Properties

Label 2277.2.a.l
Level $2277$
Weight $2$
Character orbit 2277.a
Self dual yes
Analytic conductor $18.182$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,4,0,6,3,0,-3,6,0,-6,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.170701.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{4} - \beta_{3} - \beta_1 + 1) q^{4} + (\beta_{4} - \beta_{2}) q^{5} + (\beta_{4} + \beta_{3} - 1) q^{7} + (\beta_{4} - 2 \beta_{3} - \beta_{2} + \cdots + 1) q^{8}+ \cdots + (3 \beta_{4} + 4 \beta_{3} - 3 \beta_{2} + \cdots + 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 6 q^{4} + 3 q^{5} - 3 q^{7} + 6 q^{8} - 6 q^{10} + 5 q^{11} - 15 q^{13} - 4 q^{14} + 8 q^{16} + 9 q^{17} - 5 q^{19} + 17 q^{20} + 4 q^{22} + 5 q^{23} + 12 q^{25} - 5 q^{26} + 8 q^{29} - 4 q^{31}+ \cdots + 33 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 6x^{3} + 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - \nu^{3} - 6\nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{4} + 2\nu^{3} + 4\nu^{2} - 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{4} + 2\nu^{3} + 5\nu^{2} - 5\nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} - \beta_{3} + \beta_{2} + 6\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 8\beta_{4} - 7\beta_{3} + 2\beta_{2} + 12\beta _1 + 11 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.89398
0.915381
−0.281423
−0.757742
−1.77019
−1.89398 0 1.58716 4.08349 0 0.994750 0.781916 0 −7.73404
1.2 0.0846188 0 −1.99284 −0.462928 0 −4.03328 −0.337869 0 −0.0391724
1.3 1.28142 0 −0.357954 −3.80110 0 −1.85610 −3.02154 0 −4.87082
1.4 1.75774 0 1.08966 2.14004 0 4.58759 −1.60015 0 3.76164
1.5 2.77019 0 5.67398 1.04050 0 −2.69296 10.1776 0 2.88239
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2277.2.a.l 5
3.b odd 2 1 253.2.a.c 5
12.b even 2 1 4048.2.a.bb 5
15.d odd 2 1 6325.2.a.l 5
33.d even 2 1 2783.2.a.g 5
69.c even 2 1 5819.2.a.d 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
253.2.a.c 5 3.b odd 2 1
2277.2.a.l 5 1.a even 1 1 trivial
2783.2.a.g 5 33.d even 2 1
4048.2.a.bb 5 12.b even 2 1
5819.2.a.d 5 69.c even 2 1
6325.2.a.l 5 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2277))\):

\( T_{2}^{5} - 4T_{2}^{4} + 14T_{2}^{2} - 13T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{5} - 3T_{5}^{4} - 14T_{5}^{3} + 43T_{5}^{2} - 12T_{5} - 16 \) Copy content Toggle raw display
\( T_{17}^{5} - 9T_{17}^{4} - 16T_{17}^{3} + 257T_{17}^{2} - 72T_{17} - 1492 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 4 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 3 T^{4} + \cdots - 16 \) Copy content Toggle raw display
$7$ \( T^{5} + 3 T^{4} + \cdots + 92 \) Copy content Toggle raw display
$11$ \( (T - 1)^{5} \) Copy content Toggle raw display
$13$ \( T^{5} + 15 T^{4} + \cdots + 89 \) Copy content Toggle raw display
$17$ \( T^{5} - 9 T^{4} + \cdots - 1492 \) Copy content Toggle raw display
$19$ \( T^{5} + 5 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$23$ \( (T - 1)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} - 8 T^{4} + \cdots - 2011 \) Copy content Toggle raw display
$31$ \( T^{5} + 4 T^{4} + \cdots - 161 \) Copy content Toggle raw display
$37$ \( T^{5} - 8 T^{4} + \cdots - 1948 \) Copy content Toggle raw display
$41$ \( T^{5} - 6 T^{4} + \cdots - 10459 \) Copy content Toggle raw display
$43$ \( T^{5} + 8 T^{4} + \cdots + 3988 \) Copy content Toggle raw display
$47$ \( T^{5} - 34 T^{4} + \cdots - 5272 \) Copy content Toggle raw display
$53$ \( T^{5} + 2 T^{4} + \cdots - 4 \) Copy content Toggle raw display
$59$ \( T^{5} - 13 T^{4} + \cdots - 8368 \) Copy content Toggle raw display
$61$ \( T^{5} - 18 T^{4} + \cdots - 4 \) Copy content Toggle raw display
$67$ \( T^{5} + 4 T^{4} + \cdots + 1568 \) Copy content Toggle raw display
$71$ \( T^{5} + 10 T^{4} + \cdots + 73601 \) Copy content Toggle raw display
$73$ \( T^{5} + 31 T^{4} + \cdots - 3659 \) Copy content Toggle raw display
$79$ \( T^{5} + 3 T^{4} + \cdots + 2476 \) Copy content Toggle raw display
$83$ \( T^{5} - 43 T^{4} + \cdots + 71188 \) Copy content Toggle raw display
$89$ \( T^{5} + 15 T^{4} + \cdots + 4804 \) Copy content Toggle raw display
$97$ \( T^{5} - 17 T^{4} + \cdots - 3716 \) Copy content Toggle raw display
show more
show less