Properties

Label 2268.2.k.f.1297.1
Level $2268$
Weight $2$
Character 2268.1297
Analytic conductor $18.110$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(1297,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.1297"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1297.1
Root \(-1.58203 - 0.705117i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1297
Dual form 2268.2.k.f.1621.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26013 + 2.18261i) q^{5} +(-2.50909 - 0.839338i) q^{7} +(-0.687041 - 1.18999i) q^{11} +5.60017 q^{13} +(2.69613 + 4.66983i) q^{17} +(2.44717 - 4.23863i) q^{19} +(2.08765 - 3.61591i) q^{23} +(-0.675864 - 1.17063i) q^{25} -3.13521 q^{29} +(-2.40060 - 4.15797i) q^{31} +(4.99373 - 4.41869i) q^{35} +(-2.69839 + 4.67374i) q^{37} -6.05983 q^{41} -4.89435 q^{43} +(-2.82774 + 4.89779i) q^{47} +(5.59102 + 4.21194i) q^{49} +(7.00281 + 12.1292i) q^{53} +3.46305 q^{55} +(7.13442 + 12.3572i) q^{59} +(3.42860 - 5.93852i) q^{61} +(-7.05695 + 12.2230i) q^{65} +(4.05678 + 7.02655i) q^{67} +2.25704 q^{71} +(3.51456 + 6.08739i) q^{73} +(0.725042 + 3.56245i) q^{77} +(-1.37843 + 2.38750i) q^{79} +14.9775 q^{83} -13.5899 q^{85} +(-2.75804 + 4.77707i) q^{89} +(-14.0513 - 4.70043i) q^{91} +(6.16752 + 10.6825i) q^{95} -1.78801 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} - 3 q^{7} - 2 q^{11} - 4 q^{13} - 2 q^{17} + 7 q^{19} - 11 q^{23} - 9 q^{25} + 2 q^{29} - q^{31} + 19 q^{35} + 10 q^{37} - 66 q^{41} - 14 q^{43} + 3 q^{47} + 17 q^{49} + 15 q^{53} - 28 q^{55}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.26013 + 2.18261i −0.563548 + 0.976094i 0.433635 + 0.901089i \(0.357231\pi\)
−0.997183 + 0.0750053i \(0.976103\pi\)
\(6\) 0 0
\(7\) −2.50909 0.839338i −0.948345 0.317240i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.687041 1.18999i −0.207151 0.358796i 0.743665 0.668552i \(-0.233086\pi\)
−0.950816 + 0.309757i \(0.899752\pi\)
\(12\) 0 0
\(13\) 5.60017 1.55321 0.776603 0.629990i \(-0.216941\pi\)
0.776603 + 0.629990i \(0.216941\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.69613 + 4.66983i 0.653907 + 1.13260i 0.982167 + 0.188013i \(0.0602046\pi\)
−0.328260 + 0.944588i \(0.606462\pi\)
\(18\) 0 0
\(19\) 2.44717 4.23863i 0.561420 0.972408i −0.435953 0.899969i \(-0.643589\pi\)
0.997373 0.0724385i \(-0.0230781\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.08765 3.61591i 0.435304 0.753969i −0.562016 0.827126i \(-0.689974\pi\)
0.997320 + 0.0731570i \(0.0233074\pi\)
\(24\) 0 0
\(25\) −0.675864 1.17063i −0.135173 0.234126i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.13521 −0.582195 −0.291097 0.956693i \(-0.594020\pi\)
−0.291097 + 0.956693i \(0.594020\pi\)
\(30\) 0 0
\(31\) −2.40060 4.15797i −0.431161 0.746793i 0.565812 0.824534i \(-0.308563\pi\)
−0.996974 + 0.0777407i \(0.975229\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.99373 4.41869i 0.844094 0.746894i
\(36\) 0 0
\(37\) −2.69839 + 4.67374i −0.443612 + 0.768359i −0.997954 0.0639302i \(-0.979637\pi\)
0.554342 + 0.832289i \(0.312970\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.05983 −0.946386 −0.473193 0.880959i \(-0.656899\pi\)
−0.473193 + 0.880959i \(0.656899\pi\)
\(42\) 0 0
\(43\) −4.89435 −0.746381 −0.373190 0.927755i \(-0.621736\pi\)
−0.373190 + 0.927755i \(0.621736\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82774 + 4.89779i −0.412468 + 0.714416i −0.995159 0.0982782i \(-0.968667\pi\)
0.582691 + 0.812694i \(0.302000\pi\)
\(48\) 0 0
\(49\) 5.59102 + 4.21194i 0.798718 + 0.601706i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.00281 + 12.1292i 0.961910 + 1.66608i 0.717696 + 0.696356i \(0.245197\pi\)
0.244214 + 0.969721i \(0.421470\pi\)
\(54\) 0 0
\(55\) 3.46305 0.466958
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.13442 + 12.3572i 0.928823 + 1.60877i 0.785294 + 0.619122i \(0.212512\pi\)
0.143529 + 0.989646i \(0.454155\pi\)
\(60\) 0 0
\(61\) 3.42860 5.93852i 0.438988 0.760349i −0.558624 0.829421i \(-0.688670\pi\)
0.997612 + 0.0690720i \(0.0220038\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.05695 + 12.2230i −0.875307 + 1.51608i
\(66\) 0 0
\(67\) 4.05678 + 7.02655i 0.495615 + 0.858430i 0.999987 0.00505643i \(-0.00160952\pi\)
−0.504373 + 0.863486i \(0.668276\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.25704 0.267861 0.133931 0.990991i \(-0.457240\pi\)
0.133931 + 0.990991i \(0.457240\pi\)
\(72\) 0 0
\(73\) 3.51456 + 6.08739i 0.411348 + 0.712475i 0.995037 0.0995017i \(-0.0317249\pi\)
−0.583690 + 0.811977i \(0.698392\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.725042 + 3.56245i 0.0826262 + 0.405979i
\(78\) 0 0
\(79\) −1.37843 + 2.38750i −0.155085 + 0.268615i −0.933090 0.359643i \(-0.882898\pi\)
0.778005 + 0.628258i \(0.216232\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.9775 1.64400 0.821998 0.569490i \(-0.192859\pi\)
0.821998 + 0.569490i \(0.192859\pi\)
\(84\) 0 0
\(85\) −13.5899 −1.47403
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.75804 + 4.77707i −0.292352 + 0.506368i −0.974365 0.224971i \(-0.927771\pi\)
0.682014 + 0.731339i \(0.261104\pi\)
\(90\) 0 0
\(91\) −14.0513 4.70043i −1.47298 0.492739i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.16752 + 10.6825i 0.632774 + 1.09600i
\(96\) 0 0
\(97\) −1.78801 −0.181544 −0.0907722 0.995872i \(-0.528934\pi\)
−0.0907722 + 0.995872i \(0.528934\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.69534 + 11.5967i 0.666211 + 1.15391i 0.978955 + 0.204074i \(0.0654183\pi\)
−0.312744 + 0.949837i \(0.601248\pi\)
\(102\) 0 0
\(103\) −1.10164 + 1.90810i −0.108548 + 0.188010i −0.915182 0.403040i \(-0.867953\pi\)
0.806634 + 0.591051i \(0.201287\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.93284 + 8.54392i −0.476875 + 0.825972i −0.999649 0.0264995i \(-0.991564\pi\)
0.522774 + 0.852472i \(0.324897\pi\)
\(108\) 0 0
\(109\) 1.54340 + 2.67325i 0.147831 + 0.256051i 0.930426 0.366481i \(-0.119438\pi\)
−0.782595 + 0.622532i \(0.786104\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.437630 0.0411688 0.0205844 0.999788i \(-0.493447\pi\)
0.0205844 + 0.999788i \(0.493447\pi\)
\(114\) 0 0
\(115\) 5.26142 + 9.11304i 0.490630 + 0.849796i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.84525 13.9800i −0.260824 1.28154i
\(120\) 0 0
\(121\) 4.55595 7.89113i 0.414177 0.717376i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.19461 −0.822391
\(126\) 0 0
\(127\) −5.75958 −0.511080 −0.255540 0.966798i \(-0.582253\pi\)
−0.255540 + 0.966798i \(0.582253\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.714865 + 1.23818i −0.0624580 + 0.108180i −0.895564 0.444934i \(-0.853227\pi\)
0.833106 + 0.553114i \(0.186561\pi\)
\(132\) 0 0
\(133\) −9.69781 + 8.58108i −0.840907 + 0.744074i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.59335 + 9.68796i 0.477872 + 0.827698i 0.999678 0.0253656i \(-0.00807500\pi\)
−0.521806 + 0.853064i \(0.674742\pi\)
\(138\) 0 0
\(139\) −15.7405 −1.33509 −0.667545 0.744570i \(-0.732655\pi\)
−0.667545 + 0.744570i \(0.732655\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.84755 6.66415i −0.321748 0.557284i
\(144\) 0 0
\(145\) 3.95078 6.84296i 0.328095 0.568277i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.96513 6.86780i 0.324836 0.562632i −0.656643 0.754201i \(-0.728024\pi\)
0.981479 + 0.191569i \(0.0613576\pi\)
\(150\) 0 0
\(151\) 5.39683 + 9.34758i 0.439188 + 0.760696i 0.997627 0.0688499i \(-0.0219329\pi\)
−0.558439 + 0.829545i \(0.688600\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.1003 0.971921
\(156\) 0 0
\(157\) −10.5884 18.3396i −0.845045 1.46366i −0.885582 0.464483i \(-0.846240\pi\)
0.0405373 0.999178i \(-0.487093\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.27305 + 7.32039i −0.652008 + 0.576927i
\(162\) 0 0
\(163\) 0.536552 0.929336i 0.0420260 0.0727912i −0.844247 0.535954i \(-0.819952\pi\)
0.886273 + 0.463163i \(0.153285\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.4328 −1.19422 −0.597112 0.802158i \(-0.703685\pi\)
−0.597112 + 0.802158i \(0.703685\pi\)
\(168\) 0 0
\(169\) 18.3619 1.41245
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.1810 17.6340i 0.774046 1.34069i −0.161283 0.986908i \(-0.551563\pi\)
0.935329 0.353779i \(-0.115103\pi\)
\(174\) 0 0
\(175\) 0.713246 + 3.50449i 0.0539164 + 0.264915i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.04960 5.28206i −0.227938 0.394800i 0.729259 0.684238i \(-0.239865\pi\)
−0.957197 + 0.289438i \(0.906532\pi\)
\(180\) 0 0
\(181\) 10.0056 0.743714 0.371857 0.928290i \(-0.378721\pi\)
0.371857 + 0.928290i \(0.378721\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.80065 11.7791i −0.499993 0.866014i
\(186\) 0 0
\(187\) 3.70470 6.41673i 0.270915 0.469238i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.0993 + 19.2246i −0.803120 + 1.39104i 0.114433 + 0.993431i \(0.463495\pi\)
−0.917553 + 0.397613i \(0.869839\pi\)
\(192\) 0 0
\(193\) 13.3080 + 23.0501i 0.957930 + 1.65918i 0.727516 + 0.686091i \(0.240675\pi\)
0.230414 + 0.973093i \(0.425992\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.1696 −0.724551 −0.362276 0.932071i \(-0.618000\pi\)
−0.362276 + 0.932071i \(0.618000\pi\)
\(198\) 0 0
\(199\) −1.66243 2.87941i −0.117846 0.204116i 0.801068 0.598574i \(-0.204266\pi\)
−0.918914 + 0.394458i \(0.870932\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.86652 + 2.63150i 0.552122 + 0.184695i
\(204\) 0 0
\(205\) 7.63618 13.2263i 0.533334 0.923762i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.72524 −0.465194
\(210\) 0 0
\(211\) 2.59070 0.178351 0.0891755 0.996016i \(-0.471577\pi\)
0.0891755 + 0.996016i \(0.471577\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.16752 10.6825i 0.420621 0.728538i
\(216\) 0 0
\(217\) 2.53338 + 12.4476i 0.171977 + 0.845000i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 15.0988 + 26.1518i 1.01565 + 1.75916i
\(222\) 0 0
\(223\) 24.8057 1.66111 0.830556 0.556934i \(-0.188023\pi\)
0.830556 + 0.556934i \(0.188023\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.55125 + 6.15095i 0.235705 + 0.408253i 0.959477 0.281786i \(-0.0909267\pi\)
−0.723772 + 0.690039i \(0.757593\pi\)
\(228\) 0 0
\(229\) 3.23252 5.59889i 0.213611 0.369985i −0.739231 0.673452i \(-0.764811\pi\)
0.952842 + 0.303467i \(0.0981442\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.42950 7.67212i 0.290186 0.502617i −0.683667 0.729794i \(-0.739616\pi\)
0.973854 + 0.227177i \(0.0729495\pi\)
\(234\) 0 0
\(235\) −7.12665 12.3437i −0.464891 0.805215i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 17.2167 1.11366 0.556828 0.830628i \(-0.312018\pi\)
0.556828 + 0.830628i \(0.312018\pi\)
\(240\) 0 0
\(241\) −10.1106 17.5120i −0.651279 1.12805i −0.982813 0.184604i \(-0.940900\pi\)
0.331534 0.943443i \(-0.392434\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −16.2385 + 6.89544i −1.03744 + 0.440533i
\(246\) 0 0
\(247\) 13.7046 23.7370i 0.872001 1.51035i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.32214 −0.462169 −0.231085 0.972934i \(-0.574227\pi\)
−0.231085 + 0.972934i \(0.574227\pi\)
\(252\) 0 0
\(253\) −5.73720 −0.360695
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.07308 5.32274i 0.191694 0.332023i −0.754118 0.656739i \(-0.771935\pi\)
0.945812 + 0.324716i \(0.105269\pi\)
\(258\) 0 0
\(259\) 10.6933 9.46197i 0.664451 0.587938i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.0824634 0.142831i −0.00508491 0.00880732i 0.863472 0.504397i \(-0.168285\pi\)
−0.868557 + 0.495590i \(0.834952\pi\)
\(264\) 0 0
\(265\) −35.2979 −2.16833
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.86477 + 3.22988i 0.113697 + 0.196929i 0.917258 0.398293i \(-0.130397\pi\)
−0.803561 + 0.595222i \(0.797064\pi\)
\(270\) 0 0
\(271\) −0.393652 + 0.681825i −0.0239127 + 0.0414179i −0.877734 0.479148i \(-0.840946\pi\)
0.853821 + 0.520566i \(0.174279\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.928693 + 1.60854i −0.0560023 + 0.0969988i
\(276\) 0 0
\(277\) 1.62954 + 2.82245i 0.0979096 + 0.169584i 0.910819 0.412805i \(-0.135451\pi\)
−0.812910 + 0.582390i \(0.802118\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.7829 1.12050 0.560248 0.828325i \(-0.310706\pi\)
0.560248 + 0.828325i \(0.310706\pi\)
\(282\) 0 0
\(283\) 6.41848 + 11.1171i 0.381539 + 0.660845i 0.991282 0.131754i \(-0.0420608\pi\)
−0.609743 + 0.792599i \(0.708727\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.2046 + 5.08624i 0.897501 + 0.300231i
\(288\) 0 0
\(289\) −6.03821 + 10.4585i −0.355189 + 0.615205i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −27.2585 −1.59246 −0.796230 0.604994i \(-0.793176\pi\)
−0.796230 + 0.604994i \(0.793176\pi\)
\(294\) 0 0
\(295\) −35.9613 −2.09375
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.6912 20.2497i 0.676118 1.17107i
\(300\) 0 0
\(301\) 12.2803 + 4.10801i 0.707827 + 0.236782i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.64098 + 14.9666i 0.494781 + 0.856986i
\(306\) 0 0
\(307\) 24.4623 1.39614 0.698069 0.716030i \(-0.254043\pi\)
0.698069 + 0.716030i \(0.254043\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.58916 14.8769i −0.487047 0.843590i 0.512842 0.858483i \(-0.328593\pi\)
−0.999889 + 0.0148930i \(0.995259\pi\)
\(312\) 0 0
\(313\) −7.93226 + 13.7391i −0.448358 + 0.776578i −0.998279 0.0586380i \(-0.981324\pi\)
0.549922 + 0.835216i \(0.314658\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.3626 + 19.6806i −0.638188 + 1.10537i 0.347642 + 0.937627i \(0.386983\pi\)
−0.985830 + 0.167747i \(0.946351\pi\)
\(318\) 0 0
\(319\) 2.15402 + 3.73088i 0.120602 + 0.208889i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.3916 1.46847
\(324\) 0 0
\(325\) −3.78495 6.55573i −0.209951 0.363646i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.2059 9.91554i 0.617803 0.546662i
\(330\) 0 0
\(331\) −12.1140 + 20.9821i −0.665848 + 1.15328i 0.313207 + 0.949685i \(0.398597\pi\)
−0.979055 + 0.203597i \(0.934737\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −20.4483 −1.11721
\(336\) 0 0
\(337\) 4.40363 0.239881 0.119940 0.992781i \(-0.461730\pi\)
0.119940 + 0.992781i \(0.461730\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.29863 + 5.71339i −0.178631 + 0.309398i
\(342\) 0 0
\(343\) −10.4931 15.2609i −0.566575 0.824010i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.12528 10.6093i −0.328823 0.569537i 0.653456 0.756965i \(-0.273318\pi\)
−0.982278 + 0.187427i \(0.939985\pi\)
\(348\) 0 0
\(349\) −14.3889 −0.770219 −0.385110 0.922871i \(-0.625836\pi\)
−0.385110 + 0.922871i \(0.625836\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.40835 7.63549i −0.234633 0.406396i 0.724533 0.689240i \(-0.242055\pi\)
−0.959166 + 0.282844i \(0.908722\pi\)
\(354\) 0 0
\(355\) −2.84417 + 4.92624i −0.150953 + 0.261458i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.04909 5.28118i 0.160925 0.278730i −0.774276 0.632848i \(-0.781886\pi\)
0.935201 + 0.354118i \(0.115219\pi\)
\(360\) 0 0
\(361\) −2.47731 4.29083i −0.130385 0.225833i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −17.7152 −0.927257
\(366\) 0 0
\(367\) 3.45814 + 5.98967i 0.180513 + 0.312658i 0.942055 0.335457i \(-0.108891\pi\)
−0.761542 + 0.648115i \(0.775557\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.39014 36.3110i −0.383677 1.88517i
\(372\) 0 0
\(373\) 11.9489 20.6961i 0.618691 1.07160i −0.371034 0.928619i \(-0.620997\pi\)
0.989725 0.142985i \(-0.0456701\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −17.5577 −0.904269
\(378\) 0 0
\(379\) 34.6719 1.78097 0.890487 0.455008i \(-0.150364\pi\)
0.890487 + 0.455008i \(0.150364\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.71507 16.8270i 0.496417 0.859820i −0.503574 0.863952i \(-0.667982\pi\)
0.999991 + 0.00413220i \(0.00131532\pi\)
\(384\) 0 0
\(385\) −8.68909 2.90667i −0.442837 0.148138i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −16.3172 28.2623i −0.827317 1.43295i −0.900136 0.435610i \(-0.856533\pi\)
0.0728190 0.997345i \(-0.476800\pi\)
\(390\) 0 0
\(391\) 22.5142 1.13859
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.47400 6.01714i −0.174796 0.302755i
\(396\) 0 0
\(397\) −3.11807 + 5.40065i −0.156491 + 0.271051i −0.933601 0.358314i \(-0.883352\pi\)
0.777110 + 0.629365i \(0.216685\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.3672 + 21.4207i −0.617591 + 1.06970i 0.372333 + 0.928099i \(0.378558\pi\)
−0.989924 + 0.141599i \(0.954776\pi\)
\(402\) 0 0
\(403\) −13.4438 23.2853i −0.669683 1.15992i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.41561 0.367578
\(408\) 0 0
\(409\) 11.5749 + 20.0484i 0.572344 + 0.991329i 0.996325 + 0.0856575i \(0.0272991\pi\)
−0.423981 + 0.905671i \(0.639368\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.52903 36.9934i −0.370480 1.82033i
\(414\) 0 0
\(415\) −18.8737 + 32.6901i −0.926471 + 1.60470i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.40652 −0.0687130 −0.0343565 0.999410i \(-0.510938\pi\)
−0.0343565 + 0.999410i \(0.510938\pi\)
\(420\) 0 0
\(421\) 1.32781 0.0647134 0.0323567 0.999476i \(-0.489699\pi\)
0.0323567 + 0.999476i \(0.489699\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.64443 6.31234i 0.176781 0.306193i
\(426\) 0 0
\(427\) −13.5871 + 12.0225i −0.657525 + 0.581809i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.83378 + 4.90825i 0.136498 + 0.236422i 0.926169 0.377109i \(-0.123082\pi\)
−0.789670 + 0.613531i \(0.789748\pi\)
\(432\) 0 0
\(433\) 1.60371 0.0770696 0.0385348 0.999257i \(-0.487731\pi\)
0.0385348 + 0.999257i \(0.487731\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.2177 17.6975i −0.488777 0.846587i
\(438\) 0 0
\(439\) 0.227323 0.393735i 0.0108495 0.0187919i −0.860550 0.509367i \(-0.829880\pi\)
0.871399 + 0.490575i \(0.163213\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.31442 16.1331i 0.442542 0.766505i −0.555336 0.831626i \(-0.687410\pi\)
0.997877 + 0.0651217i \(0.0207436\pi\)
\(444\) 0 0
\(445\) −6.95099 12.0395i −0.329508 0.570725i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.2330 0.671696 0.335848 0.941916i \(-0.390977\pi\)
0.335848 + 0.941916i \(0.390977\pi\)
\(450\) 0 0
\(451\) 4.16335 + 7.21114i 0.196045 + 0.339559i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 27.9657 24.7454i 1.31105 1.16008i
\(456\) 0 0
\(457\) −14.6729 + 25.4142i −0.686370 + 1.18883i 0.286634 + 0.958040i \(0.407464\pi\)
−0.973004 + 0.230788i \(0.925870\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.3173 −1.17914 −0.589572 0.807715i \(-0.700704\pi\)
−0.589572 + 0.807715i \(0.700704\pi\)
\(462\) 0 0
\(463\) 23.3006 1.08287 0.541435 0.840743i \(-0.317881\pi\)
0.541435 + 0.840743i \(0.317881\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.8409 36.0976i 0.964403 1.67040i 0.253194 0.967416i \(-0.418519\pi\)
0.711210 0.702980i \(-0.248148\pi\)
\(468\) 0 0
\(469\) −4.28116 21.0352i −0.197686 0.971316i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.36262 + 5.82423i 0.154613 + 0.267798i
\(474\) 0 0
\(475\) −6.61582 −0.303555
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.76946 + 4.79684i 0.126540 + 0.219173i 0.922334 0.386394i \(-0.126280\pi\)
−0.795794 + 0.605567i \(0.792946\pi\)
\(480\) 0 0
\(481\) −15.1114 + 26.1737i −0.689021 + 1.19342i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.25312 3.90252i 0.102309 0.177204i
\(486\) 0 0
\(487\) 12.3357 + 21.3661i 0.558985 + 0.968190i 0.997582 + 0.0695061i \(0.0221423\pi\)
−0.438597 + 0.898684i \(0.644524\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −20.1018 −0.907181 −0.453590 0.891210i \(-0.649857\pi\)
−0.453590 + 0.891210i \(0.649857\pi\)
\(492\) 0 0
\(493\) −8.45294 14.6409i −0.380701 0.659394i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.66311 1.89442i −0.254025 0.0849763i
\(498\) 0 0
\(499\) −17.7587 + 30.7589i −0.794987 + 1.37696i 0.127861 + 0.991792i \(0.459189\pi\)
−0.922848 + 0.385166i \(0.874144\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.2236 −1.08008 −0.540039 0.841640i \(-0.681590\pi\)
−0.540039 + 0.841640i \(0.681590\pi\)
\(504\) 0 0
\(505\) −33.7480 −1.50177
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.86723 + 6.69824i −0.171412 + 0.296894i −0.938914 0.344153i \(-0.888166\pi\)
0.767502 + 0.641047i \(0.221500\pi\)
\(510\) 0 0
\(511\) −3.70895 18.2237i −0.164074 0.806168i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.77642 4.80891i −0.122344 0.211906i
\(516\) 0 0
\(517\) 7.77109 0.341772
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14.9050 + 25.8161i 0.652998 + 1.13103i 0.982392 + 0.186833i \(0.0598223\pi\)
−0.329394 + 0.944193i \(0.606844\pi\)
\(522\) 0 0
\(523\) −1.76218 + 3.05219i −0.0770547 + 0.133463i −0.901978 0.431782i \(-0.857885\pi\)
0.824923 + 0.565245i \(0.191218\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.9447 22.4208i 0.563879 0.976667i
\(528\) 0 0
\(529\) 2.78347 + 4.82110i 0.121020 + 0.209613i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −33.9361 −1.46993
\(534\) 0 0
\(535\) −12.4320 21.5329i −0.537484 0.930950i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.17090 9.54704i 0.0504344 0.411220i
\(540\) 0 0
\(541\) 13.8435 23.9777i 0.595180 1.03088i −0.398342 0.917237i \(-0.630414\pi\)
0.993521 0.113645i \(-0.0362525\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.77955 −0.333239
\(546\) 0 0
\(547\) 33.2272 1.42069 0.710347 0.703852i \(-0.248538\pi\)
0.710347 + 0.703852i \(0.248538\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.67241 + 13.2890i −0.326856 + 0.566131i
\(552\) 0 0
\(553\) 5.46251 4.83349i 0.232290 0.205541i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.80873 13.5251i −0.330866 0.573078i 0.651816 0.758378i \(-0.274008\pi\)
−0.982682 + 0.185300i \(0.940674\pi\)
\(558\) 0 0
\(559\) −27.4092 −1.15928
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.75592 16.8977i −0.411163 0.712155i 0.583854 0.811858i \(-0.301544\pi\)
−0.995017 + 0.0997034i \(0.968211\pi\)
\(564\) 0 0
\(565\) −0.551472 + 0.955177i −0.0232006 + 0.0401846i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.59181 6.22119i 0.150576 0.260806i −0.780863 0.624702i \(-0.785220\pi\)
0.931439 + 0.363896i \(0.118554\pi\)
\(570\) 0 0
\(571\) −14.7886 25.6147i −0.618886 1.07194i −0.989689 0.143230i \(-0.954251\pi\)
0.370804 0.928711i \(-0.379082\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.64386 −0.235365
\(576\) 0 0
\(577\) 5.18911 + 8.98780i 0.216025 + 0.374167i 0.953589 0.301110i \(-0.0973573\pi\)
−0.737564 + 0.675277i \(0.764024\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −37.5799 12.5712i −1.55908 0.521541i
\(582\) 0 0
\(583\) 9.62244 16.6666i 0.398521 0.690259i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.9127 1.19335 0.596677 0.802481i \(-0.296487\pi\)
0.596677 + 0.802481i \(0.296487\pi\)
\(588\) 0 0
\(589\) −23.4988 −0.968251
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10.2645 17.7786i 0.421512 0.730080i −0.574576 0.818451i \(-0.694833\pi\)
0.996088 + 0.0883714i \(0.0281662\pi\)
\(594\) 0 0
\(595\) 34.0982 + 11.4065i 1.39789 + 0.467622i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.91652 + 6.78361i 0.160025 + 0.277171i 0.934877 0.354971i \(-0.115509\pi\)
−0.774853 + 0.632142i \(0.782176\pi\)
\(600\) 0 0
\(601\) 14.5404 0.593116 0.296558 0.955015i \(-0.404161\pi\)
0.296558 + 0.955015i \(0.404161\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.4822 + 19.8877i 0.466817 + 0.808551i
\(606\) 0 0
\(607\) 15.2755 26.4579i 0.620013 1.07389i −0.369470 0.929243i \(-0.620461\pi\)
0.989483 0.144651i \(-0.0462060\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15.8358 + 27.4284i −0.640648 + 1.10964i
\(612\) 0 0
\(613\) −14.4646 25.0534i −0.584220 1.01190i −0.994972 0.100152i \(-0.968067\pi\)
0.410752 0.911747i \(-0.365266\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.4213 1.62730 0.813650 0.581355i \(-0.197477\pi\)
0.813650 + 0.581355i \(0.197477\pi\)
\(618\) 0 0
\(619\) 9.05857 + 15.6899i 0.364095 + 0.630631i 0.988630 0.150366i \(-0.0480451\pi\)
−0.624536 + 0.780996i \(0.714712\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.9297 9.67114i 0.437890 0.387466i
\(624\) 0 0
\(625\) 14.9657 25.9214i 0.598629 1.03686i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −29.1008 −1.16032
\(630\) 0 0
\(631\) 8.50373 0.338528 0.169264 0.985571i \(-0.445861\pi\)
0.169264 + 0.985571i \(0.445861\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.25783 12.5709i 0.288018 0.498862i
\(636\) 0 0
\(637\) 31.3107 + 23.5876i 1.24057 + 0.934574i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.0020 + 19.0561i 0.434554 + 0.752669i 0.997259 0.0739883i \(-0.0235727\pi\)
−0.562705 + 0.826658i \(0.690239\pi\)
\(642\) 0 0
\(643\) −26.2313 −1.03446 −0.517230 0.855846i \(-0.673037\pi\)
−0.517230 + 0.855846i \(0.673037\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.5845 33.9214i −0.769946 1.33359i −0.937591 0.347739i \(-0.886950\pi\)
0.167645 0.985847i \(-0.446384\pi\)
\(648\) 0 0
\(649\) 9.80329 16.9798i 0.384813 0.666515i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.83467 11.8380i 0.267461 0.463257i −0.700744 0.713413i \(-0.747149\pi\)
0.968206 + 0.250156i \(0.0804819\pi\)
\(654\) 0 0
\(655\) −1.80165 3.12054i −0.0703962 0.121930i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6.13367 −0.238934 −0.119467 0.992838i \(-0.538119\pi\)
−0.119467 + 0.992838i \(0.538119\pi\)
\(660\) 0 0
\(661\) 22.3118 + 38.6451i 0.867828 + 1.50312i 0.864212 + 0.503128i \(0.167818\pi\)
0.00361604 + 0.999993i \(0.498849\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.50865 31.9798i −0.252395 1.24013i
\(666\) 0 0
\(667\) −6.54522 + 11.3367i −0.253432 + 0.438957i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −9.42237 −0.363747
\(672\) 0 0
\(673\) 32.7666 1.26306 0.631531 0.775351i \(-0.282427\pi\)
0.631531 + 0.775351i \(0.282427\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.5764 23.5150i 0.521782 0.903753i −0.477897 0.878416i \(-0.658601\pi\)
0.999679 0.0253373i \(-0.00806596\pi\)
\(678\) 0 0
\(679\) 4.48626 + 1.50074i 0.172167 + 0.0575931i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 19.0334 + 32.9668i 0.728293 + 1.26144i 0.957604 + 0.288087i \(0.0930192\pi\)
−0.229312 + 0.973353i \(0.573647\pi\)
\(684\) 0 0
\(685\) −28.1934 −1.07721
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 39.2169 + 67.9257i 1.49405 + 2.58776i
\(690\) 0 0
\(691\) 6.37848 11.0478i 0.242649 0.420280i −0.718819 0.695197i \(-0.755317\pi\)
0.961468 + 0.274917i \(0.0886504\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.8351 34.3554i 0.752387 1.30317i
\(696\) 0 0
\(697\) −16.3381 28.2984i −0.618849 1.07188i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −40.6428 −1.53506 −0.767528 0.641015i \(-0.778514\pi\)
−0.767528 + 0.641015i \(0.778514\pi\)
\(702\) 0 0
\(703\) 13.2068 + 22.8749i 0.498105 + 0.862744i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.06566 34.7167i −0.265732 1.30566i
\(708\) 0 0
\(709\) 3.74552 6.48743i 0.140666 0.243640i −0.787082 0.616849i \(-0.788409\pi\)
0.927748 + 0.373208i \(0.121742\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.0465 −0.750746
\(714\) 0 0
\(715\) 19.3937 0.725282
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.64056 2.84154i 0.0611827 0.105972i −0.833812 0.552049i \(-0.813846\pi\)
0.894994 + 0.446078i \(0.147179\pi\)
\(720\) 0 0
\(721\) 4.36565 3.86293i 0.162585 0.143863i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.11898 + 3.67018i 0.0786969 + 0.136307i
\(726\) 0 0
\(727\) −16.0218 −0.594214 −0.297107 0.954844i \(-0.596022\pi\)
−0.297107 + 0.954844i \(0.596022\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −13.1958 22.8558i −0.488064 0.845351i
\(732\) 0 0
\(733\) −14.8123 + 25.6556i −0.547104 + 0.947611i 0.451368 + 0.892338i \(0.350936\pi\)
−0.998471 + 0.0552733i \(0.982397\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.57435 9.65506i 0.205334 0.355649i
\(738\) 0 0
\(739\) −22.2867 38.6017i −0.819829 1.41998i −0.905808 0.423688i \(-0.860735\pi\)
0.0859797 0.996297i \(-0.472598\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.3473 −0.416292 −0.208146 0.978098i \(-0.566743\pi\)
−0.208146 + 0.978098i \(0.566743\pi\)
\(744\) 0 0
\(745\) 9.99317 + 17.3087i 0.366121 + 0.634141i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 19.5481 17.2971i 0.714274 0.632023i
\(750\) 0 0
\(751\) −17.5928 + 30.4716i −0.641970 + 1.11192i 0.343023 + 0.939327i \(0.388549\pi\)
−0.984992 + 0.172597i \(0.944784\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −27.2029 −0.990014
\(756\) 0 0
\(757\) 40.9186 1.48721 0.743605 0.668619i \(-0.233114\pi\)
0.743605 + 0.668619i \(0.233114\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.72243 9.91155i 0.207438 0.359293i −0.743469 0.668771i \(-0.766821\pi\)
0.950907 + 0.309477i \(0.100154\pi\)
\(762\) 0 0
\(763\) −1.62877 8.00284i −0.0589653 0.289722i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 39.9540 + 69.2023i 1.44265 + 2.49875i
\(768\) 0 0
\(769\) 29.9447 1.07983 0.539916 0.841719i \(-0.318456\pi\)
0.539916 + 0.841719i \(0.318456\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.96578 + 6.86893i 0.142639 + 0.247058i 0.928490 0.371358i \(-0.121108\pi\)
−0.785851 + 0.618416i \(0.787775\pi\)
\(774\) 0 0
\(775\) −3.24496 + 5.62044i −0.116563 + 0.201892i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.8295 + 25.6854i −0.531320 + 0.920274i
\(780\) 0 0
\(781\) −1.55068 2.68586i −0.0554877 0.0961075i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 53.3710 1.90489
\(786\) 0 0
\(787\) −21.6037 37.4187i −0.770089 1.33383i −0.937514 0.347949i \(-0.886878\pi\)
0.167425 0.985885i \(-0.446455\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.09805 0.367320i −0.0390422 0.0130604i
\(792\) 0 0
\(793\) 19.2008 33.2567i 0.681839 1.18098i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.6877 −0.591108 −0.295554 0.955326i \(-0.595504\pi\)
−0.295554 + 0.955326i \(0.595504\pi\)
\(798\) 0 0
\(799\) −30.4958 −1.07886
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.82929 8.36458i 0.170422 0.295180i
\(804\) 0 0
\(805\) −5.55243 27.2815i −0.195697 0.961547i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.54846 + 4.41407i 0.0895992 + 0.155190i 0.907342 0.420394i \(-0.138108\pi\)
−0.817743 + 0.575584i \(0.804775\pi\)
\(810\) 0 0
\(811\) 10.2996 0.361666 0.180833 0.983514i \(-0.442121\pi\)
0.180833 + 0.983514i \(0.442121\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.35225 + 2.34217i 0.0473674 + 0.0820427i
\(816\) 0 0
\(817\) −11.9773 + 20.7453i −0.419033 + 0.725787i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.6369 + 21.8878i −0.441031 + 0.763889i −0.997766 0.0668013i \(-0.978721\pi\)
0.556735 + 0.830690i \(0.312054\pi\)
\(822\) 0 0
\(823\) −4.44391 7.69707i −0.154905 0.268303i 0.778120 0.628116i \(-0.216174\pi\)
−0.933024 + 0.359813i \(0.882840\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.1680 0.457895 0.228947 0.973439i \(-0.426472\pi\)
0.228947 + 0.973439i \(0.426472\pi\)
\(828\) 0 0
\(829\) −11.3459 19.6516i −0.394058 0.682529i 0.598922 0.800807i \(-0.295596\pi\)
−0.992981 + 0.118278i \(0.962263\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.59493 + 37.4651i −0.159205 + 1.29809i
\(834\) 0 0
\(835\) 19.4473 33.6838i 0.673002 1.16567i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −29.9265 −1.03318 −0.516588 0.856234i \(-0.672798\pi\)
−0.516588 + 0.856234i \(0.672798\pi\)
\(840\) 0 0
\(841\) −19.1704 −0.661049
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −23.1384 + 40.0768i −0.795984 + 1.37869i
\(846\) 0 0
\(847\) −18.0546 + 15.9756i −0.620363 + 0.548927i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.2666 + 19.5142i 0.386213 + 0.668940i
\(852\) 0 0
\(853\) −12.9386 −0.443009 −0.221504 0.975159i \(-0.571097\pi\)
−0.221504 + 0.975159i \(0.571097\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.12252 7.14042i −0.140823 0.243912i 0.786984 0.616973i \(-0.211641\pi\)
−0.927807 + 0.373061i \(0.878308\pi\)
\(858\) 0 0
\(859\) −1.73399 + 3.00336i −0.0591630 + 0.102473i −0.894090 0.447888i \(-0.852177\pi\)
0.834927 + 0.550361i \(0.185510\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.256394 0.444087i 0.00872775 0.0151169i −0.861629 0.507539i \(-0.830555\pi\)
0.870356 + 0.492423i \(0.163889\pi\)
\(864\) 0 0
\(865\) 25.6588 + 44.4423i 0.872424 + 1.51108i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.78814 0.128504
\(870\) 0 0
\(871\) 22.7186 + 39.3499i 0.769792 + 1.33332i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 23.0701 + 7.71738i 0.779910 + 0.260895i
\(876\) 0 0
\(877\) −18.1880 + 31.5026i −0.614166 + 1.06377i 0.376365 + 0.926472i \(0.377174\pi\)
−0.990530 + 0.137295i \(0.956159\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 23.3999 0.788363 0.394181 0.919033i \(-0.371028\pi\)
0.394181 + 0.919033i \(0.371028\pi\)
\(882\) 0 0
\(883\) −22.8345 −0.768442 −0.384221 0.923241i \(-0.625530\pi\)
−0.384221 + 0.923241i \(0.625530\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.0791 38.2421i 0.741344 1.28405i −0.210539 0.977585i \(-0.567522\pi\)
0.951883 0.306460i \(-0.0991446\pi\)
\(888\) 0 0
\(889\) 14.4513 + 4.83423i 0.484680 + 0.162135i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.8399 + 23.9715i 0.463136 + 0.802175i
\(894\) 0 0
\(895\) 15.3716 0.513816
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.52641 + 13.0361i 0.251020 + 0.434779i
\(900\) 0 0
\(901\) −37.7610 + 65.4039i −1.25800 + 2.17892i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.6084 + 21.8384i −0.419118 + 0.725934i
\(906\) 0 0
\(907\) −3.53884 6.12946i −0.117505 0.203525i 0.801273 0.598299i \(-0.204156\pi\)
−0.918778 + 0.394773i \(0.870823\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −47.3529 −1.56887 −0.784435 0.620211i \(-0.787047\pi\)
−0.784435 + 0.620211i \(0.787047\pi\)
\(912\) 0 0
\(913\) −10.2902 17.8231i −0.340555 0.589859i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.83291 2.50669i 0.0935509 0.0827783i
\(918\) 0 0
\(919\) 12.9752 22.4736i 0.428011 0.741337i −0.568685 0.822555i \(-0.692548\pi\)
0.996696 + 0.0812182i \(0.0258811\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.6398 0.416044
\(924\) 0 0
\(925\) 7.29497 0.239857
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.66110 + 4.60917i −0.0873080 + 0.151222i −0.906372 0.422480i \(-0.861160\pi\)
0.819064 + 0.573702i \(0.194493\pi\)
\(930\) 0 0
\(931\) 31.5351 13.3909i 1.03352 0.438870i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9.33682 + 16.1719i 0.305347 + 0.528876i
\(936\) 0 0
\(937\) −30.4266 −0.993994 −0.496997 0.867752i \(-0.665564\pi\)
−0.496997 + 0.867752i \(0.665564\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.8818 + 18.8479i 0.354738 + 0.614424i 0.987073 0.160271i \(-0.0512368\pi\)
−0.632335 + 0.774695i \(0.717903\pi\)
\(942\) 0 0
\(943\) −12.6508 + 21.9118i −0.411966 + 0.713546i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.4392 + 30.2055i −0.566697 + 0.981548i 0.430192 + 0.902737i \(0.358446\pi\)
−0.996890 + 0.0788112i \(0.974888\pi\)
\(948\) 0 0
\(949\) 19.6821 + 34.0904i 0.638908 + 1.10662i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −27.3744 −0.886742 −0.443371 0.896338i \(-0.646218\pi\)
−0.443371 + 0.896338i \(0.646218\pi\)
\(954\) 0 0
\(955\) −27.9732 48.4511i −0.905193 1.56784i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.90272 29.0026i −0.190609 0.936544i
\(960\) 0 0
\(961\) 3.97419 6.88350i 0.128200 0.222048i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −67.0793 −2.15936
\(966\) 0 0
\(967\) −14.4265 −0.463926 −0.231963 0.972725i \(-0.574515\pi\)
−0.231963 + 0.972725i \(0.574515\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 13.2592 22.9657i 0.425509 0.737004i −0.570959 0.820979i \(-0.693428\pi\)
0.996468 + 0.0839752i \(0.0267617\pi\)
\(972\) 0 0
\(973\) 39.4942 + 13.2116i 1.26613 + 0.423544i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.1867 34.9643i −0.645829 1.11861i −0.984109 0.177563i \(-0.943179\pi\)
0.338281 0.941045i \(-0.390155\pi\)
\(978\) 0 0
\(979\) 7.57955 0.242243
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10.7299 18.5847i −0.342230 0.592759i 0.642617 0.766188i \(-0.277849\pi\)
−0.984846 + 0.173429i \(0.944515\pi\)
\(984\) 0 0
\(985\) 12.8150 22.1962i 0.408319 0.707230i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.2177 + 17.6975i −0.324903 + 0.562748i
\(990\) 0 0
\(991\) 7.25341 + 12.5633i 0.230412 + 0.399085i 0.957929 0.287004i \(-0.0926593\pi\)
−0.727517 + 0.686089i \(0.759326\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.37951 0.265648
\(996\) 0 0
\(997\) −18.2204 31.5587i −0.577047 0.999475i −0.995816 0.0913822i \(-0.970871\pi\)
0.418769 0.908093i \(-0.362462\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.k.f.1297.1 14
3.2 odd 2 2268.2.k.e.1297.7 14
7.4 even 3 inner 2268.2.k.f.1621.1 14
9.2 odd 6 252.2.i.b.121.6 yes 14
9.4 even 3 756.2.l.b.289.7 14
9.5 odd 6 252.2.l.b.205.2 yes 14
9.7 even 3 756.2.i.b.37.1 14
21.11 odd 6 2268.2.k.e.1621.7 14
36.7 odd 6 3024.2.q.j.2305.1 14
36.11 even 6 1008.2.q.j.625.2 14
36.23 even 6 1008.2.t.j.961.6 14
36.31 odd 6 3024.2.t.j.289.7 14
63.2 odd 6 1764.2.j.g.589.5 14
63.4 even 3 756.2.i.b.613.1 14
63.5 even 6 1764.2.j.h.1177.3 14
63.11 odd 6 252.2.l.b.193.2 yes 14
63.13 odd 6 5292.2.l.i.3313.1 14
63.16 even 3 5292.2.j.h.1765.1 14
63.20 even 6 1764.2.i.i.373.2 14
63.23 odd 6 1764.2.j.g.1177.5 14
63.25 even 3 756.2.l.b.361.7 14
63.31 odd 6 5292.2.i.i.2125.7 14
63.32 odd 6 252.2.i.b.25.6 14
63.34 odd 6 5292.2.i.i.1549.7 14
63.38 even 6 1764.2.l.i.949.6 14
63.40 odd 6 5292.2.j.g.3529.7 14
63.41 even 6 1764.2.l.i.961.6 14
63.47 even 6 1764.2.j.h.589.3 14
63.52 odd 6 5292.2.l.i.361.1 14
63.58 even 3 5292.2.j.h.3529.1 14
63.59 even 6 1764.2.i.i.1537.2 14
63.61 odd 6 5292.2.j.g.1765.7 14
252.11 even 6 1008.2.t.j.193.6 14
252.67 odd 6 3024.2.q.j.2881.1 14
252.95 even 6 1008.2.q.j.529.2 14
252.151 odd 6 3024.2.t.j.1873.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.6 14 63.32 odd 6
252.2.i.b.121.6 yes 14 9.2 odd 6
252.2.l.b.193.2 yes 14 63.11 odd 6
252.2.l.b.205.2 yes 14 9.5 odd 6
756.2.i.b.37.1 14 9.7 even 3
756.2.i.b.613.1 14 63.4 even 3
756.2.l.b.289.7 14 9.4 even 3
756.2.l.b.361.7 14 63.25 even 3
1008.2.q.j.529.2 14 252.95 even 6
1008.2.q.j.625.2 14 36.11 even 6
1008.2.t.j.193.6 14 252.11 even 6
1008.2.t.j.961.6 14 36.23 even 6
1764.2.i.i.373.2 14 63.20 even 6
1764.2.i.i.1537.2 14 63.59 even 6
1764.2.j.g.589.5 14 63.2 odd 6
1764.2.j.g.1177.5 14 63.23 odd 6
1764.2.j.h.589.3 14 63.47 even 6
1764.2.j.h.1177.3 14 63.5 even 6
1764.2.l.i.949.6 14 63.38 even 6
1764.2.l.i.961.6 14 63.41 even 6
2268.2.k.e.1297.7 14 3.2 odd 2
2268.2.k.e.1621.7 14 21.11 odd 6
2268.2.k.f.1297.1 14 1.1 even 1 trivial
2268.2.k.f.1621.1 14 7.4 even 3 inner
3024.2.q.j.2305.1 14 36.7 odd 6
3024.2.q.j.2881.1 14 252.67 odd 6
3024.2.t.j.289.7 14 36.31 odd 6
3024.2.t.j.1873.7 14 252.151 odd 6
5292.2.i.i.1549.7 14 63.34 odd 6
5292.2.i.i.2125.7 14 63.31 odd 6
5292.2.j.g.1765.7 14 63.61 odd 6
5292.2.j.g.3529.7 14 63.40 odd 6
5292.2.j.h.1765.1 14 63.16 even 3
5292.2.j.h.3529.1 14 63.58 even 3
5292.2.l.i.361.1 14 63.52 odd 6
5292.2.l.i.3313.1 14 63.13 odd 6