Properties

Label 2783.2.a.g.1.3
Level $2783$
Weight $2$
Character 2783.1
Self dual yes
Analytic conductor $22.222$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2783,2,Mod(1,2783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2783.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2783, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2783 = 11^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2783.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,4,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.2223668825\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.170701.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.281423\) of defining polynomial
Character \(\chi\) \(=\) 2783.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28142 q^{2} -3.27194 q^{3} -0.357954 q^{4} +3.80110 q^{5} -4.19274 q^{6} +1.85610 q^{7} -3.02154 q^{8} +7.70561 q^{9} +4.87082 q^{10} +1.17121 q^{12} +5.27194 q^{13} +2.37845 q^{14} -12.4370 q^{15} -3.15596 q^{16} +3.86848 q^{17} +9.87415 q^{18} -0.195412 q^{19} -1.36062 q^{20} -6.07305 q^{21} -1.00000 q^{23} +9.88630 q^{24} +9.44840 q^{25} +6.75559 q^{26} -15.3965 q^{27} -0.664399 q^{28} +4.42266 q^{29} -15.9371 q^{30} -2.08520 q^{31} +1.99896 q^{32} +4.95715 q^{34} +7.05522 q^{35} -2.75826 q^{36} -4.77980 q^{37} -0.250406 q^{38} -17.2495 q^{39} -11.4852 q^{40} +5.28296 q^{41} -7.78214 q^{42} -3.21324 q^{43} +29.2898 q^{45} -1.28142 q^{46} -2.30911 q^{47} +10.3261 q^{48} -3.55490 q^{49} +12.1074 q^{50} -12.6574 q^{51} -1.88712 q^{52} -0.819313 q^{53} -19.7294 q^{54} -5.60827 q^{56} +0.639378 q^{57} +5.66730 q^{58} -13.0628 q^{59} +4.45188 q^{60} -1.76409 q^{61} -2.67202 q^{62} +14.3024 q^{63} +8.87343 q^{64} +20.0392 q^{65} -0.481852 q^{67} -1.38474 q^{68} +3.27194 q^{69} +9.04073 q^{70} +12.8100 q^{71} -23.2828 q^{72} -1.48889 q^{73} -6.12494 q^{74} -30.9146 q^{75} +0.0699487 q^{76} -22.1039 q^{78} +11.3518 q^{79} -11.9961 q^{80} +27.2596 q^{81} +6.76970 q^{82} +15.8886 q^{83} +2.17387 q^{84} +14.7045 q^{85} -4.11752 q^{86} -14.4707 q^{87} +1.51554 q^{89} +37.5327 q^{90} +9.78524 q^{91} +0.357954 q^{92} +6.82264 q^{93} -2.95895 q^{94} -0.742782 q^{95} -6.54047 q^{96} -3.96654 q^{97} -4.55533 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} - 5 q^{3} + 6 q^{4} - 3 q^{5} + 3 q^{6} + 3 q^{7} + 6 q^{8} + 4 q^{9} + 6 q^{10} + 3 q^{12} + 15 q^{13} + 4 q^{14} - 2 q^{15} + 8 q^{16} + 9 q^{17} - 6 q^{18} + 5 q^{19} - 17 q^{20} + 3 q^{21}+ \cdots + 33 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28142 0.906103 0.453052 0.891484i \(-0.350335\pi\)
0.453052 + 0.891484i \(0.350335\pi\)
\(3\) −3.27194 −1.88906 −0.944529 0.328429i \(-0.893481\pi\)
−0.944529 + 0.328429i \(0.893481\pi\)
\(4\) −0.357954 −0.178977
\(5\) 3.80110 1.69991 0.849953 0.526859i \(-0.176630\pi\)
0.849953 + 0.526859i \(0.176630\pi\)
\(6\) −4.19274 −1.71168
\(7\) 1.85610 0.701539 0.350770 0.936462i \(-0.385920\pi\)
0.350770 + 0.936462i \(0.385920\pi\)
\(8\) −3.02154 −1.06827
\(9\) 7.70561 2.56854
\(10\) 4.87082 1.54029
\(11\) 0 0
\(12\) 1.17121 0.338098
\(13\) 5.27194 1.46217 0.731087 0.682284i \(-0.239013\pi\)
0.731087 + 0.682284i \(0.239013\pi\)
\(14\) 2.37845 0.635667
\(15\) −12.4370 −3.21122
\(16\) −3.15596 −0.788990
\(17\) 3.86848 0.938243 0.469122 0.883134i \(-0.344571\pi\)
0.469122 + 0.883134i \(0.344571\pi\)
\(18\) 9.87415 2.32736
\(19\) −0.195412 −0.0448306 −0.0224153 0.999749i \(-0.507136\pi\)
−0.0224153 + 0.999749i \(0.507136\pi\)
\(20\) −1.36062 −0.304244
\(21\) −6.07305 −1.32525
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 9.88630 2.01803
\(25\) 9.44840 1.88968
\(26\) 6.75559 1.32488
\(27\) −15.3965 −2.96306
\(28\) −0.664399 −0.125560
\(29\) 4.42266 0.821267 0.410633 0.911801i \(-0.365308\pi\)
0.410633 + 0.911801i \(0.365308\pi\)
\(30\) −15.9371 −2.90970
\(31\) −2.08520 −0.374512 −0.187256 0.982311i \(-0.559959\pi\)
−0.187256 + 0.982311i \(0.559959\pi\)
\(32\) 1.99896 0.353369
\(33\) 0 0
\(34\) 4.95715 0.850145
\(35\) 7.05522 1.19255
\(36\) −2.75826 −0.459710
\(37\) −4.77980 −0.785794 −0.392897 0.919583i \(-0.628527\pi\)
−0.392897 + 0.919583i \(0.628527\pi\)
\(38\) −0.250406 −0.0406212
\(39\) −17.2495 −2.76213
\(40\) −11.4852 −1.81597
\(41\) 5.28296 0.825059 0.412530 0.910944i \(-0.364645\pi\)
0.412530 + 0.910944i \(0.364645\pi\)
\(42\) −7.78214 −1.20081
\(43\) −3.21324 −0.490014 −0.245007 0.969521i \(-0.578790\pi\)
−0.245007 + 0.969521i \(0.578790\pi\)
\(44\) 0 0
\(45\) 29.2898 4.36627
\(46\) −1.28142 −0.188936
\(47\) −2.30911 −0.336819 −0.168409 0.985717i \(-0.553863\pi\)
−0.168409 + 0.985717i \(0.553863\pi\)
\(48\) 10.3261 1.49045
\(49\) −3.55490 −0.507843
\(50\) 12.1074 1.71224
\(51\) −12.6574 −1.77240
\(52\) −1.88712 −0.261696
\(53\) −0.819313 −0.112541 −0.0562707 0.998416i \(-0.517921\pi\)
−0.0562707 + 0.998416i \(0.517921\pi\)
\(54\) −19.7294 −2.68484
\(55\) 0 0
\(56\) −5.60827 −0.749437
\(57\) 0.639378 0.0846876
\(58\) 5.66730 0.744152
\(59\) −13.0628 −1.70063 −0.850313 0.526278i \(-0.823587\pi\)
−0.850313 + 0.526278i \(0.823587\pi\)
\(60\) 4.45188 0.574735
\(61\) −1.76409 −0.225869 −0.112934 0.993602i \(-0.536025\pi\)
−0.112934 + 0.993602i \(0.536025\pi\)
\(62\) −2.67202 −0.339347
\(63\) 14.3024 1.80193
\(64\) 8.87343 1.10918
\(65\) 20.0392 2.48556
\(66\) 0 0
\(67\) −0.481852 −0.0588676 −0.0294338 0.999567i \(-0.509370\pi\)
−0.0294338 + 0.999567i \(0.509370\pi\)
\(68\) −1.38474 −0.167924
\(69\) 3.27194 0.393896
\(70\) 9.04073 1.08057
\(71\) 12.8100 1.52027 0.760134 0.649767i \(-0.225133\pi\)
0.760134 + 0.649767i \(0.225133\pi\)
\(72\) −23.2828 −2.74390
\(73\) −1.48889 −0.174262 −0.0871309 0.996197i \(-0.527770\pi\)
−0.0871309 + 0.996197i \(0.527770\pi\)
\(74\) −6.12494 −0.712010
\(75\) −30.9146 −3.56971
\(76\) 0.0699487 0.00802366
\(77\) 0 0
\(78\) −22.1039 −2.50278
\(79\) 11.3518 1.27718 0.638589 0.769548i \(-0.279518\pi\)
0.638589 + 0.769548i \(0.279518\pi\)
\(80\) −11.9961 −1.34121
\(81\) 27.2596 3.02885
\(82\) 6.76970 0.747589
\(83\) 15.8886 1.74401 0.872003 0.489501i \(-0.162821\pi\)
0.872003 + 0.489501i \(0.162821\pi\)
\(84\) 2.17387 0.237189
\(85\) 14.7045 1.59492
\(86\) −4.11752 −0.444003
\(87\) −14.4707 −1.55142
\(88\) 0 0
\(89\) 1.51554 0.160647 0.0803233 0.996769i \(-0.474405\pi\)
0.0803233 + 0.996769i \(0.474405\pi\)
\(90\) 37.5327 3.95629
\(91\) 9.78524 1.02577
\(92\) 0.357954 0.0373193
\(93\) 6.82264 0.707475
\(94\) −2.95895 −0.305192
\(95\) −0.742782 −0.0762079
\(96\) −6.54047 −0.667534
\(97\) −3.96654 −0.402742 −0.201371 0.979515i \(-0.564540\pi\)
−0.201371 + 0.979515i \(0.564540\pi\)
\(98\) −4.55533 −0.460158
\(99\) 0 0
\(100\) −3.38210 −0.338210
\(101\) −6.46599 −0.643390 −0.321695 0.946843i \(-0.604253\pi\)
−0.321695 + 0.946843i \(0.604253\pi\)
\(102\) −16.2195 −1.60597
\(103\) 16.7876 1.65413 0.827065 0.562106i \(-0.190009\pi\)
0.827065 + 0.562106i \(0.190009\pi\)
\(104\) −15.9294 −1.56200
\(105\) −23.0843 −2.25280
\(106\) −1.04989 −0.101974
\(107\) −5.73210 −0.554143 −0.277072 0.960849i \(-0.589364\pi\)
−0.277072 + 0.960849i \(0.589364\pi\)
\(108\) 5.51125 0.530320
\(109\) −4.12494 −0.395098 −0.197549 0.980293i \(-0.563298\pi\)
−0.197549 + 0.980293i \(0.563298\pi\)
\(110\) 0 0
\(111\) 15.6392 1.48441
\(112\) −5.85777 −0.553507
\(113\) 4.53730 0.426834 0.213417 0.976961i \(-0.431541\pi\)
0.213417 + 0.976961i \(0.431541\pi\)
\(114\) 0.819313 0.0767357
\(115\) −3.80110 −0.354455
\(116\) −1.58311 −0.146988
\(117\) 40.6236 3.75565
\(118\) −16.7389 −1.54094
\(119\) 7.18027 0.658214
\(120\) 37.5789 3.43046
\(121\) 0 0
\(122\) −2.26055 −0.204660
\(123\) −17.2855 −1.55858
\(124\) 0.746405 0.0670292
\(125\) 16.9088 1.51237
\(126\) 18.3274 1.63273
\(127\) 13.7670 1.22163 0.610813 0.791775i \(-0.290843\pi\)
0.610813 + 0.791775i \(0.290843\pi\)
\(128\) 7.37271 0.651661
\(129\) 10.5135 0.925665
\(130\) 25.6787 2.25217
\(131\) −6.96530 −0.608561 −0.304280 0.952583i \(-0.598416\pi\)
−0.304280 + 0.952583i \(0.598416\pi\)
\(132\) 0 0
\(133\) −0.362704 −0.0314504
\(134\) −0.617456 −0.0533401
\(135\) −58.5237 −5.03692
\(136\) −11.6887 −1.00230
\(137\) −14.9495 −1.27723 −0.638613 0.769528i \(-0.720492\pi\)
−0.638613 + 0.769528i \(0.720492\pi\)
\(138\) 4.19274 0.356910
\(139\) −8.06585 −0.684137 −0.342068 0.939675i \(-0.611127\pi\)
−0.342068 + 0.939675i \(0.611127\pi\)
\(140\) −2.52545 −0.213439
\(141\) 7.55528 0.636270
\(142\) 16.4150 1.37752
\(143\) 0 0
\(144\) −24.3186 −2.02655
\(145\) 16.8110 1.39608
\(146\) −1.90790 −0.157899
\(147\) 11.6314 0.959344
\(148\) 1.71095 0.140639
\(149\) 19.1168 1.56611 0.783056 0.621951i \(-0.213660\pi\)
0.783056 + 0.621951i \(0.213660\pi\)
\(150\) −39.6147 −3.23453
\(151\) 0.136973 0.0111467 0.00557333 0.999984i \(-0.498226\pi\)
0.00557333 + 0.999984i \(0.498226\pi\)
\(152\) 0.590445 0.0478914
\(153\) 29.8090 2.40991
\(154\) 0 0
\(155\) −7.92605 −0.636635
\(156\) 6.17454 0.494358
\(157\) −0.0660065 −0.00526789 −0.00263395 0.999997i \(-0.500838\pi\)
−0.00263395 + 0.999997i \(0.500838\pi\)
\(158\) 14.5465 1.15725
\(159\) 2.68075 0.212597
\(160\) 7.59824 0.600693
\(161\) −1.85610 −0.146281
\(162\) 34.9311 2.74445
\(163\) 16.7047 1.30841 0.654207 0.756316i \(-0.273003\pi\)
0.654207 + 0.756316i \(0.273003\pi\)
\(164\) −1.89106 −0.147667
\(165\) 0 0
\(166\) 20.3601 1.58025
\(167\) −12.4899 −0.966495 −0.483248 0.875484i \(-0.660543\pi\)
−0.483248 + 0.875484i \(0.660543\pi\)
\(168\) 18.3499 1.41573
\(169\) 14.7934 1.13795
\(170\) 18.8427 1.44517
\(171\) −1.50577 −0.115149
\(172\) 1.15019 0.0877014
\(173\) 20.3094 1.54410 0.772048 0.635564i \(-0.219232\pi\)
0.772048 + 0.635564i \(0.219232\pi\)
\(174\) −18.5431 −1.40575
\(175\) 17.5371 1.32568
\(176\) 0 0
\(177\) 42.7406 3.21258
\(178\) 1.94204 0.145562
\(179\) 3.24632 0.242641 0.121321 0.992613i \(-0.461287\pi\)
0.121321 + 0.992613i \(0.461287\pi\)
\(180\) −10.4844 −0.781463
\(181\) 10.7943 0.802333 0.401167 0.916005i \(-0.368605\pi\)
0.401167 + 0.916005i \(0.368605\pi\)
\(182\) 12.5390 0.929455
\(183\) 5.77200 0.426679
\(184\) 3.02154 0.222751
\(185\) −18.1685 −1.33578
\(186\) 8.74269 0.641045
\(187\) 0 0
\(188\) 0.826557 0.0602829
\(189\) −28.5774 −2.07870
\(190\) −0.951818 −0.0690522
\(191\) 14.7625 1.06817 0.534087 0.845429i \(-0.320655\pi\)
0.534087 + 0.845429i \(0.320655\pi\)
\(192\) −29.0334 −2.09530
\(193\) −10.4829 −0.754579 −0.377289 0.926095i \(-0.623144\pi\)
−0.377289 + 0.926095i \(0.623144\pi\)
\(194\) −5.08282 −0.364925
\(195\) −65.5672 −4.69536
\(196\) 1.27249 0.0908923
\(197\) −6.05359 −0.431301 −0.215650 0.976471i \(-0.569187\pi\)
−0.215650 + 0.976471i \(0.569187\pi\)
\(198\) 0 0
\(199\) 7.18451 0.509297 0.254648 0.967034i \(-0.418040\pi\)
0.254648 + 0.967034i \(0.418040\pi\)
\(200\) −28.5487 −2.01870
\(201\) 1.57659 0.111204
\(202\) −8.28567 −0.582978
\(203\) 8.20889 0.576151
\(204\) 4.53078 0.317218
\(205\) 20.0811 1.40252
\(206\) 21.5120 1.49881
\(207\) −7.70561 −0.535577
\(208\) −16.6380 −1.15364
\(209\) 0 0
\(210\) −29.5807 −2.04127
\(211\) 23.1873 1.59628 0.798140 0.602472i \(-0.205817\pi\)
0.798140 + 0.602472i \(0.205817\pi\)
\(212\) 0.293277 0.0201423
\(213\) −41.9136 −2.87187
\(214\) −7.34525 −0.502111
\(215\) −12.2139 −0.832978
\(216\) 46.5211 3.16536
\(217\) −3.87033 −0.262735
\(218\) −5.28580 −0.357999
\(219\) 4.87157 0.329191
\(220\) 0 0
\(221\) 20.3944 1.37187
\(222\) 20.0405 1.34503
\(223\) 11.3673 0.761209 0.380605 0.924738i \(-0.375716\pi\)
0.380605 + 0.924738i \(0.375716\pi\)
\(224\) 3.71026 0.247902
\(225\) 72.8057 4.85371
\(226\) 5.81421 0.386755
\(227\) 25.1503 1.66929 0.834643 0.550791i \(-0.185674\pi\)
0.834643 + 0.550791i \(0.185674\pi\)
\(228\) −0.228868 −0.0151572
\(229\) −27.7272 −1.83227 −0.916133 0.400874i \(-0.868707\pi\)
−0.916133 + 0.400874i \(0.868707\pi\)
\(230\) −4.87082 −0.321173
\(231\) 0 0
\(232\) −13.3632 −0.877339
\(233\) −25.1145 −1.64531 −0.822654 0.568543i \(-0.807507\pi\)
−0.822654 + 0.568543i \(0.807507\pi\)
\(234\) 52.0560 3.40301
\(235\) −8.77718 −0.572560
\(236\) 4.67587 0.304373
\(237\) −37.1425 −2.41266
\(238\) 9.20096 0.596410
\(239\) −2.60259 −0.168348 −0.0841739 0.996451i \(-0.526825\pi\)
−0.0841739 + 0.996451i \(0.526825\pi\)
\(240\) 39.2507 2.53362
\(241\) −22.7867 −1.46782 −0.733911 0.679246i \(-0.762307\pi\)
−0.733911 + 0.679246i \(0.762307\pi\)
\(242\) 0 0
\(243\) −43.0025 −2.75861
\(244\) 0.631464 0.0404253
\(245\) −13.5125 −0.863285
\(246\) −22.1501 −1.41224
\(247\) −1.03020 −0.0655502
\(248\) 6.30050 0.400082
\(249\) −51.9868 −3.29453
\(250\) 21.6674 1.37036
\(251\) 7.91155 0.499373 0.249686 0.968327i \(-0.419672\pi\)
0.249686 + 0.968327i \(0.419672\pi\)
\(252\) −5.11960 −0.322504
\(253\) 0 0
\(254\) 17.6414 1.10692
\(255\) −48.1122 −3.01290
\(256\) −8.29930 −0.518706
\(257\) 7.26003 0.452868 0.226434 0.974027i \(-0.427293\pi\)
0.226434 + 0.974027i \(0.427293\pi\)
\(258\) 13.4723 0.838748
\(259\) −8.87177 −0.551265
\(260\) −7.17312 −0.444858
\(261\) 34.0793 2.10946
\(262\) −8.92549 −0.551419
\(263\) −3.69770 −0.228010 −0.114005 0.993480i \(-0.536368\pi\)
−0.114005 + 0.993480i \(0.536368\pi\)
\(264\) 0 0
\(265\) −3.11430 −0.191310
\(266\) −0.464778 −0.0284973
\(267\) −4.95875 −0.303471
\(268\) 0.172481 0.0105360
\(269\) −31.9537 −1.94825 −0.974126 0.226005i \(-0.927433\pi\)
−0.974126 + 0.226005i \(0.927433\pi\)
\(270\) −74.9936 −4.56397
\(271\) −0.579921 −0.0352277 −0.0176138 0.999845i \(-0.505607\pi\)
−0.0176138 + 0.999845i \(0.505607\pi\)
\(272\) −12.2088 −0.740264
\(273\) −32.0168 −1.93774
\(274\) −19.1567 −1.15730
\(275\) 0 0
\(276\) −1.17121 −0.0704984
\(277\) −6.91340 −0.415386 −0.207693 0.978194i \(-0.566596\pi\)
−0.207693 + 0.978194i \(0.566596\pi\)
\(278\) −10.3358 −0.619898
\(279\) −16.0677 −0.961949
\(280\) −21.3176 −1.27397
\(281\) 16.0724 0.958799 0.479399 0.877597i \(-0.340855\pi\)
0.479399 + 0.877597i \(0.340855\pi\)
\(282\) 9.68152 0.576526
\(283\) −3.57436 −0.212473 −0.106237 0.994341i \(-0.533880\pi\)
−0.106237 + 0.994341i \(0.533880\pi\)
\(284\) −4.58540 −0.272093
\(285\) 2.43034 0.143961
\(286\) 0 0
\(287\) 9.80569 0.578811
\(288\) 15.4032 0.907641
\(289\) −2.03490 −0.119700
\(290\) 21.5420 1.26499
\(291\) 12.9783 0.760802
\(292\) 0.532956 0.0311889
\(293\) 14.7794 0.863422 0.431711 0.902012i \(-0.357910\pi\)
0.431711 + 0.902012i \(0.357910\pi\)
\(294\) 14.9048 0.869265
\(295\) −49.6529 −2.89090
\(296\) 14.4423 0.839444
\(297\) 0 0
\(298\) 24.4968 1.41906
\(299\) −5.27194 −0.304884
\(300\) 11.0660 0.638897
\(301\) −5.96408 −0.343764
\(302\) 0.175520 0.0101000
\(303\) 21.1564 1.21540
\(304\) 0.616713 0.0353709
\(305\) −6.70549 −0.383955
\(306\) 38.1979 2.18363
\(307\) −8.71106 −0.497167 −0.248583 0.968611i \(-0.579965\pi\)
−0.248583 + 0.968611i \(0.579965\pi\)
\(308\) 0 0
\(309\) −54.9281 −3.12475
\(310\) −10.1566 −0.576857
\(311\) −13.6516 −0.774113 −0.387057 0.922056i \(-0.626508\pi\)
−0.387057 + 0.922056i \(0.626508\pi\)
\(312\) 52.1200 2.95071
\(313\) 0.389578 0.0220202 0.0110101 0.999939i \(-0.496495\pi\)
0.0110101 + 0.999939i \(0.496495\pi\)
\(314\) −0.0845823 −0.00477326
\(315\) 54.3648 3.06311
\(316\) −4.06343 −0.228586
\(317\) 2.69883 0.151582 0.0757908 0.997124i \(-0.475852\pi\)
0.0757908 + 0.997124i \(0.475852\pi\)
\(318\) 3.43517 0.192635
\(319\) 0 0
\(320\) 33.7288 1.88550
\(321\) 18.7551 1.04681
\(322\) −2.37845 −0.132546
\(323\) −0.755947 −0.0420620
\(324\) −9.75771 −0.542095
\(325\) 49.8114 2.76304
\(326\) 21.4058 1.18556
\(327\) 13.4966 0.746362
\(328\) −15.9627 −0.881390
\(329\) −4.28594 −0.236291
\(330\) 0 0
\(331\) −5.98910 −0.329191 −0.164595 0.986361i \(-0.552632\pi\)
−0.164595 + 0.986361i \(0.552632\pi\)
\(332\) −5.68741 −0.312137
\(333\) −36.8313 −2.01834
\(334\) −16.0048 −0.875744
\(335\) −1.83157 −0.100069
\(336\) 19.1663 1.04561
\(337\) −1.52298 −0.0829622 −0.0414811 0.999139i \(-0.513208\pi\)
−0.0414811 + 0.999139i \(0.513208\pi\)
\(338\) 18.9566 1.03110
\(339\) −14.8458 −0.806313
\(340\) −5.26353 −0.285455
\(341\) 0 0
\(342\) −1.92953 −0.104337
\(343\) −19.5909 −1.05781
\(344\) 9.70892 0.523470
\(345\) 12.4370 0.669586
\(346\) 26.0250 1.39911
\(347\) 4.67011 0.250705 0.125352 0.992112i \(-0.459994\pi\)
0.125352 + 0.992112i \(0.459994\pi\)
\(348\) 5.17985 0.277669
\(349\) −9.40093 −0.503220 −0.251610 0.967829i \(-0.580960\pi\)
−0.251610 + 0.967829i \(0.580960\pi\)
\(350\) 22.4725 1.20121
\(351\) −81.1695 −4.33251
\(352\) 0 0
\(353\) 21.2570 1.13140 0.565699 0.824612i \(-0.308607\pi\)
0.565699 + 0.824612i \(0.308607\pi\)
\(354\) 54.7688 2.91093
\(355\) 48.6921 2.58431
\(356\) −0.542493 −0.0287521
\(357\) −23.4934 −1.24340
\(358\) 4.15991 0.219858
\(359\) −28.3775 −1.49771 −0.748855 0.662734i \(-0.769396\pi\)
−0.748855 + 0.662734i \(0.769396\pi\)
\(360\) −88.5004 −4.66438
\(361\) −18.9618 −0.997990
\(362\) 13.8321 0.726997
\(363\) 0 0
\(364\) −3.50267 −0.183590
\(365\) −5.65944 −0.296229
\(366\) 7.39638 0.386615
\(367\) −8.92022 −0.465631 −0.232816 0.972521i \(-0.574794\pi\)
−0.232816 + 0.972521i \(0.574794\pi\)
\(368\) 3.15596 0.164516
\(369\) 40.7084 2.11920
\(370\) −23.2815 −1.21035
\(371\) −1.52073 −0.0789522
\(372\) −2.44220 −0.126622
\(373\) −27.2725 −1.41212 −0.706059 0.708153i \(-0.749529\pi\)
−0.706059 + 0.708153i \(0.749529\pi\)
\(374\) 0 0
\(375\) −55.3247 −2.85696
\(376\) 6.97707 0.359815
\(377\) 23.3160 1.20084
\(378\) −36.6198 −1.88352
\(379\) −16.3560 −0.840152 −0.420076 0.907489i \(-0.637997\pi\)
−0.420076 + 0.907489i \(0.637997\pi\)
\(380\) 0.265882 0.0136395
\(381\) −45.0450 −2.30772
\(382\) 18.9170 0.967876
\(383\) −20.3313 −1.03888 −0.519439 0.854507i \(-0.673859\pi\)
−0.519439 + 0.854507i \(0.673859\pi\)
\(384\) −24.1231 −1.23103
\(385\) 0 0
\(386\) −13.4331 −0.683726
\(387\) −24.7600 −1.25862
\(388\) 1.41984 0.0720816
\(389\) −38.3557 −1.94471 −0.972355 0.233509i \(-0.924979\pi\)
−0.972355 + 0.233509i \(0.924979\pi\)
\(390\) −84.0193 −4.25448
\(391\) −3.86848 −0.195637
\(392\) 10.7413 0.542516
\(393\) 22.7901 1.14961
\(394\) −7.75721 −0.390803
\(395\) 43.1494 2.17108
\(396\) 0 0
\(397\) 21.9251 1.10039 0.550195 0.835036i \(-0.314553\pi\)
0.550195 + 0.835036i \(0.314553\pi\)
\(398\) 9.20640 0.461475
\(399\) 1.18675 0.0594117
\(400\) −29.8188 −1.49094
\(401\) 4.54119 0.226776 0.113388 0.993551i \(-0.463830\pi\)
0.113388 + 0.993551i \(0.463830\pi\)
\(402\) 2.02028 0.100762
\(403\) −10.9930 −0.547602
\(404\) 2.31453 0.115152
\(405\) 103.617 5.14876
\(406\) 10.5191 0.522052
\(407\) 0 0
\(408\) 38.2449 1.89341
\(409\) 8.51157 0.420870 0.210435 0.977608i \(-0.432512\pi\)
0.210435 + 0.977608i \(0.432512\pi\)
\(410\) 25.7323 1.27083
\(411\) 48.9141 2.41275
\(412\) −6.00919 −0.296052
\(413\) −24.2458 −1.19306
\(414\) −9.87415 −0.485288
\(415\) 60.3944 2.96465
\(416\) 10.5384 0.516687
\(417\) 26.3910 1.29237
\(418\) 0 0
\(419\) −14.6838 −0.717351 −0.358675 0.933462i \(-0.616771\pi\)
−0.358675 + 0.933462i \(0.616771\pi\)
\(420\) 8.26312 0.403199
\(421\) 21.4822 1.04698 0.523489 0.852032i \(-0.324630\pi\)
0.523489 + 0.852032i \(0.324630\pi\)
\(422\) 29.7128 1.44639
\(423\) −17.7931 −0.865131
\(424\) 2.47559 0.120225
\(425\) 36.5509 1.77298
\(426\) −53.7090 −2.60221
\(427\) −3.27432 −0.158456
\(428\) 2.05183 0.0991790
\(429\) 0 0
\(430\) −15.6511 −0.754764
\(431\) 12.3258 0.593711 0.296856 0.954922i \(-0.404062\pi\)
0.296856 + 0.954922i \(0.404062\pi\)
\(432\) 48.5907 2.33782
\(433\) 4.18186 0.200968 0.100484 0.994939i \(-0.467961\pi\)
0.100484 + 0.994939i \(0.467961\pi\)
\(434\) −4.95953 −0.238065
\(435\) −55.0046 −2.63727
\(436\) 1.47654 0.0707135
\(437\) 0.195412 0.00934783
\(438\) 6.24255 0.298281
\(439\) 31.3602 1.49674 0.748370 0.663282i \(-0.230837\pi\)
0.748370 + 0.663282i \(0.230837\pi\)
\(440\) 0 0
\(441\) −27.3927 −1.30441
\(442\) 26.1338 1.24306
\(443\) −37.6486 −1.78874 −0.894370 0.447328i \(-0.852376\pi\)
−0.894370 + 0.447328i \(0.852376\pi\)
\(444\) −5.59813 −0.265675
\(445\) 5.76072 0.273084
\(446\) 14.5663 0.689734
\(447\) −62.5492 −2.95848
\(448\) 16.4700 0.778132
\(449\) 40.6798 1.91980 0.959899 0.280345i \(-0.0904490\pi\)
0.959899 + 0.280345i \(0.0904490\pi\)
\(450\) 93.2949 4.39796
\(451\) 0 0
\(452\) −1.62415 −0.0763935
\(453\) −0.448166 −0.0210567
\(454\) 32.2282 1.51255
\(455\) 37.1947 1.74372
\(456\) −1.93190 −0.0904697
\(457\) −30.7326 −1.43761 −0.718804 0.695213i \(-0.755310\pi\)
−0.718804 + 0.695213i \(0.755310\pi\)
\(458\) −35.5303 −1.66022
\(459\) −59.5610 −2.78007
\(460\) 1.36062 0.0634393
\(461\) 20.8666 0.971856 0.485928 0.873999i \(-0.338482\pi\)
0.485928 + 0.873999i \(0.338482\pi\)
\(462\) 0 0
\(463\) 23.2506 1.08055 0.540274 0.841489i \(-0.318321\pi\)
0.540274 + 0.841489i \(0.318321\pi\)
\(464\) −13.9577 −0.647971
\(465\) 25.9336 1.20264
\(466\) −32.1823 −1.49082
\(467\) −13.0604 −0.604365 −0.302183 0.953250i \(-0.597715\pi\)
−0.302183 + 0.953250i \(0.597715\pi\)
\(468\) −14.5414 −0.672176
\(469\) −0.894364 −0.0412979
\(470\) −11.2473 −0.518798
\(471\) 0.215970 0.00995135
\(472\) 39.4696 1.81674
\(473\) 0 0
\(474\) −47.5952 −2.18612
\(475\) −1.84633 −0.0847155
\(476\) −2.57021 −0.117805
\(477\) −6.31331 −0.289067
\(478\) −3.33502 −0.152540
\(479\) 5.70788 0.260800 0.130400 0.991461i \(-0.458374\pi\)
0.130400 + 0.991461i \(0.458374\pi\)
\(480\) −24.8610 −1.13474
\(481\) −25.1988 −1.14897
\(482\) −29.1994 −1.33000
\(483\) 6.07305 0.276333
\(484\) 0 0
\(485\) −15.0772 −0.684623
\(486\) −55.1044 −2.49959
\(487\) 23.0832 1.04600 0.523000 0.852333i \(-0.324813\pi\)
0.523000 + 0.852333i \(0.324813\pi\)
\(488\) 5.33027 0.241290
\(489\) −54.6569 −2.47167
\(490\) −17.3153 −0.782225
\(491\) −15.6115 −0.704536 −0.352268 0.935899i \(-0.614589\pi\)
−0.352268 + 0.935899i \(0.614589\pi\)
\(492\) 6.18743 0.278951
\(493\) 17.1089 0.770548
\(494\) −1.32012 −0.0593952
\(495\) 0 0
\(496\) 6.58079 0.295486
\(497\) 23.7766 1.06653
\(498\) −66.6170 −2.98518
\(499\) −8.07097 −0.361306 −0.180653 0.983547i \(-0.557821\pi\)
−0.180653 + 0.983547i \(0.557821\pi\)
\(500\) −6.05259 −0.270680
\(501\) 40.8662 1.82577
\(502\) 10.1380 0.452483
\(503\) 34.6008 1.54277 0.771386 0.636367i \(-0.219564\pi\)
0.771386 + 0.636367i \(0.219564\pi\)
\(504\) −43.2152 −1.92496
\(505\) −24.5779 −1.09370
\(506\) 0 0
\(507\) −48.4031 −2.14966
\(508\) −4.92797 −0.218643
\(509\) 15.0158 0.665563 0.332781 0.943004i \(-0.392013\pi\)
0.332781 + 0.943004i \(0.392013\pi\)
\(510\) −61.6521 −2.73000
\(511\) −2.76353 −0.122251
\(512\) −25.3803 −1.12166
\(513\) 3.00866 0.132836
\(514\) 9.30317 0.410345
\(515\) 63.8114 2.81187
\(516\) −3.76336 −0.165673
\(517\) 0 0
\(518\) −11.3685 −0.499503
\(519\) −66.4513 −2.91689
\(520\) −60.5492 −2.65526
\(521\) −25.1881 −1.10351 −0.551755 0.834006i \(-0.686042\pi\)
−0.551755 + 0.834006i \(0.686042\pi\)
\(522\) 43.6700 1.91138
\(523\) 32.0155 1.39994 0.699970 0.714172i \(-0.253196\pi\)
0.699970 + 0.714172i \(0.253196\pi\)
\(524\) 2.49326 0.108919
\(525\) −57.3806 −2.50429
\(526\) −4.73832 −0.206601
\(527\) −8.06653 −0.351383
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −3.99073 −0.173346
\(531\) −100.657 −4.36812
\(532\) 0.129832 0.00562891
\(533\) 27.8514 1.20638
\(534\) −6.35426 −0.274976
\(535\) −21.7883 −0.941991
\(536\) 1.45593 0.0628867
\(537\) −10.6218 −0.458363
\(538\) −40.9462 −1.76532
\(539\) 0 0
\(540\) 20.9488 0.901494
\(541\) 14.2450 0.612439 0.306219 0.951961i \(-0.400936\pi\)
0.306219 + 0.951961i \(0.400936\pi\)
\(542\) −0.743124 −0.0319199
\(543\) −35.3183 −1.51565
\(544\) 7.73291 0.331546
\(545\) −15.6793 −0.671629
\(546\) −41.0270 −1.75579
\(547\) −9.20117 −0.393414 −0.196707 0.980462i \(-0.563025\pi\)
−0.196707 + 0.980462i \(0.563025\pi\)
\(548\) 5.35126 0.228594
\(549\) −13.5934 −0.580152
\(550\) 0 0
\(551\) −0.864241 −0.0368179
\(552\) −9.88630 −0.420789
\(553\) 21.0701 0.895990
\(554\) −8.85900 −0.376383
\(555\) 59.4463 2.52336
\(556\) 2.88721 0.122445
\(557\) 17.4388 0.738907 0.369453 0.929249i \(-0.379545\pi\)
0.369453 + 0.929249i \(0.379545\pi\)
\(558\) −20.5895 −0.871625
\(559\) −16.9400 −0.716486
\(560\) −22.2660 −0.940910
\(561\) 0 0
\(562\) 20.5955 0.868771
\(563\) −7.12652 −0.300347 −0.150174 0.988660i \(-0.547983\pi\)
−0.150174 + 0.988660i \(0.547983\pi\)
\(564\) −2.70445 −0.113878
\(565\) 17.2468 0.725577
\(566\) −4.58026 −0.192523
\(567\) 50.5966 2.12486
\(568\) −38.7059 −1.62406
\(569\) −38.9361 −1.63229 −0.816143 0.577849i \(-0.803892\pi\)
−0.816143 + 0.577849i \(0.803892\pi\)
\(570\) 3.11430 0.130444
\(571\) −29.3981 −1.23027 −0.615136 0.788421i \(-0.710899\pi\)
−0.615136 + 0.788421i \(0.710899\pi\)
\(572\) 0 0
\(573\) −48.3020 −2.01784
\(574\) 12.5652 0.524463
\(575\) −9.44840 −0.394025
\(576\) 68.3752 2.84897
\(577\) −20.3394 −0.846740 −0.423370 0.905957i \(-0.639153\pi\)
−0.423370 + 0.905957i \(0.639153\pi\)
\(578\) −2.60757 −0.108460
\(579\) 34.2996 1.42544
\(580\) −6.01757 −0.249866
\(581\) 29.4909 1.22349
\(582\) 16.6307 0.689365
\(583\) 0 0
\(584\) 4.49875 0.186159
\(585\) 154.414 6.38425
\(586\) 18.9387 0.782350
\(587\) 0.714390 0.0294860 0.0147430 0.999891i \(-0.495307\pi\)
0.0147430 + 0.999891i \(0.495307\pi\)
\(588\) −4.16352 −0.171701
\(589\) 0.407473 0.0167896
\(590\) −63.6264 −2.61946
\(591\) 19.8070 0.814752
\(592\) 15.0848 0.619983
\(593\) 3.17833 0.130518 0.0652592 0.997868i \(-0.479213\pi\)
0.0652592 + 0.997868i \(0.479213\pi\)
\(594\) 0 0
\(595\) 27.2930 1.11890
\(596\) −6.84296 −0.280298
\(597\) −23.5073 −0.962090
\(598\) −6.75559 −0.276257
\(599\) 15.1347 0.618387 0.309194 0.950999i \(-0.399941\pi\)
0.309194 + 0.950999i \(0.399941\pi\)
\(600\) 93.4097 3.81343
\(601\) 29.8591 1.21798 0.608990 0.793178i \(-0.291575\pi\)
0.608990 + 0.793178i \(0.291575\pi\)
\(602\) −7.64252 −0.311486
\(603\) −3.71296 −0.151204
\(604\) −0.0490299 −0.00199500
\(605\) 0 0
\(606\) 27.1102 1.10128
\(607\) −33.7487 −1.36982 −0.684909 0.728629i \(-0.740158\pi\)
−0.684909 + 0.728629i \(0.740158\pi\)
\(608\) −0.390620 −0.0158417
\(609\) −26.8590 −1.08838
\(610\) −8.59257 −0.347903
\(611\) −12.1735 −0.492487
\(612\) −10.6703 −0.431320
\(613\) −35.5376 −1.43535 −0.717675 0.696378i \(-0.754794\pi\)
−0.717675 + 0.696378i \(0.754794\pi\)
\(614\) −11.1626 −0.450484
\(615\) −65.7041 −2.64945
\(616\) 0 0
\(617\) −8.52643 −0.343261 −0.171631 0.985161i \(-0.554904\pi\)
−0.171631 + 0.985161i \(0.554904\pi\)
\(618\) −70.3861 −2.83134
\(619\) 10.7185 0.430815 0.215407 0.976524i \(-0.430892\pi\)
0.215407 + 0.976524i \(0.430892\pi\)
\(620\) 2.83716 0.113943
\(621\) 15.3965 0.617840
\(622\) −17.4935 −0.701426
\(623\) 2.81299 0.112700
\(624\) 54.4387 2.17929
\(625\) 17.0302 0.681208
\(626\) 0.499214 0.0199526
\(627\) 0 0
\(628\) 0.0236273 0.000942833 0
\(629\) −18.4905 −0.737265
\(630\) 69.6643 2.77549
\(631\) −5.06204 −0.201517 −0.100758 0.994911i \(-0.532127\pi\)
−0.100758 + 0.994911i \(0.532127\pi\)
\(632\) −34.2999 −1.36438
\(633\) −75.8676 −3.01547
\(634\) 3.45835 0.137349
\(635\) 52.3299 2.07665
\(636\) −0.959585 −0.0380500
\(637\) −18.7412 −0.742555
\(638\) 0 0
\(639\) 98.7089 3.90486
\(640\) 28.0244 1.10776
\(641\) 6.71512 0.265231 0.132616 0.991168i \(-0.457662\pi\)
0.132616 + 0.991168i \(0.457662\pi\)
\(642\) 24.0332 0.948516
\(643\) 10.3874 0.409638 0.204819 0.978800i \(-0.434339\pi\)
0.204819 + 0.978800i \(0.434339\pi\)
\(644\) 0.664399 0.0261810
\(645\) 39.9630 1.57354
\(646\) −0.968688 −0.0381125
\(647\) 3.54279 0.139281 0.0696407 0.997572i \(-0.477815\pi\)
0.0696407 + 0.997572i \(0.477815\pi\)
\(648\) −82.3660 −3.23564
\(649\) 0 0
\(650\) 63.8295 2.50360
\(651\) 12.6635 0.496321
\(652\) −5.97952 −0.234176
\(653\) 29.8393 1.16770 0.583851 0.811861i \(-0.301545\pi\)
0.583851 + 0.811861i \(0.301545\pi\)
\(654\) 17.2948 0.676281
\(655\) −26.4758 −1.03450
\(656\) −16.6728 −0.650963
\(657\) −11.4728 −0.447598
\(658\) −5.49210 −0.214104
\(659\) 46.1786 1.79886 0.899432 0.437062i \(-0.143981\pi\)
0.899432 + 0.437062i \(0.143981\pi\)
\(660\) 0 0
\(661\) −13.0358 −0.507032 −0.253516 0.967331i \(-0.581587\pi\)
−0.253516 + 0.967331i \(0.581587\pi\)
\(662\) −7.67457 −0.298281
\(663\) −66.7293 −2.59155
\(664\) −48.0082 −1.86308
\(665\) −1.37868 −0.0534628
\(666\) −47.1964 −1.82882
\(667\) −4.42266 −0.171246
\(668\) 4.47081 0.172981
\(669\) −37.1931 −1.43797
\(670\) −2.34702 −0.0906731
\(671\) 0 0
\(672\) −12.1398 −0.468301
\(673\) −1.49971 −0.0578097 −0.0289049 0.999582i \(-0.509202\pi\)
−0.0289049 + 0.999582i \(0.509202\pi\)
\(674\) −1.95159 −0.0751723
\(675\) −145.472 −5.59923
\(676\) −5.29536 −0.203668
\(677\) −37.4924 −1.44095 −0.720474 0.693482i \(-0.756076\pi\)
−0.720474 + 0.693482i \(0.756076\pi\)
\(678\) −19.0238 −0.730603
\(679\) −7.36230 −0.282539
\(680\) −44.4301 −1.70382
\(681\) −82.2905 −3.15338
\(682\) 0 0
\(683\) 4.06400 0.155505 0.0777523 0.996973i \(-0.475226\pi\)
0.0777523 + 0.996973i \(0.475226\pi\)
\(684\) 0.538997 0.0206091
\(685\) −56.8248 −2.17116
\(686\) −25.1043 −0.958486
\(687\) 90.7219 3.46126
\(688\) 10.1408 0.386616
\(689\) −4.31937 −0.164555
\(690\) 15.9371 0.606713
\(691\) 4.81991 0.183358 0.0916790 0.995789i \(-0.470777\pi\)
0.0916790 + 0.995789i \(0.470777\pi\)
\(692\) −7.26985 −0.276358
\(693\) 0 0
\(694\) 5.98439 0.227164
\(695\) −30.6591 −1.16297
\(696\) 43.7237 1.65734
\(697\) 20.4370 0.774106
\(698\) −12.0466 −0.455970
\(699\) 82.1733 3.10808
\(700\) −6.27750 −0.237267
\(701\) −5.75429 −0.217337 −0.108668 0.994078i \(-0.534659\pi\)
−0.108668 + 0.994078i \(0.534659\pi\)
\(702\) −104.012 −3.92570
\(703\) 0.934031 0.0352276
\(704\) 0 0
\(705\) 28.7184 1.08160
\(706\) 27.2393 1.02516
\(707\) −12.0015 −0.451363
\(708\) −15.2992 −0.574979
\(709\) −12.4167 −0.466318 −0.233159 0.972439i \(-0.574906\pi\)
−0.233159 + 0.972439i \(0.574906\pi\)
\(710\) 62.3952 2.34165
\(711\) 87.4726 3.28048
\(712\) −4.57925 −0.171615
\(713\) 2.08520 0.0780912
\(714\) −30.1050 −1.12665
\(715\) 0 0
\(716\) −1.16203 −0.0434272
\(717\) 8.51554 0.318019
\(718\) −36.3636 −1.35708
\(719\) −12.2243 −0.455888 −0.227944 0.973674i \(-0.573200\pi\)
−0.227944 + 0.973674i \(0.573200\pi\)
\(720\) −92.4376 −3.44494
\(721\) 31.1594 1.16044
\(722\) −24.2981 −0.904282
\(723\) 74.5569 2.77280
\(724\) −3.86387 −0.143599
\(725\) 41.7870 1.55193
\(726\) 0 0
\(727\) −25.2721 −0.937291 −0.468646 0.883386i \(-0.655258\pi\)
−0.468646 + 0.883386i \(0.655258\pi\)
\(728\) −29.5665 −1.09581
\(729\) 58.9228 2.18233
\(730\) −7.25214 −0.268414
\(731\) −12.4303 −0.459752
\(732\) −2.06611 −0.0763658
\(733\) −2.34082 −0.0864600 −0.0432300 0.999065i \(-0.513765\pi\)
−0.0432300 + 0.999065i \(0.513765\pi\)
\(734\) −11.4306 −0.421910
\(735\) 44.2123 1.63079
\(736\) −1.99896 −0.0736825
\(737\) 0 0
\(738\) 52.1647 1.92021
\(739\) −17.6494 −0.649245 −0.324623 0.945844i \(-0.605237\pi\)
−0.324623 + 0.945844i \(0.605237\pi\)
\(740\) 6.50350 0.239073
\(741\) 3.37076 0.123828
\(742\) −1.94869 −0.0715388
\(743\) 25.6263 0.940137 0.470069 0.882630i \(-0.344229\pi\)
0.470069 + 0.882630i \(0.344229\pi\)
\(744\) −20.6149 −0.755778
\(745\) 72.6651 2.66224
\(746\) −34.9476 −1.27952
\(747\) 122.432 4.47954
\(748\) 0 0
\(749\) −10.6393 −0.388753
\(750\) −70.8944 −2.58870
\(751\) 29.0528 1.06015 0.530077 0.847950i \(-0.322163\pi\)
0.530077 + 0.847950i \(0.322163\pi\)
\(752\) 7.28746 0.265746
\(753\) −25.8861 −0.943344
\(754\) 29.8777 1.08808
\(755\) 0.520647 0.0189483
\(756\) 10.2294 0.372040
\(757\) 35.1534 1.27767 0.638837 0.769342i \(-0.279416\pi\)
0.638837 + 0.769342i \(0.279416\pi\)
\(758\) −20.9590 −0.761264
\(759\) 0 0
\(760\) 2.24434 0.0814109
\(761\) 28.8811 1.04694 0.523469 0.852045i \(-0.324638\pi\)
0.523469 + 0.852045i \(0.324638\pi\)
\(762\) −57.7217 −2.09104
\(763\) −7.65630 −0.277177
\(764\) −5.28429 −0.191179
\(765\) 113.307 4.09662
\(766\) −26.0529 −0.941331
\(767\) −68.8661 −2.48661
\(768\) 27.1548 0.979866
\(769\) 43.5547 1.57062 0.785311 0.619102i \(-0.212503\pi\)
0.785311 + 0.619102i \(0.212503\pi\)
\(770\) 0 0
\(771\) −23.7544 −0.855494
\(772\) 3.75242 0.135052
\(773\) 31.2181 1.12284 0.561418 0.827532i \(-0.310256\pi\)
0.561418 + 0.827532i \(0.310256\pi\)
\(774\) −31.7280 −1.14044
\(775\) −19.7018 −0.707708
\(776\) 11.9851 0.430239
\(777\) 29.0279 1.04137
\(778\) −49.1498 −1.76211
\(779\) −1.03235 −0.0369879
\(780\) 23.4701 0.840363
\(781\) 0 0
\(782\) −4.95715 −0.177267
\(783\) −68.0935 −2.43346
\(784\) 11.2191 0.400683
\(785\) −0.250898 −0.00895492
\(786\) 29.2037 1.04166
\(787\) 17.9596 0.640190 0.320095 0.947385i \(-0.396285\pi\)
0.320095 + 0.947385i \(0.396285\pi\)
\(788\) 2.16691 0.0771930
\(789\) 12.0987 0.430724
\(790\) 55.2926 1.96722
\(791\) 8.42168 0.299441
\(792\) 0 0
\(793\) −9.30019 −0.330259
\(794\) 28.0954 0.997068
\(795\) 10.1898 0.361395
\(796\) −2.57173 −0.0911525
\(797\) −17.1452 −0.607315 −0.303657 0.952781i \(-0.598208\pi\)
−0.303657 + 0.952781i \(0.598208\pi\)
\(798\) 1.52073 0.0538331
\(799\) −8.93274 −0.316018
\(800\) 18.8869 0.667753
\(801\) 11.6781 0.412627
\(802\) 5.81919 0.205483
\(803\) 0 0
\(804\) −0.564348 −0.0199030
\(805\) −7.05522 −0.248664
\(806\) −14.0867 −0.496184
\(807\) 104.551 3.68036
\(808\) 19.5372 0.687318
\(809\) −50.8251 −1.78692 −0.893458 0.449146i \(-0.851728\pi\)
−0.893458 + 0.449146i \(0.851728\pi\)
\(810\) 132.777 4.66531
\(811\) 25.5494 0.897162 0.448581 0.893742i \(-0.351930\pi\)
0.448581 + 0.893742i \(0.351930\pi\)
\(812\) −2.93841 −0.103118
\(813\) 1.89747 0.0665471
\(814\) 0 0
\(815\) 63.4963 2.22418
\(816\) 39.9463 1.39840
\(817\) 0.627906 0.0219676
\(818\) 10.9069 0.381351
\(819\) 75.4013 2.63474
\(820\) −7.18811 −0.251020
\(821\) 14.0095 0.488936 0.244468 0.969657i \(-0.421387\pi\)
0.244468 + 0.969657i \(0.421387\pi\)
\(822\) 62.6796 2.18620
\(823\) −20.8927 −0.728273 −0.364136 0.931346i \(-0.618636\pi\)
−0.364136 + 0.931346i \(0.618636\pi\)
\(824\) −50.7243 −1.76707
\(825\) 0 0
\(826\) −31.0691 −1.08103
\(827\) 37.9506 1.31967 0.659836 0.751409i \(-0.270626\pi\)
0.659836 + 0.751409i \(0.270626\pi\)
\(828\) 2.75826 0.0958561
\(829\) 7.05288 0.244957 0.122478 0.992471i \(-0.460916\pi\)
0.122478 + 0.992471i \(0.460916\pi\)
\(830\) 77.3908 2.68627
\(831\) 22.6203 0.784688
\(832\) 46.7802 1.62181
\(833\) −13.7520 −0.476480
\(834\) 33.8181 1.17102
\(835\) −47.4753 −1.64295
\(836\) 0 0
\(837\) 32.1047 1.10970
\(838\) −18.8162 −0.649994
\(839\) −21.9542 −0.757942 −0.378971 0.925409i \(-0.623722\pi\)
−0.378971 + 0.925409i \(0.623722\pi\)
\(840\) 69.7501 2.40661
\(841\) −9.44010 −0.325521
\(842\) 27.5278 0.948670
\(843\) −52.5880 −1.81123
\(844\) −8.30000 −0.285698
\(845\) 56.2312 1.93441
\(846\) −22.8005 −0.783898
\(847\) 0 0
\(848\) 2.58572 0.0887940
\(849\) 11.6951 0.401374
\(850\) 46.8372 1.60650
\(851\) 4.77980 0.163849
\(852\) 15.0032 0.514000
\(853\) −12.3263 −0.422043 −0.211022 0.977481i \(-0.567679\pi\)
−0.211022 + 0.977481i \(0.567679\pi\)
\(854\) −4.19580 −0.143577
\(855\) −5.72359 −0.195743
\(856\) 17.3198 0.591977
\(857\) 7.42600 0.253667 0.126834 0.991924i \(-0.459519\pi\)
0.126834 + 0.991924i \(0.459519\pi\)
\(858\) 0 0
\(859\) −10.8222 −0.369247 −0.184624 0.982809i \(-0.559107\pi\)
−0.184624 + 0.982809i \(0.559107\pi\)
\(860\) 4.37200 0.149084
\(861\) −32.0836 −1.09341
\(862\) 15.7945 0.537964
\(863\) −29.5880 −1.00719 −0.503593 0.863941i \(-0.667989\pi\)
−0.503593 + 0.863941i \(0.667989\pi\)
\(864\) −30.7769 −1.04705
\(865\) 77.1982 2.62482
\(866\) 5.35874 0.182097
\(867\) 6.65807 0.226120
\(868\) 1.38540 0.0470236
\(869\) 0 0
\(870\) −70.4842 −2.38964
\(871\) −2.54030 −0.0860746
\(872\) 12.4637 0.422073
\(873\) −30.5647 −1.03446
\(874\) 0.250406 0.00847010
\(875\) 31.3844 1.06099
\(876\) −1.74380 −0.0589176
\(877\) 20.6128 0.696045 0.348023 0.937486i \(-0.386853\pi\)
0.348023 + 0.937486i \(0.386853\pi\)
\(878\) 40.1856 1.35620
\(879\) −48.3574 −1.63105
\(880\) 0 0
\(881\) 0.245259 0.00826298 0.00413149 0.999991i \(-0.498685\pi\)
0.00413149 + 0.999991i \(0.498685\pi\)
\(882\) −35.1016 −1.18193
\(883\) −6.05542 −0.203781 −0.101891 0.994796i \(-0.532489\pi\)
−0.101891 + 0.994796i \(0.532489\pi\)
\(884\) −7.30026 −0.245534
\(885\) 162.461 5.46108
\(886\) −48.2438 −1.62078
\(887\) 1.26377 0.0424333 0.0212167 0.999775i \(-0.493246\pi\)
0.0212167 + 0.999775i \(0.493246\pi\)
\(888\) −47.2545 −1.58576
\(889\) 25.5530 0.857019
\(890\) 7.38191 0.247442
\(891\) 0 0
\(892\) −4.06897 −0.136239
\(893\) 0.451229 0.0150998
\(894\) −80.1520 −2.68068
\(895\) 12.3396 0.412467
\(896\) 13.6845 0.457166
\(897\) 17.2495 0.575944
\(898\) 52.1280 1.73954
\(899\) −9.22211 −0.307574
\(900\) −26.0611 −0.868704
\(901\) −3.16949 −0.105591
\(902\) 0 0
\(903\) 19.5141 0.649390
\(904\) −13.7096 −0.455976
\(905\) 41.0302 1.36389
\(906\) −0.574291 −0.0190795
\(907\) −13.9710 −0.463900 −0.231950 0.972728i \(-0.574511\pi\)
−0.231950 + 0.972728i \(0.574511\pi\)
\(908\) −9.00267 −0.298764
\(909\) −49.8244 −1.65257
\(910\) 47.6622 1.57999
\(911\) −32.0863 −1.06307 −0.531533 0.847037i \(-0.678384\pi\)
−0.531533 + 0.847037i \(0.678384\pi\)
\(912\) −2.01785 −0.0668177
\(913\) 0 0
\(914\) −39.3814 −1.30262
\(915\) 21.9400 0.725314
\(916\) 9.92508 0.327934
\(917\) −12.9283 −0.426929
\(918\) −76.3228 −2.51903
\(919\) −9.71485 −0.320463 −0.160232 0.987079i \(-0.551224\pi\)
−0.160232 + 0.987079i \(0.551224\pi\)
\(920\) 11.4852 0.378655
\(921\) 28.5021 0.939176
\(922\) 26.7390 0.880601
\(923\) 67.5336 2.22290
\(924\) 0 0
\(925\) −45.1614 −1.48490
\(926\) 29.7939 0.979088
\(927\) 129.359 4.24870
\(928\) 8.84069 0.290210
\(929\) −37.7506 −1.23856 −0.619279 0.785171i \(-0.712575\pi\)
−0.619279 + 0.785171i \(0.712575\pi\)
\(930\) 33.2319 1.08972
\(931\) 0.694671 0.0227669
\(932\) 8.98986 0.294473
\(933\) 44.6674 1.46234
\(934\) −16.7360 −0.547617
\(935\) 0 0
\(936\) −122.746 −4.01207
\(937\) 45.6896 1.49262 0.746308 0.665601i \(-0.231825\pi\)
0.746308 + 0.665601i \(0.231825\pi\)
\(938\) −1.14606 −0.0374202
\(939\) −1.27468 −0.0415975
\(940\) 3.14183 0.102475
\(941\) −8.70849 −0.283889 −0.141944 0.989875i \(-0.545335\pi\)
−0.141944 + 0.989875i \(0.545335\pi\)
\(942\) 0.276748 0.00901695
\(943\) −5.28296 −0.172037
\(944\) 41.2255 1.34178
\(945\) −108.626 −3.53360
\(946\) 0 0
\(947\) −54.0484 −1.75634 −0.878168 0.478352i \(-0.841234\pi\)
−0.878168 + 0.478352i \(0.841234\pi\)
\(948\) 13.2953 0.431812
\(949\) −7.84936 −0.254801
\(950\) −2.36593 −0.0767610
\(951\) −8.83043 −0.286346
\(952\) −21.6955 −0.703154
\(953\) 42.0502 1.36214 0.681069 0.732219i \(-0.261515\pi\)
0.681069 + 0.732219i \(0.261515\pi\)
\(954\) −8.09003 −0.261924
\(955\) 56.1137 1.81580
\(956\) 0.931610 0.0301304
\(957\) 0 0
\(958\) 7.31421 0.236312
\(959\) −27.7478 −0.896024
\(960\) −110.359 −3.56182
\(961\) −26.6520 −0.859741
\(962\) −32.2903 −1.04108
\(963\) −44.1694 −1.42334
\(964\) 8.15661 0.262707
\(965\) −39.8468 −1.28271
\(966\) 7.78214 0.250386
\(967\) 17.3621 0.558328 0.279164 0.960243i \(-0.409943\pi\)
0.279164 + 0.960243i \(0.409943\pi\)
\(968\) 0 0
\(969\) 2.47342 0.0794576
\(970\) −19.3203 −0.620339
\(971\) −55.0793 −1.76758 −0.883789 0.467886i \(-0.845016\pi\)
−0.883789 + 0.467886i \(0.845016\pi\)
\(972\) 15.3929 0.493729
\(973\) −14.9710 −0.479949
\(974\) 29.5793 0.947783
\(975\) −162.980 −5.21954
\(976\) 5.56740 0.178208
\(977\) −6.16086 −0.197103 −0.0985517 0.995132i \(-0.531421\pi\)
−0.0985517 + 0.995132i \(0.531421\pi\)
\(978\) −70.0386 −2.23959
\(979\) 0 0
\(980\) 4.83688 0.154508
\(981\) −31.7852 −1.01482
\(982\) −20.0049 −0.638383
\(983\) 10.3104 0.328851 0.164425 0.986390i \(-0.447423\pi\)
0.164425 + 0.986390i \(0.447423\pi\)
\(984\) 52.2289 1.66500
\(985\) −23.0103 −0.733170
\(986\) 21.9238 0.698196
\(987\) 14.0233 0.446368
\(988\) 0.368765 0.0117320
\(989\) 3.21324 0.102175
\(990\) 0 0
\(991\) −15.1363 −0.480820 −0.240410 0.970671i \(-0.577282\pi\)
−0.240410 + 0.970671i \(0.577282\pi\)
\(992\) −4.16821 −0.132341
\(993\) 19.5960 0.621860
\(994\) 30.4679 0.966383
\(995\) 27.3091 0.865756
\(996\) 18.6089 0.589645
\(997\) 10.2906 0.325907 0.162953 0.986634i \(-0.447898\pi\)
0.162953 + 0.986634i \(0.447898\pi\)
\(998\) −10.3423 −0.327381
\(999\) 73.5921 2.32835
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2783.2.a.g.1.3 5
11.10 odd 2 253.2.a.c.1.3 5
33.32 even 2 2277.2.a.l.1.3 5
44.43 even 2 4048.2.a.bb.1.5 5
55.54 odd 2 6325.2.a.l.1.3 5
253.252 even 2 5819.2.a.d.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.a.c.1.3 5 11.10 odd 2
2277.2.a.l.1.3 5 33.32 even 2
2783.2.a.g.1.3 5 1.1 even 1 trivial
4048.2.a.bb.1.5 5 44.43 even 2
5819.2.a.d.1.3 5 253.252 even 2
6325.2.a.l.1.3 5 55.54 odd 2