Properties

Label 2783.2.a
Level $2783$
Weight $2$
Character orbit 2783.a
Rep. character $\chi_{2783}(1,\cdot)$
Character field $\Q$
Dimension $201$
Newform subspaces $20$
Sturm bound $528$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2783 = 11^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2783.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(528\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2783))\).

Total New Old
Modular forms 276 201 75
Cusp forms 253 201 52
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(60\)\(42\)\(18\)\(55\)\(42\)\(13\)\(5\)\(0\)\(5\)
\(+\)\(-\)\(-\)\(78\)\(60\)\(18\)\(72\)\(60\)\(12\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(78\)\(57\)\(21\)\(72\)\(57\)\(15\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(60\)\(42\)\(18\)\(54\)\(42\)\(12\)\(6\)\(0\)\(6\)
Plus space\(+\)\(120\)\(84\)\(36\)\(109\)\(84\)\(25\)\(11\)\(0\)\(11\)
Minus space\(-\)\(156\)\(117\)\(39\)\(144\)\(117\)\(27\)\(12\)\(0\)\(12\)

Trace form

\( 201 q + 204 q^{4} + 4 q^{5} - q^{6} + 2 q^{7} + 9 q^{8} + 195 q^{9} + 5 q^{12} + 16 q^{13} + 4 q^{14} - 2 q^{15} + 194 q^{16} + 4 q^{17} + 27 q^{18} + 4 q^{19} + 22 q^{20} + 14 q^{21} + 3 q^{23} - 10 q^{24}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2783))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11 23
2783.2.a.a 2783.a 1.a $2$ $22.222$ \(\Q(\sqrt{5}) \) None 253.2.e.a \(-2\) \(-3\) \(-5\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1-\beta )q^{3}-q^{4}+(-2-\beta )q^{5}+\cdots\)
2783.2.a.b 2783.a 1.a $2$ $22.222$ \(\Q(\sqrt{3}) \) None 2783.2.a.b \(0\) \(4\) \(-6\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+2q^{3}+q^{4}-3q^{5}+2\beta q^{6}+\cdots\)
2783.2.a.c 2783.a 1.a $2$ $22.222$ \(\Q(\sqrt{5}) \) None 23.2.a.a \(1\) \(0\) \(-2\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1+2\beta )q^{3}+(-1+\beta )q^{4}+\cdots\)
2783.2.a.d 2783.a 1.a $2$ $22.222$ \(\Q(\sqrt{5}) \) None 253.2.e.a \(2\) \(-3\) \(-5\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1-\beta )q^{3}-q^{4}+(-2-\beta )q^{5}+\cdots\)
2783.2.a.e 2783.a 1.a $3$ $22.222$ \(\Q(\zeta_{18})^+\) None 253.2.a.b \(-3\) \(3\) \(3\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+\cdots\)
2783.2.a.f 2783.a 1.a $3$ $22.222$ 3.3.169.1 None 253.2.a.a \(1\) \(-5\) \(-5\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1}+\beta _{2})q^{2}+(-2+\beta _{1})q^{3}+\cdots\)
2783.2.a.g 2783.a 1.a $5$ $22.222$ 5.5.170701.1 None 253.2.a.c \(4\) \(-5\) \(-3\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(-1-\beta _{1}-\beta _{2})q^{3}+\cdots\)
2783.2.a.h 2783.a 1.a $6$ $22.222$ 6.6.8639957.1 None 253.2.a.d \(-3\) \(7\) \(3\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1+\beta _{2})q^{3}+(1-\beta _{3}+\cdots)q^{4}+\cdots\)
2783.2.a.i 2783.a 1.a $6$ $22.222$ 6.6.3822093.1 None 2783.2.a.i \(-1\) \(-5\) \(-2\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}+\beta _{2})q^{2}+(-1+\beta _{1})q^{3}+(1+\cdots)q^{4}+\cdots\)
2783.2.a.j 2783.a 1.a $6$ $22.222$ 6.6.9139520.1 None 2783.2.a.j \(0\) \(-2\) \(-2\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{4}q^{3}+\beta _{2}q^{4}-\beta _{2}q^{5}+\cdots\)
2783.2.a.k 2783.a 1.a $6$ $22.222$ 6.6.3822093.1 None 2783.2.a.i \(1\) \(-5\) \(-2\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{1}-\beta _{2})q^{2}+(-1+\beta _{1})q^{3}+(1+\beta _{2}+\cdots)q^{4}+\cdots\)
2783.2.a.l 2783.a 1.a $12$ $22.222$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 2783.2.a.l \(-1\) \(3\) \(6\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(1+\beta _{2})q^{4}+\beta _{10}q^{5}+\cdots\)
2783.2.a.m 2783.a 1.a $12$ $22.222$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 2783.2.a.m \(0\) \(-10\) \(-4\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{8}q^{2}+(-1+\beta _{7})q^{3}+(1-\beta _{7}+\beta _{11})q^{4}+\cdots\)
2783.2.a.n 2783.a 1.a $12$ $22.222$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 2783.2.a.n \(0\) \(6\) \(6\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{10})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
2783.2.a.o 2783.a 1.a $12$ $22.222$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 2783.2.a.l \(1\) \(3\) \(6\) \(-1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{4}q^{3}+(1+\beta _{2})q^{4}+\beta _{10}q^{5}+\cdots\)
2783.2.a.p 2783.a 1.a $20$ $22.222$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 253.2.e.b \(-8\) \(2\) \(5\) \(-18\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{17}q^{3}+(1+\beta _{2})q^{4}+\beta _{15}q^{5}+\cdots\)
2783.2.a.q 2783.a 1.a $20$ $22.222$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 253.2.e.b \(8\) \(2\) \(5\) \(18\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{17}q^{3}+(1+\beta _{2})q^{4}+\beta _{15}q^{5}+\cdots\)
2783.2.a.r 2783.a 1.a $22$ $22.222$ None 253.2.e.c \(-2\) \(-1\) \(0\) \(-18\) $+$ $+$ $\mathrm{SU}(2)$
2783.2.a.s 2783.a 1.a $22$ $22.222$ None 253.2.e.c \(2\) \(-1\) \(0\) \(18\) $-$ $+$ $\mathrm{SU}(2)$
2783.2.a.t 2783.a 1.a $26$ $22.222$ None 2783.2.a.t \(0\) \(10\) \(6\) \(0\) $+$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2783))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2783)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(253))\)\(^{\oplus 2}\)