Defining parameters
Level: | \( N \) | \(=\) | \( 2783 = 11^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2783.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 20 \) | ||
Sturm bound: | \(528\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2783))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 276 | 201 | 75 |
Cusp forms | 253 | 201 | 52 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(11\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(60\) | \(42\) | \(18\) | \(55\) | \(42\) | \(13\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(-\) | \(-\) | \(78\) | \(60\) | \(18\) | \(72\) | \(60\) | \(12\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(78\) | \(57\) | \(21\) | \(72\) | \(57\) | \(15\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(60\) | \(42\) | \(18\) | \(54\) | \(42\) | \(12\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(120\) | \(84\) | \(36\) | \(109\) | \(84\) | \(25\) | \(11\) | \(0\) | \(11\) | ||||
Minus space | \(-\) | \(156\) | \(117\) | \(39\) | \(144\) | \(117\) | \(27\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2783))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2783))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2783)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(253))\)\(^{\oplus 2}\)