.58540 0.272093
\(285\) 0 0
\(286\) −6.75559 −0.399466
\(287\) −9.80569 −0.578811
\(288\) 0 0
\(289\) −2.03490 −0.119700
\(290\) −21.5420 −1.26499
\(291\) 0 0
\(292\) −0.532956 −0.0311889
\(293\) 14.7794 0.863422 0.431711 0.902012i \(-0.357910\pi\)
0.431711 + 0.902012i \(0.357910\pi\)
\(294\) 0 0
\(295\) −49.6529 −2.89090
\(296\) 14.4423 0.839444
\(297\) 0 0
\(298\) 24.4968 1.41906
\(299\) −5.27194 −0.304884
\(300\) 0 0
\(301\) −5.96408 −0.343764
\(302\) −0.175520 −0.0101000
\(303\) 0 0
\(304\) −0.616713 −0.0353709
\(305\) −6.70549 −0.383955
\(306\) 0 0
\(307\) 8.71106 0.497167 0.248583 0.968611i \(-0.420035\pi\)
0.248583 + 0.968611i \(0.420035\pi\)
\(308\) 0.664399 0.0378576
\(309\) 0 0
\(310\) 10.1566 0.576857
\(311\) 13.6516 0.774113 0.387057 0.922056i \(-0.373492\pi\)
0.387057 + 0.922056i \(0.373492\pi\)
\(312\) 0 0
\(313\) 0.389578 0.0220202 0.0110101 0.999939i \(-0.496495\pi\)
0.0110101 + 0.999939i \(0.496495\pi\)
\(314\) −0.0845823 −0.00477326
\(315\) 0 0
\(316\) 4.06343 0.228586
\(317\) −2.69883 −0.151582 −0.0757908 0.997124i \(-0.524148\pi\)
−0.0757908 + 0.997124i \(0.524148\pi\)
\(318\) 0 0
\(319\) 4.42266 0.247621
\(320\) −33.7288 −1.88550
\(321\) 0 0
\(322\) −2.37845 −0.132546
\(323\) 0.755947 0.0420620
\(324\) 0 0
\(325\) −49.8114 −2.76304
\(326\) 21.4058 1.18556
\(327\) 0 0
\(328\) −15.9627 −0.881390
\(329\) −4.28594 −0.236291
\(330\) 0 0
\(331\) −5.98910 −0.329191 −0.164595 0.986361i \(-0.552632\pi\)
−0.164595 + 0.986361i \(0.552632\pi\)
\(332\) −5.68741 −0.312137
\(333\) 0 0
\(334\) −16.0048 −0.875744
\(335\) 1.83157 0.100069
\(336\) 0 0
\(337\) 1.52298 0.0829622 0.0414811 0.999139i \(-0.486792\pi\)
0.0414811 + 0.999139i \(0.486792\pi\)
\(338\) 18.9566 1.03110
\(339\) 0 0
\(340\) 5.26353 0.285455
\(341\) −2.08520 −0.112920
\(342\) 0 0
\(343\) 19.5909 1.05781
\(344\) −9.70892 −0.523470
\(345\) 0 0
\(346\) 26.0250 1.39911
\(347\) 4.67011 0.250705 0.125352 0.992112i \(-0.459994\pi\)
0.125352 + 0.992112i \(0.459994\pi\)
\(348\) 0 0
\(349\) 9.40093 0.503220 0.251610 0.967829i \(-0.419040\pi\)
0.251610 + 0.967829i \(0.419040\pi\)
\(350\) −22.4725 −1.20121
\(351\) 0 0
\(352\) 1.99896 0.106545
\(353\) −21.2570 −1.13140 −0.565699 0.824612i \(-0.691393\pi\)
−0.565699 + 0.824612i \(0.691393\pi\)
\(354\) 0 0
\(355\) 48.6921 2.58431
\(356\) 0.542493 0.0287521
\(357\) 0 0
\(358\) −4.15991 −0.219858
\(359\) −28.3775 −1.49771 −0.748855 0.662734i \(-0.769396\pi\)
−0.748855 + 0.662734i \(0.769396\pi\)
\(360\) 0 0
\(361\) −18.9618 −0.997990
\(362\) 13.8321 0.726997
\(363\) 0 0
\(364\) −3.50267 −0.183590
\(365\) −5.65944 −0.296229
\(366\) 0 0
\(367\) −8.92022 −0.465631 −0.232816 0.972521i \(-0.574794\pi\)
−0.232816 + 0.972521i \(0.574794\pi\)
\(368\) −3.15596 −0.164516
\(369\) 0 0
\(370\) 23.2815 1.21035
\(371\) −1.52073 −0.0789522
\(372\) 0 0
\(373\) 27.2725 1.41212 0.706059 0.708153i \(-0.250471\pi\)
0.706059 + 0.708153i \(0.250471\pi\)
\(374\) 4.95715 0.256328
\(375\) 0 0
\(376\) −6.97707 −0.359815
\(377\) −23.3160 −1.20084
\(378\) 0 0
\(379\) −16.3560 −0.840152 −0.420076 0.907489i \(-0.637997\pi\)
−0.420076 + 0.907489i \(0.637997\pi\)
\(380\) 0.265882 0.0136395
\(381\) 0 0
\(382\) −18.9170 −0.967876
\(383\) 20.3313 1.03888 0.519439 0.854507i \(-0.326141\pi\)
0.519439 + 0.854507i \(0.326141\pi\)
\(384\) 0 0
\(385\) 7.05522 0.359567
\(386\) 13.4331 0.683726
\(387\) 0 0
\(388\) 1.41984 0.0720816
\(389\) 38.3557 1.94471 0.972355 0.233509i \(-0.0750208\pi\)
0.972355 + 0.233509i \(0.0750208\pi\)
\(390\) 0 0
\(391\) 3.86848 0.195637
\(392\) 10.7413 0.542516
\(393\) 0 0
\(394\) −7.75721 −0.390803
\(395\) 43.1494 2.17108
\(396\) 0 0
\(397\) 21.9251 1.10039 0.550195 0.835036i \(-0.314553\pi\)
0.550195 + 0.835036i \(0.314553\pi\)
\(398\) 9.20640 0.461475
\(399\) 0 0
\(400\) −29.8188 −1.49094
\(401\) −4.54119 −0.226776 −0.113388 0.993551i \(-0.536170\pi\)
−0.113388 + 0.993551i \(0.536170\pi\)
\(402\) 0 0
\(403\) 10.9930 0.547602
\(404\) 2.31453 0.115152
\(405\) 0 0
\(406\) −10.5191 −0.522052
\(407\) −4.77980 −0.236926
\(408\) 0 0
\(409\) −8.51157 −0.420870 −0.210435 0.977608i \(-0.567488\pi\)
−0.210435 + 0.977608i \(0.567488\pi\)
\(410\) −25.7323 −1.27083
\(411\) 0 0
\(412\) −6.00919 −0.296052
\(413\) −24.2458 −1.19306
\(414\) 0 0
\(415\) −60.3944 −2.96465
\(416\) −10.5384 −0.516687
\(417\) 0 0
\(418\) 0.250406 0.0122477
\(419\) 14.6838 0.717351 0.358675 0.933462i \(-0.383229\pi\)
0.358675 + 0.933462i \(0.383229\pi\)
\(420\) 0 0
\(421\) 21.4822 1.04698 0.523489 0.852032i \(-0.324630\pi\)
0.523489 + 0.852032i \(0.324630\pi\)
\(422\) −29.7128 −1.44639
\(423\) 0 0
\(424\) −2.47559 −0.120225
\(425\) 36.5509 1.77298
\(426\) 0 0
\(427\) −3.27432 −0.158456
\(428\) 2.05183 0.0991790
\(429\) 0 0
\(430\) −15.6511 −0.754764
\(431\) 12.3258 0.593711 0.296856 0.954922i \(-0.404062\pi\)
0.296856 + 0.954922i \(0.404062\pi\)
\(432\) 0 0
\(433\) 4.18186 0.200968 0.100484 0.994939i \(-0.467961\pi\)
0.100484 + 0.994939i \(0.467961\pi\)
\(434\) 4.95953 0.238065
\(435\) 0 0
\(436\) −1.47654 −0.0707135
\(437\) 0.195412 0.00934783
\(438\) 0 0
\(439\) −31.3602 −1.49674 −0.748370 0.663282i \(-0.769163\pi\)
−0.748370 + 0.663282i \(0.769163\pi\)
\(440\) 11.4852 0.547535
\(441\) 0 0
\(442\) −26.1338 −1.24306
\(443\) 37.6486 1.78874 0.894370 0.447328i \(-0.147624\pi\)
0.894370 + 0.447328i \(0.147624\pi\)
\(444\) 0 0
\(445\) 5.76072 0.273084
\(446\) 14.5663 0.689734
\(447\) 0 0
\(448\) −16.4700 −0.778132
\(449\) −40.6798 −1.91980 −0.959899 0.280345i \(-0.909551\pi\)
−0.959899 + 0.280345i \(0.909551\pi\)
\(450\) 0 0
\(451\) 5.28296 0.248765
\(452\) 1.62415 0.0763935
\(453\) 0 0
\(454\) 32.2282 1.51255
\(455\) −37.1947 −1.74372
\(456\) 0 0
\(457\) 30.7326 1.43761 0.718804 0.695213i \(-0.244690\pi\)
0.718804 + 0.695213i \(0.244690\pi\)
\(458\) −35.5303 −1.66022
\(459\) 0 0
\(460\) 1.36062 0.0634393
\(461\) 20.8666 0.971856 0.485928 0.873999i \(-0.338482\pi\)
0.485928 + 0.873999i \(0.338482\pi\)
\(462\) 0 0
\(463\) 23.2506 1.08055 0.540274 0.841489i \(-0.318321\pi\)
0.540274 + 0.841489i \(0.318321\pi\)
\(464\) −13.9577 −0.647971
\(465\) 0 0
\(466\) −32.1823 −1.49082
\(467\) 13.0604 0.604365 0.302183 0.953250i \(-0.402285\pi\)
0.302183 + 0.953250i \(0.402285\pi\)
\(468\) 0 0
\(469\) 0.894364 0.0412979
\(470\) −11.2473 −0.518798
\(471\) 0 0
\(472\) −39.4696 −1.81674
\(473\) 3.21324 0.147745
\(474\) 0 0
\(475\) 1.84633 0.0847155
\(476\) 2.57021 0.117805
\(477\) 0 0
\(478\) −3.33502 −0.152540
\(479\) 5.70788 0.260800 0.130400 0.991461i \(-0.458374\pi\)
0.130400 + 0.991461i \(0.458374\pi\)
\(480\) 0 0
\(481\) 25.1988 1.14897
\(482\) 29.1994 1.33000
\(483\) 0 0
\(484\) −0.357954 −0.0162707
\(485\) 15.0772 0.684623
\(486\) 0 0
\(487\) 23.0832 1.04600 0.523000 0.852333i \(-0.324813\pi\)
0.523000 + 0.852333i \(0.324813\pi\)
\(488\) −5.33027 −0.241290
\(489\) 0 0
\(490\) 17.3153 0.782225
\(491\) −15.6115 −0.704536 −0.352268 0.935899i \(-0.614589\pi\)
−0.352268 + 0.935899i \(0.614589\pi\)
\(492\) 0 0
\(493\) 17.1089 0.770548
\(494\) −1.32012 −0.0593952
\(495\) 0 0
\(496\) 6.58079 0.295486
\(497\) 23.7766 1.06653
\(498\) 0 0
\(499\) −8.07097 −0.361306 −0.180653 0.983547i \(-0.557821\pi\)
−0.180653 + 0.983547i \(0.557821\pi\)
\(500\) 6.05259 0.270680
\(501\) 0 0
\(502\) −10.1380 −0.452483
\(503\) 34.6008 1.54277 0.771386 0.636367i \(-0.219564\pi\)
0.771386 + 0.636367i \(0.219564\pi\)
\(504\) 0 0
\(505\) 24.5779 1.09370
\(506\) 1.28142 0.0569662
\(507\) 0 0
\(508\) 4.92797 0.218643
\(509\) −15.0158 −0.665563 −0.332781 0.943004i \(-0.607987\pi\)
−0.332781 + 0.943004i \(0.607987\pi\)
\(510\) 0 0
\(511\) −2.76353 −0.122251
\(512\) −25.3803 −1.12166
\(513\) 0 0
\(514\) −9.30317 −0.410345
\(515\) −63.8114 −2.81187
\(516\) 0 0
\(517\) 2.30911 0.101555
\(518\) 11.3685 0.499503
\(519\) 0 0
\(520\) −60.5492 −2.65526
\(521\) 25.1881 1.10351 0.551755 0.834006i \(-0.313958\pi\)
0.551755 + 0.834006i \(0.313958\pi\)
\(522\) 0 0
\(523\) −32.0155 −1.39994 −0.699970 0.714172i \(-0.746804\pi\)
−0.699970 + 0.714172i \(0.746804\pi\)
\(524\) 2.49326 0.108919
\(525\) 0 0
\(526\) −4.73832 −0.206601
\(527\) −8.06653 −0.351383
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −3.99073 −0.173346
\(531\) 0 0
\(532\) 0.129832 0.00562891
\(533\) −27.8514 −1.20638
\(534\) 0 0
\(535\) 21.7883 0.941991
\(536\) 1.45593 0.0628867
\(537\) 0 0
\(538\) 40.9462 1.76532
\(539\) −3.55490 −0.153120
\(540\) 0 0
\(541\) −14.2450 −0.612439 −0.306219 0.951961i \(-0.599064\pi\)
−0.306219 + 0.951961i \(0.599064\pi\)
\(542\) 0.743124 0.0319199
\(543\) 0 0
\(544\) 7.73291 0.331546
\(545\) −15.6793 −0.671629
\(546\) 0 0
\(547\) 9.20117 0.393414 0.196707 0.980462i \(-0.436975\pi\)
0.196707 + 0.980462i \(0.436975\pi\)
\(548\) −5.35126 −0.228594
\(549\) 0 0
\(550\) 12.1074 0.516261
\(551\) 0.864241 0.0368179
\(552\) 0 0
\(553\) 21.0701 0.895990
\(554\) 8.85900 0.376383
\(555\) 0 0
\(556\) −2.88721 −0.122445
\(557\) 17.4388 0.738907 0.369453 0.929249i \(-0.379545\pi\)
0.369453 + 0.929249i \(0.379545\pi\)
\(558\) 0 0
\(559\) −16.9400 −0.716486
\(560\) −22.2660 −0.940910
\(561\) 0 0
\(562\) 20.5955 0.868771
\(563\) −7.12652 −0.300347 −0.150174 0.988660i \(-0.547983\pi\)
−0.150174 + 0.988660i \(0.547983\pi\)
\(564\) 0 0
\(565\) 17.2468 0.725577
\(566\) 4.58026 0.192523
\(567\) 0 0
\(568\) 38.7059 1.62406
\(569\) −38.9361 −1.63229 −0.816143 0.577849i \(-0.803892\pi\)
−0.816143 + 0.577849i \(0.803892\pi\)
\(570\) 0 0
\(571\) 29.3981 1.23027 0.615136 0.788421i \(-0.289101\pi\)
0.615136 + 0.788421i \(0.289101\pi\)
\(572\) 1.88712 0.0789043
\(573\) 0 0
\(574\) −12.5652 −0.524463
\(575\) 9.44840 0.394025
\(576\) 0 0
\(577\) −20.3394 −0.846740 −0.423370 0.905957i \(-0.639153\pi\)
−0.423370 + 0.905957i \(0.639153\pi\)
\(578\) −2.60757 −0.108460
\(579\) 0 0
\(580\) 6.01757 0.249866
\(581\) −29.4909 −1.22349
\(582\) 0 0
\(583\) 0.819313 0.0339325
\(584\) −4.49875 −0.186159
\(585\) 0 0
\(586\) 18.9387 0.782350
\(587\) −0.714390 −0.0294860 −0.0147430 0.999891i \(-0.504693\pi\)
−0.0147430 + 0.999891i \(0.504693\pi\)
\(588\) 0 0
\(589\) −0.407473 −0.0167896
\(590\) −63.6264 −2.61946
\(591\) 0 0
\(592\) 15.0848 0.619983
\(593\) 3.17833 0.130518 0.0652592 0.997868i \(-0.479213\pi\)
0.0652592 + 0.997868i \(0.479213\pi\)
\(594\) 0 0
\(595\) 27.2930 1.11890
\(596\) −6.84296 −0.280298
\(597\) 0 0
\(598\) −6.75559 −0.276257
\(599\) −15.1347 −0.618387 −0.309194 0.950999i \(-0.600059\pi\)
−0.309194 + 0.950999i \(0.600059\pi\)
\(600\) 0 0
\(601\) −29.8591 −1.21798 −0.608990 0.793178i \(-0.708425\pi\)
−0.608990 + 0.793178i \(0.708425\pi\)
\(602\) −7.64252 −0.311486
\(603\) 0 0
\(604\) 0.0490299 0.00199500
\(605\) −3.80110 −0.154537
\(606\) 0 0
\(607\) 33.7487 1.36982 0.684909 0.728629i \(-0.259842\pi\)
0.684909 + 0.728629i \(0.259842\pi\)
\(608\) 0.390620 0.0158417
\(609\) 0 0
\(610\) −8.59257 −0.347903
\(611\) −12.1735 −0.492487
\(612\) 0 0
\(613\) 35.5376 1.43535 0.717675 0.696378i \(-0.245206\pi\)
0.717675 + 0.696378i \(0.245206\pi\)
\(614\) 11.1626 0.450484
\(615\) 0 0
\(616\) 5.60827 0.225964
\(617\) 8.52643 0.343261 0.171631 0.985161i \(-0.445096\pi\)
0.171631 + 0.985161i \(0.445096\pi\)
\(618\) 0 0
\(619\) 10.7185 0.430815 0.215407 0.976524i \(-0.430892\pi\)
0.215407 + 0.976524i \(0.430892\pi\)
\(620\) −2.83716 −0.113943
\(621\) 0 0
\(622\) 17.4935 0.701426
\(623\) 2.81299 0.112700
\(624\) 0 0
\(625\) 17.0302 0.681208
\(626\) 0.499214 0.0199526
\(627\) 0 0
\(628\) 0.0236273 0.000942833 0
\(629\) −18.4905 −0.737265
\(630\) 0 0
\(631\) −5.06204 −0.201517 −0.100758 0.994911i \(-0.532127\pi\)
−0.100758 + 0.994911i \(0.532127\pi\)
\(632\) 34.2999 1.36438
\(633\) 0 0
\(634\) −3.45835 −0.137349
\(635\) 52.3299 2.07665
\(636\) 0 0
\(637\) 18.7412 0.742555
\(638\) 5.66730 0.224370
\(639\) 0 0
\(640\) −28.0244 −1.10776
\(641\) −6.71512 −0.265231 −0.132616 0.991168i \(-0.542338\pi\)
−0.132616 + 0.991168i \(0.542338\pi\)
\(642\) 0 0
\(643\) 10.3874 0.409638 0.204819 0.978800i \(-0.434339\pi\)
0.204819 + 0.978800i \(0.434339\pi\)
\(644\) 0.664399 0.0261810
\(645\) 0 0
\(646\) 0.968688 0.0381125
\(647\) −3.54279 −0.139281 −0.0696407 0.997572i \(-0.522185\pi\)
−0.0696407 + 0.997572i \(0.522185\pi\)
\(648\) 0 0
\(649\) 13.0628 0.512758
\(650\) −63.8295 −2.50360
\(651\) 0 0
\(652\) −5.97952 −0.234176
\(653\) −29.8393 −1.16770 −0.583851 0.811861i \(-0.698455\pi\)
−0.583851 + 0.811861i \(0.698455\pi\)
\(654\) 0 0
\(655\) 26.4758 1.03450
\(656\) −16.6728 −0.650963
\(657\) 0 0
\(658\) −5.49210 −0.214104
\(659\) 46.1786 1.79886 0.899432 0.437062i \(-0.143981\pi\)
0.899432 + 0.437062i \(0.143981\pi\)
\(660\) 0 0
\(661\) −13.0358 −0.507032 −0.253516 0.967331i \(-0.581587\pi\)
−0.253516 + 0.967331i \(0.581587\pi\)
\(662\) −7.67457 −0.298281
\(663\) 0 0
\(664\) −48.0082 −1.86308
\(665\) 1.37868 0.0534628
\(666\) 0 0
\(667\) 4.42266 0.171246
\(668\) 4.47081 0.172981
\(669\) 0 0
\(670\) 2.34702 0.0906731
\(671\) 1.76409 0.0681020
\(672\) 0 0
\(673\) 1.49971 0.0578097 0.0289049 0.999582i \(-0.490798\pi\)
0.0289049 + 0.999582i \(0.490798\pi\)
\(674\) 1.95159 0.0751723
\(675\) 0 0
\(676\) −5.29536 −0.203668
\(677\) −37.4924 −1.44095 −0.720474 0.693482i \(-0.756076\pi\)
−0.720474 + 0.693482i \(0.756076\pi\)
\(678\) 0 0
\(679\) 7.36230 0.282539
\(680\) 44.4301 1.70382
\(681\) 0 0
\(682\) −2.67202 −0.102317
\(683\) −4.06400 −0.155505 −0.0777523 0.996973i \(-0.524774\pi\)
−0.0777523 + 0.996973i \(0.524774\pi\)
\(684\) 0 0
\(685\) −56.8248 −2.17116
\(686\) 25.1043 0.958486
\(687\) 0 0
\(688\) −10.1408 −0.386616
\(689\) −4.31937 −0.164555
\(690\) 0 0
\(691\) 4.81991 0.183358 0.0916790 0.995789i \(-0.470777\pi\)
0.0916790 + 0.995789i \(0.470777\pi\)
\(692\) −7.26985 −0.276358
\(693\) 0 0
\(694\) 5.98439 0.227164
\(695\) −30.6591 −1.16297
\(696\) 0 0
\(697\) 20.4370 0.774106
\(698\) 12.0466 0.455970
\(699\) 0 0
\(700\) 6.27750 0.237267
\(701\) −5.75429 −0.217337 −0.108668 0.994078i \(-0.534659\pi\)
−0.108668 + 0.994078i \(0.534659\pi\)
\(702\) 0 0
\(703\) −0.934031 −0.0352276
\(704\) 8.87343 0.334430
\(705\) 0 0
\(706\) −27.2393 −1.02516
\(707\) 12.0015 0.451363
\(708\) 0 0
\(709\) −12.4167 −0.466318 −0.233159 0.972439i \(-0.574906\pi\)
−0.233159 + 0.972439i \(0.574906\pi\)
\(710\) 62.3952 2.34165
\(711\) 0 0
\(712\) 4.57925 0.171615
\(713\) −2.08520 −0.0780912
\(714\) 0 0
\(715\) 20.0392 0.749424
\(716\) 1.16203 0.0434272
\(717\) 0 0
\(718\) −36.3636 −1.35708
\(719\) 12.2243 0.455888 0.227944 0.973674i \(-0.426800\pi\)
0.227944 + 0.973674i \(0.426800\pi\)
\(720\) 0 0
\(721\) −31.1594 −1.16044
\(722\) −24.2981 −0.904282
\(723\) 0 0
\(724\) −3.86387 −0.143599
\(725\) 41.7870 1.55193
\(726\) 0 0
\(727\) −25.2721 −0.937291 −0.468646 0.883386i \(-0.655258\pi\)
−0.468646 + 0.883386i \(0.655258\pi\)
\(728\) −29.5665 −1.09581
\(729\) 0 0
\(730\) −7.25214 −0.268414
\(731\) 12.4303 0.459752
\(732\) 0 0
\(733\) 2.34082 0.0864600 0.0432300 0.999065i \(-0.486235\pi\)
0.0432300 + 0.999065i \(0.486235\pi\)
\(734\) −11.4306 −0.421910
\(735\) 0 0
\(736\) 1.99896 0.0736825
\(737\) −0.481852 −0.0177492
\(738\) 0 0
\(739\) 17.6494 0.649245 0.324623 0.945844i \(-0.394763\pi\)
0.324623 + 0.945844i \(0.394763\pi\)
\(740\) −6.50350 −0.239073
\(741\) 0 0
\(742\) −1.94869 −0.0715388
\(743\) 25.6263 0.940137 0.470069 0.882630i \(-0.344229\pi\)
0.470069 + 0.882630i \(0.344229\pi\)
\(744\) 0 0
\(745\) −72.6651 −2.66224
\(746\) 34.9476 1.27952
\(747\) 0 0
\(748\) −1.38474 −0.0506310
\(749\) 10.6393 0.388753
\(750\) 0 0
\(751\) 29.0528 1.06015 0.530077 0.847950i \(-0.322163\pi\)
0.530077 + 0.847950i \(0.322163\pi\)
\(752\) −7.28746 −0.265746
\(753\) 0 0
\(754\) −29.8777 −1.08808
\(755\) 0.520647 0.0189483
\(756\) 0 0
\(757\) 35.1534 1.27767 0.638837 0.769342i \(-0.279416\pi\)
0.638837 + 0.769342i \(0.279416\pi\)
\(758\) −20.9590 −0.761264
\(759\) 0 0
\(760\) 2.24434 0.0814109
\(761\) 28.8811 1.04694 0.523469 0.852045i \(-0.324638\pi\)
0.523469 + 0.852045i \(0.324638\pi\)
\(762\) 0 0
\(763\) −7.65630 −0.277177
\(764\) 5.28429 0.191179
\(765\) 0 0
\(766\) 26.0529 0.941331
\(767\) −68.8661 −2.48661
\(768\) 0 0
\(769\) −43.5547 −1.57062 −0.785311 0.619102i \(-0.787497\pi\)
−0.785311 + 0.619102i \(0.787497\pi\)
\(770\) 9.04073 0.325805
\(771\) 0 0
\(772\) −3.75242 −0.135052
\(773\) −31.2181 −1.12284 −0.561418 0.827532i \(-0.689744\pi\)
−0.561418 + 0.827532i \(0.689744\pi\)
\(774\) 0 0
\(775\) −19.7018 −0.707708
\(776\) 11.9851 0.430239
\(777\) 0 0
\(778\) 49.1498 1.76211
\(779\) 1.03235 0.0369879
\(780\) 0 0
\(781\) −12.8100 −0.458378
\(782\) 4.95715 0.177267
\(783\) 0 0
\(784\) 11.2191 0.400683
\(785\) 0.250898 0.00895492
\(786\) 0 0
\(787\) −17.9596 −0.640190 −0.320095 0.947385i \(-0.603715\pi\)
−0.320095 + 0.947385i \(0.603715\pi\)
\(788\) 2.16691 0.0771930
\(789\) 0 0
\(790\) 55.2926 1.96722
\(791\) 8.42168 0.299441
\(792\) 0 0
\(793\) −9.30019 −0.330259
\(794\) 28.0954 0.997068
\(795\) 0 0
\(796\) −2.57173 −0.0911525
\(797\) 17.1452 0.607315 0.303657 0.952781i \(-0.401792\pi\)
0.303657 + 0.952781i \(0.401792\pi\)
\(798\) 0 0
\(799\) 8.93274 0.316018
\(800\) 18.8869 0.667753
\(801\) 0 0
\(802\) −5.81919 −0.205483
\(803\) 1.48889 0.0525419
\(804\) 0 0
\(805\) 7.05522 0.248664
\(806\) 14.0867 0.496184
\(807\) 0 0
\(808\) 19.5372 0.687318
\(809\) −50.8251 −1.78692 −0.893458 0.449146i \(-0.851728\pi\)
−0.893458 + 0.449146i \(0.851728\pi\)
\(810\) 0 0
\(811\) −25.5494 −0.897162 −0.448581 0.893742i \(-0.648070\pi\)
−0.448581 + 0.893742i \(0.648070\pi\)
\(812\) 2.93841 0.103118
\(813\) 0 0
\(814\) −6.12494 −0.214679
\(815\) −63.4963 −2.22418
\(816\) 0 0
\(817\) 0.627906 0.0219676
\(818\) −10.9069 −0.381351
\(819\) 0 0
\(820\) 7.18811 0.251020
\(821\) 14.0095 0.488936 0.244468 0.969657i \(-0.421387\pi\)
0.244468 + 0.969657i \(0.421387\pi\)
\(822\) 0 0
\(823\) −20.8927 −0.728273 −0.364136 0.931346i \(-0.618636\pi\)
−0.364136 + 0.931346i \(0.618636\pi\)
\(824\) −50.7243 −1.76707
\(825\) 0 0
\(826\) −31.0691 −1.08103
\(827\) 37.9506 1.31967 0.659836 0.751409i \(-0.270626\pi\)
0.659836 + 0.751409i \(0.270626\pi\)
\(828\) 0 0
\(829\) 7.05288 0.244957 0.122478 0.992471i \(-0.460916\pi\)
0.122478 + 0.992471i \(0.460916\pi\)
\(830\) −77.3908 −2.68627
\(831\) 0 0
\(832\) −46.7802 −1.62181
\(833\) −13.7520 −0.476480
\(834\) 0 0
\(835\) 47.4753 1.64295
\(836\) −0.0699487 −0.00241923
\(837\) 0 0
\(838\) 18.8162 0.649994
\(839\) 21.9542 0.757942 0.378971 0.925409i \(-0.376278\pi\)
0.378971 + 0.925409i \(0.376278\pi\)
\(840\) 0 0
\(841\) −9.44010 −0.325521
\(842\) 27.5278 0.948670
\(843\) 0 0
\(844\) 8.30000 0.285698
\(845\) −56.2312 −1.93441
\(846\) 0 0
\(847\) −1.85610 −0.0637763
\(848\) −2.58572 −0.0887940
\(849\) 0 0
\(850\) 46.8372 1.60650
\(851\) −4.77980 −0.163849
\(852\) 0 0
\(853\) 12.3263 0.422043 0.211022 0.977481i \(-0.432321\pi\)
0.211022 + 0.977481i \(0.432321\pi\)
\(854\) −4.19580 −0.143577
\(855\) 0 0
\(856\) 17.3198 0.591977
\(857\) 7.42600 0.253667 0.126834 0.991924i \(-0.459519\pi\)
0.126834 + 0.991924i \(0.459519\pi\)
\(858\) 0 0
\(859\) −10.8222 −0.369247 −0.184624 0.982809i \(-0.559107\pi\)
−0.184624 + 0.982809i \(0.559107\pi\)
\(860\) 4.37200 0.149084
\(861\) 0 0
\(862\) 15.7945 0.537964
\(863\) 29.5880 1.00719 0.503593 0.863941i \(-0.332011\pi\)
0.503593 + 0.863941i \(0.332011\pi\)
\(864\) 0 0
\(865\) −77.1982 −2.62482
\(866\) 5.35874 0.182097
\(867\) 0 0
\(868\) −1.38540 −0.0470236
\(869\) −11.3518 −0.385084
\(870\) 0 0
\(871\) 2.54030 0.0860746
\(872\) −12.4637 −0.422073
\(873\) 0 0
\(874\) 0.250406 0.00847010
\(875\) 31.3844 1.06099
\(876\) 0 0
\(877\) −20.6128 −0.696045 −0.348023 0.937486i \(-0.613147\pi\)
−0.348023 + 0.937486i \(0.613147\pi\)
\(878\) −40.1856 −1.35620
\(879\) 0 0
\(880\) 11.9961 0.404390
\(881\) −0.245259 −0.00826298 −0.00413149 0.999991i \(-0.501315\pi\)
−0.00413149 + 0.999991i \(0.501315\pi\)
\(882\) 0 0
\(883\) −6.05542 −0.203781 −0.101891 0.994796i \(-0.532489\pi\)
−0.101891 + 0.994796i \(0.532489\pi\)
\(884\) 7.30026 0.245534
\(885\) 0 0
\(886\) 48.2438 1.62078
\(887\) 1.26377 0.0424333 0.0212167 0.999775i \(-0.493246\pi\)
0.0212167 + 0.999775i \(0.493246\pi\)
\(888\) 0 0
\(889\) 25.5530 0.857019
\(890\) 7.38191 0.247442
\(891\) 0 0
\(892\) −4.06897 −0.136239
\(893\) 0.451229 0.0150998
\(894\) 0 0
\(895\) 12.3396 0.412467
\(896\) −13.6845 −0.457166
\(897\) 0 0
\(898\) −52.1280 −1.73954
\(899\) −9.22211 −0.307574
\(900\) 0 0
\(901\) 3.16949 0.105591
\(902\) 6.76970 0.225406
\(903\) 0 0
\(904\) 13.7096 0.455976
\(905\) −41.0302 −1.36389
\(906\) 0 0
\(907\) −13.9710 −0.463900 −0.231950 0.972728i \(-0.574511\pi\)
−0.231950 + 0.972728i \(0.574511\pi\)
\(908\) −9.00267 −0.298764
\(909\) 0 0
\(910\) −47.6622 −1.57999
\(911\) 32.0863 1.06307 0.531533 0.847037i \(-0.321616\pi\)
0.531533 + 0.847037i \(0.321616\pi\)
\(912\) 0 0
\(913\) 15.8886 0.525838
\(914\) 39.3814 1.30262
\(915\) 0 0
\(916\) 9.92508 0.327934
\(917\) 12.9283 0.426929
\(918\) 0 0
\(919\) 9.71485 0.320463 0.160232 0.987079i \(-0.448776\pi\)
0.160232 + 0.987079i \(0.448776\pi\)
\(920\) 11.4852 0.378655
\(921\) 0 0
\(922\) 26.7390 0.880601
\(923\) 67.5336 2.22290
\(924\) 0 0
\(925\) −45.1614 −1.48490
\(926\) 29.7939 0.979088
\(927\) 0 0
\(928\) 8.84069 0.290210
\(929\) 37.7506 1.23856 0.619279 0.785171i \(-0.287425\pi\)
0.619279 + 0.785171i \(0.287425\pi\)
\(930\) 0 0
\(931\) −0.694671 −0.0227669
\(932\) 8.98986 0.294473
\(933\) 0 0
\(934\) 16.7360 0.547617
\(935\) −14.7045 −0.480888
\(936\) 0 0
\(937\) −45.6896 −1.49262 −0.746308 0.665601i \(-0.768175\pi\)
−0.746308 + 0.665601i \(0.768175\pi\)
\(938\) 1.14606 0.0374202
\(939\) 0 0
\(940\) 3.14183 0.102475
\(941\) −8.70849 −0.283889 −0.141944 0.989875i \(-0.545335\pi\)
−0.141944 + 0.989875i \(0.545335\pi\)
\(942\) 0 0
\(943\) 5.28296 0.172037
\(944\) −41.2255 −1.34178
\(945\) 0 0
\(946\) 4.11752 0.133872
\(947\) 54.0484 1.75634 0.878168 0.478352i \(-0.158766\pi\)
0.878168 + 0.478352i \(0.158766\pi\)
\(948\) 0 0
\(949\) −7.84936 −0.254801
\(950\) 2.36593 0.0767610
\(951\) 0 0
\(952\) 21.6955 0.703154
\(953\) 42.0502 1.36214 0.681069 0.732219i \(-0.261515\pi\)
0.681069 + 0.732219i \(0.261515\pi\)
\(954\) 0 0
\(955\) 56.1137 1.81580
\(956\) 0.931610 0.0301304
\(957\) 0 0
\(958\) 7.31421 0.236312
\(959\) −27.7478 −0.896024
\(960\) 0 0
\(961\) −26.6520 −0.859741
\(962\) 32.2903 1.04108
\(963\) 0 0
\(964\) −8.15661 −0.262707
\(965\) −39.8468 −1.28271
\(966\) 0 0
\(967\) −17.3621 −0.558328 −0.279164 0.960243i \(-0.590057\pi\)
−0.279164 + 0.960243i \(0.590057\pi\)
\(968\) −3.02154 −0.0971159
\(969\) 0 0
\(970\) 19.3203 0.620339
\(971\) 55.0793 1.76758 0.883789 0.467886i \(-0.154984\pi\)
0.883789 + 0.467886i \(0.154984\pi\)
\(972\) 0 0
\(973\) −14.9710 −0.479949
\(974\) 29.5793 0.947783
\(975\) 0 0
\(976\) −5.56740 −0.178208
\(977\) 6.16086 0.197103 0.0985517 0.995132i \(-0.468579\pi\)
0.0985517 + 0.995132i \(0.468579\pi\)
\(978\) 0 0
\(979\) −1.51554 −0.0484368
\(980\) −4.83688 −0.154508
\(981\) 0 0
\(982\) −20.0049 −0.638383
\(983\) −10.3104 −0.328851 −0.164425 0.986390i \(-0.552577\pi\)
−0.164425 + 0.986390i \(0.552577\pi\)
\(984\) 0 0
\(985\) 23.0103 0.733170
\(986\) 21.9238 0.698196
\(987\) 0 0
\(988\) 0.368765 0.0117320
\(989\) 3.21324 0.102175
\(990\) 0 0
\(991\) −15.1363 −0.480820 −0.240410 0.970671i \(-0.577282\pi\)
−0.240410 + 0.970671i \(0.577282\pi\)
\(992\) −4.16821 −0.132341
\(993\) 0 0
\(994\) 30.4679 0.966383
\(995\) −27.3091 −0.865756
\(996\) 0 0
\(997\) −10.2906 −0.325907 −0.162953 0.986634i \(-0.552102\pi\)
−0.162953 + 0.986634i \(0.552102\pi\)
\(998\) −10.3423 −0.327381
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2277.2.a.l.1.3 5
3.2 odd 2 253.2.a.c.1.3 5
12.11 even 2 4048.2.a.bb.1.5 5
15.14 odd 2 6325.2.a.l.1.3 5
33.32 even 2 2783.2.a.g.1.3 5
69.68 even 2 5819.2.a.d.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.a.c.1.3 5 3.2 odd 2
2277.2.a.l.1.3 5 1.1 even 1 trivial
2783.2.a.g.1.3 5 33.32 even 2
4048.2.a.bb.1.5 5 12.11 even 2
5819.2.a.d.1.3 5 69.68 even 2
6325.2.a.l.1.3 5 15.14 odd 2