Properties

Label 756.2.l.b.361.7
Level $756$
Weight $2$
Character 756.361
Analytic conductor $6.037$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(289,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.7
Root \(-1.58203 - 0.705117i\) of defining polynomial
Character \(\chi\) \(=\) 756.361
Dual form 756.2.l.b.289.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52026 q^{5} +(1.98143 + 1.75326i) q^{7} +1.37408 q^{11} +(-2.80008 + 4.84989i) q^{13} +(2.69613 - 4.66983i) q^{17} +(2.44717 + 4.23863i) q^{19} -4.17529 q^{23} +1.35173 q^{25} +(1.56761 + 2.71518i) q^{29} +(-2.40060 - 4.15797i) q^{31} +(4.99373 + 4.41869i) q^{35} +(-2.69839 - 4.67374i) q^{37} +(3.02991 - 5.24797i) q^{41} +(2.44717 + 4.23863i) q^{43} +(-2.82774 + 4.89779i) q^{47} +(0.852135 + 6.94794i) q^{49} +(7.00281 - 12.1292i) q^{53} +3.46305 q^{55} +(7.13442 + 12.3572i) q^{59} +(3.42860 - 5.93852i) q^{61} +(-7.05695 + 12.2230i) q^{65} +(4.05678 + 7.02655i) q^{67} +2.25704 q^{71} +(3.51456 - 6.08739i) q^{73} +(2.72265 + 2.40913i) q^{77} +(-1.37843 + 2.38750i) q^{79} +(-7.48876 - 12.9709i) q^{83} +(6.79495 - 11.7692i) q^{85} +(-2.75804 - 4.77707i) q^{89} +(-14.0513 + 4.70043i) q^{91} +(6.16752 + 10.6825i) q^{95} +(0.894003 + 1.54846i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 4 q^{5} - 3 q^{7} + 4 q^{11} + 2 q^{13} - 2 q^{17} + 7 q^{19} + 22 q^{23} + 18 q^{25} - q^{29} - q^{31} + 19 q^{35} + 10 q^{37} + 33 q^{41} + 7 q^{43} + 3 q^{47} - 13 q^{49} + 15 q^{53} - 28 q^{55}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.52026 1.12710 0.563548 0.826083i \(-0.309436\pi\)
0.563548 + 0.826083i \(0.309436\pi\)
\(6\) 0 0
\(7\) 1.98143 + 1.75326i 0.748910 + 0.662671i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.37408 0.414302 0.207151 0.978309i \(-0.433581\pi\)
0.207151 + 0.978309i \(0.433581\pi\)
\(12\) 0 0
\(13\) −2.80008 + 4.84989i −0.776603 + 1.34512i 0.157285 + 0.987553i \(0.449726\pi\)
−0.933889 + 0.357563i \(0.883608\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.69613 4.66983i 0.653907 1.13260i −0.328260 0.944588i \(-0.606462\pi\)
0.982167 0.188013i \(-0.0602046\pi\)
\(18\) 0 0
\(19\) 2.44717 + 4.23863i 0.561420 + 0.972408i 0.997373 + 0.0724385i \(0.0230781\pi\)
−0.435953 + 0.899969i \(0.643589\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.17529 −0.870609 −0.435304 0.900283i \(-0.643359\pi\)
−0.435304 + 0.900283i \(0.643359\pi\)
\(24\) 0 0
\(25\) 1.35173 0.270346
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.56761 + 2.71518i 0.291097 + 0.504195i 0.974069 0.226249i \(-0.0726463\pi\)
−0.682972 + 0.730444i \(0.739313\pi\)
\(30\) 0 0
\(31\) −2.40060 4.15797i −0.431161 0.746793i 0.565812 0.824534i \(-0.308563\pi\)
−0.996974 + 0.0777407i \(0.975229\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.99373 + 4.41869i 0.844094 + 0.746894i
\(36\) 0 0
\(37\) −2.69839 4.67374i −0.443612 0.768359i 0.554342 0.832289i \(-0.312970\pi\)
−0.997954 + 0.0639302i \(0.979637\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.02991 5.24797i 0.473193 0.819595i −0.526336 0.850277i \(-0.676435\pi\)
0.999529 + 0.0306820i \(0.00976793\pi\)
\(42\) 0 0
\(43\) 2.44717 + 4.23863i 0.373190 + 0.646385i 0.990054 0.140685i \(-0.0449305\pi\)
−0.616864 + 0.787070i \(0.711597\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82774 + 4.89779i −0.412468 + 0.714416i −0.995159 0.0982782i \(-0.968667\pi\)
0.582691 + 0.812694i \(0.302000\pi\)
\(48\) 0 0
\(49\) 0.852135 + 6.94794i 0.121734 + 0.992563i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.00281 12.1292i 0.961910 1.66608i 0.244214 0.969721i \(-0.421470\pi\)
0.717696 0.696356i \(-0.245197\pi\)
\(54\) 0 0
\(55\) 3.46305 0.466958
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.13442 + 12.3572i 0.928823 + 1.60877i 0.785294 + 0.619122i \(0.212512\pi\)
0.143529 + 0.989646i \(0.454155\pi\)
\(60\) 0 0
\(61\) 3.42860 5.93852i 0.438988 0.760349i −0.558624 0.829421i \(-0.688670\pi\)
0.997612 + 0.0690720i \(0.0220038\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.05695 + 12.2230i −0.875307 + 1.51608i
\(66\) 0 0
\(67\) 4.05678 + 7.02655i 0.495615 + 0.858430i 0.999987 0.00505643i \(-0.00160952\pi\)
−0.504373 + 0.863486i \(0.668276\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.25704 0.267861 0.133931 0.990991i \(-0.457240\pi\)
0.133931 + 0.990991i \(0.457240\pi\)
\(72\) 0 0
\(73\) 3.51456 6.08739i 0.411348 0.712475i −0.583690 0.811977i \(-0.698392\pi\)
0.995037 + 0.0995017i \(0.0317249\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.72265 + 2.40913i 0.310275 + 0.274546i
\(78\) 0 0
\(79\) −1.37843 + 2.38750i −0.155085 + 0.268615i −0.933090 0.359643i \(-0.882898\pi\)
0.778005 + 0.628258i \(0.216232\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.48876 12.9709i −0.821998 1.42374i −0.904192 0.427127i \(-0.859526\pi\)
0.0821933 0.996616i \(-0.473808\pi\)
\(84\) 0 0
\(85\) 6.79495 11.7692i 0.737016 1.27655i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.75804 4.77707i −0.292352 0.506368i 0.682014 0.731339i \(-0.261104\pi\)
−0.974365 + 0.224971i \(0.927771\pi\)
\(90\) 0 0
\(91\) −14.0513 + 4.70043i −1.47298 + 0.492739i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.16752 + 10.6825i 0.632774 + 1.09600i
\(96\) 0 0
\(97\) 0.894003 + 1.54846i 0.0907722 + 0.157222i 0.907836 0.419325i \(-0.137733\pi\)
−0.817064 + 0.576547i \(0.804400\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.3907 −1.33242 −0.666211 0.745763i \(-0.732085\pi\)
−0.666211 + 0.745763i \(0.732085\pi\)
\(102\) 0 0
\(103\) 2.20328 0.217096 0.108548 0.994091i \(-0.465380\pi\)
0.108548 + 0.994091i \(0.465380\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.93284 8.54392i −0.476875 0.825972i 0.522774 0.852472i \(-0.324897\pi\)
−0.999649 + 0.0264995i \(0.991564\pi\)
\(108\) 0 0
\(109\) 1.54340 2.67325i 0.147831 0.256051i −0.782595 0.622532i \(-0.786104\pi\)
0.930426 + 0.366481i \(0.119438\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.218815 + 0.378999i −0.0205844 + 0.0356532i −0.876134 0.482067i \(-0.839886\pi\)
0.855550 + 0.517721i \(0.173219\pi\)
\(114\) 0 0
\(115\) −10.5228 −0.981260
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 13.5296 4.52592i 1.24026 0.414891i
\(120\) 0 0
\(121\) −9.11190 −0.828354
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.19461 −0.822391
\(126\) 0 0
\(127\) −5.75958 −0.511080 −0.255540 0.966798i \(-0.582253\pi\)
−0.255540 + 0.966798i \(0.582253\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.42973 0.124916 0.0624580 0.998048i \(-0.480106\pi\)
0.0624580 + 0.998048i \(0.480106\pi\)
\(132\) 0 0
\(133\) −2.58253 + 12.6891i −0.223934 + 1.10028i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.1867 −0.955744 −0.477872 0.878430i \(-0.658592\pi\)
−0.477872 + 0.878430i \(0.658592\pi\)
\(138\) 0 0
\(139\) 7.87024 13.6317i 0.667545 1.15622i −0.311044 0.950396i \(-0.600679\pi\)
0.978589 0.205826i \(-0.0659881\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.84755 + 6.66415i −0.321748 + 0.557284i
\(144\) 0 0
\(145\) 3.95078 + 6.84296i 0.328095 + 0.568277i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.93026 −0.649672 −0.324836 0.945770i \(-0.605309\pi\)
−0.324836 + 0.945770i \(0.605309\pi\)
\(150\) 0 0
\(151\) −10.7937 −0.878376 −0.439188 0.898395i \(-0.644734\pi\)
−0.439188 + 0.898395i \(0.644734\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.05016 10.4792i −0.485960 0.841708i
\(156\) 0 0
\(157\) −10.5884 18.3396i −0.845045 1.46366i −0.885582 0.464483i \(-0.846240\pi\)
0.0405373 0.999178i \(-0.487093\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.27305 7.32039i −0.652008 0.576927i
\(162\) 0 0
\(163\) 0.536552 + 0.929336i 0.0420260 + 0.0727912i 0.886273 0.463163i \(-0.153285\pi\)
−0.844247 + 0.535954i \(0.819952\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.71638 13.3652i 0.597112 1.03423i −0.396133 0.918193i \(-0.629648\pi\)
0.993245 0.116035i \(-0.0370185\pi\)
\(168\) 0 0
\(169\) −9.18094 15.9018i −0.706226 1.22322i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.1810 17.6340i 0.774046 1.34069i −0.161283 0.986908i \(-0.551563\pi\)
0.935329 0.353779i \(-0.115103\pi\)
\(174\) 0 0
\(175\) 2.67835 + 2.36993i 0.202465 + 0.179150i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.04960 + 5.28206i −0.227938 + 0.394800i −0.957197 0.289438i \(-0.906532\pi\)
0.729259 + 0.684238i \(0.239865\pi\)
\(180\) 0 0
\(181\) 10.0056 0.743714 0.371857 0.928290i \(-0.378721\pi\)
0.371857 + 0.928290i \(0.378721\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.80065 11.7791i −0.499993 0.866014i
\(186\) 0 0
\(187\) 3.70470 6.41673i 0.270915 0.469238i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.0993 + 19.2246i −0.803120 + 1.39104i 0.114433 + 0.993431i \(0.463495\pi\)
−0.917553 + 0.397613i \(0.869839\pi\)
\(192\) 0 0
\(193\) 13.3080 + 23.0501i 0.957930 + 1.65918i 0.727516 + 0.686091i \(0.240675\pi\)
0.230414 + 0.973093i \(0.425992\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.1696 −0.724551 −0.362276 0.932071i \(-0.618000\pi\)
−0.362276 + 0.932071i \(0.618000\pi\)
\(198\) 0 0
\(199\) −1.66243 + 2.87941i −0.117846 + 0.204116i −0.918914 0.394458i \(-0.870932\pi\)
0.801068 + 0.598574i \(0.204266\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.65431 + 8.12836i −0.116110 + 0.570499i
\(204\) 0 0
\(205\) 7.63618 13.2263i 0.533334 0.923762i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.36262 + 5.82423i 0.232597 + 0.402870i
\(210\) 0 0
\(211\) −1.29535 + 2.24361i −0.0891755 + 0.154456i −0.907163 0.420780i \(-0.861757\pi\)
0.817987 + 0.575236i \(0.195090\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.16752 + 10.6825i 0.420621 + 0.728538i
\(216\) 0 0
\(217\) 2.53338 12.4476i 0.171977 0.845000i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 15.0988 + 26.1518i 1.01565 + 1.75916i
\(222\) 0 0
\(223\) −12.4029 21.4824i −0.830556 1.43857i −0.897598 0.440816i \(-0.854689\pi\)
0.0670411 0.997750i \(-0.478644\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.10251 −0.471410 −0.235705 0.971825i \(-0.575740\pi\)
−0.235705 + 0.971825i \(0.575740\pi\)
\(228\) 0 0
\(229\) −6.46504 −0.427222 −0.213611 0.976919i \(-0.568522\pi\)
−0.213611 + 0.976919i \(0.568522\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.42950 + 7.67212i 0.290186 + 0.502617i 0.973854 0.227177i \(-0.0729495\pi\)
−0.683667 + 0.729794i \(0.739616\pi\)
\(234\) 0 0
\(235\) −7.12665 + 12.3437i −0.464891 + 0.805215i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.60836 + 14.9101i −0.556828 + 0.964455i 0.440930 + 0.897541i \(0.354649\pi\)
−0.997759 + 0.0669138i \(0.978685\pi\)
\(240\) 0 0
\(241\) 20.2211 1.30256 0.651279 0.758839i \(-0.274233\pi\)
0.651279 + 0.758839i \(0.274233\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.14760 + 17.5106i 0.137205 + 1.11871i
\(246\) 0 0
\(247\) −27.4092 −1.74400
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.32214 −0.462169 −0.231085 0.972934i \(-0.574227\pi\)
−0.231085 + 0.972934i \(0.574227\pi\)
\(252\) 0 0
\(253\) −5.73720 −0.360695
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.14617 −0.383387 −0.191694 0.981455i \(-0.561398\pi\)
−0.191694 + 0.981455i \(0.561398\pi\)
\(258\) 0 0
\(259\) 2.84764 13.9917i 0.176944 0.869401i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.164927 0.0101698 0.00508491 0.999987i \(-0.498381\pi\)
0.00508491 + 0.999987i \(0.498381\pi\)
\(264\) 0 0
\(265\) 17.6489 30.5689i 1.08417 1.87783i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.86477 3.22988i 0.113697 0.196929i −0.803561 0.595222i \(-0.797064\pi\)
0.917258 + 0.398293i \(0.130397\pi\)
\(270\) 0 0
\(271\) −0.393652 0.681825i −0.0239127 0.0414179i 0.853821 0.520566i \(-0.174279\pi\)
−0.877734 + 0.479148i \(0.840946\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.85739 0.112005
\(276\) 0 0
\(277\) −3.25908 −0.195819 −0.0979096 0.995195i \(-0.531216\pi\)
−0.0979096 + 0.995195i \(0.531216\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.39147 16.2665i −0.560248 0.970379i −0.997474 0.0710269i \(-0.977372\pi\)
0.437226 0.899352i \(-0.355961\pi\)
\(282\) 0 0
\(283\) 6.41848 + 11.1171i 0.381539 + 0.660845i 0.991282 0.131754i \(-0.0420608\pi\)
−0.609743 + 0.792599i \(0.708727\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.2046 5.08624i 0.897501 0.300231i
\(288\) 0 0
\(289\) −6.03821 10.4585i −0.355189 0.615205i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.6293 23.6066i 0.796230 1.37911i −0.125825 0.992052i \(-0.540158\pi\)
0.922055 0.387058i \(-0.126509\pi\)
\(294\) 0 0
\(295\) 17.9806 + 31.1434i 1.04687 + 1.81324i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.6912 20.2497i 0.676118 1.17107i
\(300\) 0 0
\(301\) −2.58253 + 12.6891i −0.148854 + 0.731387i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.64098 14.9666i 0.494781 0.856986i
\(306\) 0 0
\(307\) 24.4623 1.39614 0.698069 0.716030i \(-0.254043\pi\)
0.698069 + 0.716030i \(0.254043\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.58916 14.8769i −0.487047 0.843590i 0.512842 0.858483i \(-0.328593\pi\)
−0.999889 + 0.0148930i \(0.995259\pi\)
\(312\) 0 0
\(313\) −7.93226 + 13.7391i −0.448358 + 0.776578i −0.998279 0.0586380i \(-0.981324\pi\)
0.549922 + 0.835216i \(0.314658\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.3626 + 19.6806i −0.638188 + 1.10537i 0.347642 + 0.937627i \(0.386983\pi\)
−0.985830 + 0.167747i \(0.946351\pi\)
\(318\) 0 0
\(319\) 2.15402 + 3.73088i 0.120602 + 0.208889i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.3916 1.46847
\(324\) 0 0
\(325\) −3.78495 + 6.55573i −0.209951 + 0.363646i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −14.1901 + 4.74686i −0.782324 + 0.261703i
\(330\) 0 0
\(331\) −12.1140 + 20.9821i −0.665848 + 1.15328i 0.313207 + 0.949685i \(0.398597\pi\)
−0.979055 + 0.203597i \(0.934737\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.2242 + 17.7088i 0.558605 + 0.967533i
\(336\) 0 0
\(337\) −2.20181 + 3.81365i −0.119940 + 0.207743i −0.919744 0.392519i \(-0.871604\pi\)
0.799803 + 0.600262i \(0.204937\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.29863 5.71339i −0.178631 0.309398i
\(342\) 0 0
\(343\) −10.4931 + 15.2609i −0.566575 + 0.824010i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.12528 10.6093i −0.328823 0.569537i 0.653456 0.756965i \(-0.273318\pi\)
−0.982278 + 0.187427i \(0.939985\pi\)
\(348\) 0 0
\(349\) 7.19444 + 12.4611i 0.385110 + 0.667030i 0.991784 0.127921i \(-0.0408303\pi\)
−0.606675 + 0.794950i \(0.707497\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.81670 0.469266 0.234633 0.972084i \(-0.424611\pi\)
0.234633 + 0.972084i \(0.424611\pi\)
\(354\) 0 0
\(355\) 5.68834 0.301906
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.04909 + 5.28118i 0.160925 + 0.278730i 0.935201 0.354118i \(-0.115219\pi\)
−0.774276 + 0.632848i \(0.781886\pi\)
\(360\) 0 0
\(361\) −2.47731 + 4.29083i −0.130385 + 0.225833i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.85761 15.3418i 0.463628 0.803028i
\(366\) 0 0
\(367\) −6.91628 −0.361027 −0.180513 0.983573i \(-0.557776\pi\)
−0.180513 + 0.983573i \(0.557776\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 35.1413 11.7554i 1.82445 0.610312i
\(372\) 0 0
\(373\) −23.8978 −1.23738 −0.618691 0.785634i \(-0.712337\pi\)
−0.618691 + 0.785634i \(0.712337\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −17.5577 −0.904269
\(378\) 0 0
\(379\) 34.6719 1.78097 0.890487 0.455008i \(-0.150364\pi\)
0.890487 + 0.455008i \(0.150364\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −19.4301 −0.992834 −0.496417 0.868084i \(-0.665351\pi\)
−0.496417 + 0.868084i \(0.665351\pi\)
\(384\) 0 0
\(385\) 6.86179 + 6.07164i 0.349709 + 0.309439i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 32.6345 1.65463 0.827317 0.561736i \(-0.189866\pi\)
0.827317 + 0.561736i \(0.189866\pi\)
\(390\) 0 0
\(391\) −11.2571 + 19.4979i −0.569297 + 0.986051i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.47400 + 6.01714i −0.174796 + 0.302755i
\(396\) 0 0
\(397\) −3.11807 5.40065i −0.156491 0.271051i 0.777110 0.629365i \(-0.216685\pi\)
−0.933601 + 0.358314i \(0.883352\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.7345 1.23518 0.617591 0.786500i \(-0.288109\pi\)
0.617591 + 0.786500i \(0.288109\pi\)
\(402\) 0 0
\(403\) 26.8876 1.33937
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.70781 6.42211i −0.183789 0.318332i
\(408\) 0 0
\(409\) 11.5749 + 20.0484i 0.572344 + 0.991329i 0.996325 + 0.0856575i \(0.0272991\pi\)
−0.423981 + 0.905671i \(0.639368\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.52903 + 36.9934i −0.370480 + 1.82033i
\(414\) 0 0
\(415\) −18.8737 32.6901i −0.926471 1.60470i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.703260 1.21808i 0.0343565 0.0595072i −0.848336 0.529458i \(-0.822395\pi\)
0.882692 + 0.469951i \(0.155729\pi\)
\(420\) 0 0
\(421\) −0.663904 1.14992i −0.0323567 0.0560435i 0.849394 0.527760i \(-0.176968\pi\)
−0.881750 + 0.471716i \(0.843635\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.64443 6.31234i 0.176781 0.306193i
\(426\) 0 0
\(427\) 17.2053 5.75551i 0.832624 0.278529i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.83378 4.90825i 0.136498 0.236422i −0.789670 0.613531i \(-0.789748\pi\)
0.926169 + 0.377109i \(0.123082\pi\)
\(432\) 0 0
\(433\) 1.60371 0.0770696 0.0385348 0.999257i \(-0.487731\pi\)
0.0385348 + 0.999257i \(0.487731\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.2177 17.6975i −0.488777 0.846587i
\(438\) 0 0
\(439\) 0.227323 0.393735i 0.0108495 0.0187919i −0.860550 0.509367i \(-0.829880\pi\)
0.871399 + 0.490575i \(0.163213\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.31442 16.1331i 0.442542 0.766505i −0.555336 0.831626i \(-0.687410\pi\)
0.997877 + 0.0651217i \(0.0207436\pi\)
\(444\) 0 0
\(445\) −6.95099 12.0395i −0.329508 0.570725i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.2330 0.671696 0.335848 0.941916i \(-0.390977\pi\)
0.335848 + 0.941916i \(0.390977\pi\)
\(450\) 0 0
\(451\) 4.16335 7.21114i 0.196045 0.339559i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −35.4130 + 11.8463i −1.66019 + 0.555364i
\(456\) 0 0
\(457\) −14.6729 + 25.4142i −0.686370 + 1.18883i 0.286634 + 0.958040i \(0.407464\pi\)
−0.973004 + 0.230788i \(0.925870\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.6587 + 21.9254i 0.589572 + 1.02117i 0.994288 + 0.106727i \(0.0340371\pi\)
−0.404716 + 0.914442i \(0.632630\pi\)
\(462\) 0 0
\(463\) −11.6503 + 20.1789i −0.541435 + 0.937793i 0.457387 + 0.889268i \(0.348785\pi\)
−0.998822 + 0.0485250i \(0.984548\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.8409 + 36.0976i 0.964403 + 1.67040i 0.711210 + 0.702980i \(0.248148\pi\)
0.253194 + 0.967416i \(0.418519\pi\)
\(468\) 0 0
\(469\) −4.28116 + 21.0352i −0.197686 + 0.971316i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.36262 + 5.82423i 0.154613 + 0.267798i
\(474\) 0 0
\(475\) 3.30791 + 5.72947i 0.151777 + 0.262886i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.53891 −0.253079 −0.126540 0.991962i \(-0.540387\pi\)
−0.126540 + 0.991962i \(0.540387\pi\)
\(480\) 0 0
\(481\) 30.2228 1.37804
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.25312 + 3.90252i 0.102309 + 0.177204i
\(486\) 0 0
\(487\) 12.3357 21.3661i 0.558985 0.968190i −0.438597 0.898684i \(-0.644524\pi\)
0.997582 0.0695061i \(-0.0221423\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.0509 17.4087i 0.453590 0.785642i −0.545015 0.838426i \(-0.683476\pi\)
0.998606 + 0.0527842i \(0.0168096\pi\)
\(492\) 0 0
\(493\) 16.9059 0.761402
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.47217 + 3.95719i 0.200604 + 0.177504i
\(498\) 0 0
\(499\) 35.5173 1.58997 0.794987 0.606627i \(-0.207478\pi\)
0.794987 + 0.606627i \(0.207478\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.2236 −1.08008 −0.540039 0.841640i \(-0.681590\pi\)
−0.540039 + 0.841640i \(0.681590\pi\)
\(504\) 0 0
\(505\) −33.7480 −1.50177
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.73446 0.342824 0.171412 0.985199i \(-0.445167\pi\)
0.171412 + 0.985199i \(0.445167\pi\)
\(510\) 0 0
\(511\) 17.6366 5.89980i 0.780199 0.260992i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.55285 0.244688
\(516\) 0 0
\(517\) −3.88555 + 6.72997i −0.170886 + 0.295984i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14.9050 25.8161i 0.652998 1.13103i −0.329394 0.944193i \(-0.606844\pi\)
0.982392 0.186833i \(-0.0598223\pi\)
\(522\) 0 0
\(523\) −1.76218 3.05219i −0.0770547 0.133463i 0.824923 0.565245i \(-0.191218\pi\)
−0.901978 + 0.431782i \(0.857885\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −25.8893 −1.12776
\(528\) 0 0
\(529\) −5.56693 −0.242040
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.9680 + 29.3895i 0.734967 + 1.27300i
\(534\) 0 0
\(535\) −12.4320 21.5329i −0.537484 0.930950i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.17090 + 9.54704i 0.0504344 + 0.411220i
\(540\) 0 0
\(541\) 13.8435 + 23.9777i 0.595180 + 1.03088i 0.993521 + 0.113645i \(0.0362525\pi\)
−0.398342 + 0.917237i \(0.630414\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.88977 6.73729i 0.166620 0.288594i
\(546\) 0 0
\(547\) −16.6136 28.7756i −0.710347 1.23036i −0.964727 0.263253i \(-0.915205\pi\)
0.254380 0.967104i \(-0.418129\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.67241 + 13.2890i −0.326856 + 0.566131i
\(552\) 0 0
\(553\) −6.91718 + 2.31393i −0.294148 + 0.0983983i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.80873 + 13.5251i −0.330866 + 0.573078i −0.982682 0.185300i \(-0.940674\pi\)
0.651816 + 0.758378i \(0.274008\pi\)
\(558\) 0 0
\(559\) −27.4092 −1.15928
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.75592 16.8977i −0.411163 0.712155i 0.583854 0.811858i \(-0.301544\pi\)
−0.995017 + 0.0997034i \(0.968211\pi\)
\(564\) 0 0
\(565\) −0.551472 + 0.955177i −0.0232006 + 0.0401846i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.59181 6.22119i 0.150576 0.260806i −0.780863 0.624702i \(-0.785220\pi\)
0.931439 + 0.363896i \(0.118554\pi\)
\(570\) 0 0
\(571\) −14.7886 25.6147i −0.618886 1.07194i −0.989689 0.143230i \(-0.954251\pi\)
0.370804 0.928711i \(-0.379082\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.64386 −0.235365
\(576\) 0 0
\(577\) 5.18911 8.98780i 0.216025 0.374167i −0.737564 0.675277i \(-0.764024\pi\)
0.953589 + 0.301110i \(0.0973573\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.90297 38.8307i 0.327870 1.61097i
\(582\) 0 0
\(583\) 9.62244 16.6666i 0.398521 0.690259i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.4563 25.0391i −0.596677 1.03348i −0.993308 0.115497i \(-0.963154\pi\)
0.396630 0.917978i \(-0.370179\pi\)
\(588\) 0 0
\(589\) 11.7494 20.3505i 0.484125 0.838530i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10.2645 + 17.7786i 0.421512 + 0.730080i 0.996088 0.0883714i \(-0.0281662\pi\)
−0.574576 + 0.818451i \(0.694833\pi\)
\(594\) 0 0
\(595\) 34.0982 11.4065i 1.39789 0.467622i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.91652 + 6.78361i 0.160025 + 0.277171i 0.934877 0.354971i \(-0.115509\pi\)
−0.774853 + 0.632142i \(0.782176\pi\)
\(600\) 0 0
\(601\) −7.27021 12.5924i −0.296558 0.513654i 0.678788 0.734334i \(-0.262505\pi\)
−0.975346 + 0.220681i \(0.929172\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −22.9644 −0.933635
\(606\) 0 0
\(607\) −30.5510 −1.24003 −0.620013 0.784592i \(-0.712873\pi\)
−0.620013 + 0.784592i \(0.712873\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15.8358 27.4284i −0.640648 1.10964i
\(612\) 0 0
\(613\) −14.4646 + 25.0534i −0.584220 + 1.01190i 0.410752 + 0.911747i \(0.365266\pi\)
−0.994972 + 0.100152i \(0.968067\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.2106 + 35.0059i −0.813650 + 1.40928i 0.0966430 + 0.995319i \(0.469189\pi\)
−0.910293 + 0.413964i \(0.864144\pi\)
\(618\) 0 0
\(619\) −18.1171 −0.728190 −0.364095 0.931362i \(-0.618622\pi\)
−0.364095 + 0.931362i \(0.618622\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.91059 14.3010i 0.116610 0.572957i
\(624\) 0 0
\(625\) −29.9315 −1.19726
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −29.1008 −1.16032
\(630\) 0 0
\(631\) 8.50373 0.338528 0.169264 0.985571i \(-0.445861\pi\)
0.169264 + 0.985571i \(0.445861\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.5157 −0.576036
\(636\) 0 0
\(637\) −36.0828 15.3221i −1.42965 0.607082i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22.0040 −0.869108 −0.434554 0.900646i \(-0.643094\pi\)
−0.434554 + 0.900646i \(0.643094\pi\)
\(642\) 0 0
\(643\) 13.1156 22.7170i 0.517230 0.895869i −0.482569 0.875858i \(-0.660296\pi\)
0.999800 0.0200115i \(-0.00637029\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.5845 + 33.9214i −0.769946 + 1.33359i 0.167645 + 0.985847i \(0.446384\pi\)
−0.937591 + 0.347739i \(0.886950\pi\)
\(648\) 0 0
\(649\) 9.80329 + 16.9798i 0.384813 + 0.666515i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13.6693 −0.534923 −0.267461 0.963569i \(-0.586185\pi\)
−0.267461 + 0.963569i \(0.586185\pi\)
\(654\) 0 0
\(655\) 3.60329 0.140792
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.06683 + 5.31191i 0.119467 + 0.206923i 0.919557 0.392958i \(-0.128548\pi\)
−0.800090 + 0.599880i \(0.795215\pi\)
\(660\) 0 0
\(661\) 22.3118 + 38.6451i 0.867828 + 1.50312i 0.864212 + 0.503128i \(0.167818\pi\)
0.00361604 + 0.999993i \(0.498849\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.50865 + 31.9798i −0.252395 + 1.24013i
\(666\) 0 0
\(667\) −6.54522 11.3367i −0.253432 0.438957i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.71119 8.16001i 0.181873 0.315014i
\(672\) 0 0
\(673\) −16.3833 28.3767i −0.631531 1.09384i −0.987239 0.159246i \(-0.949094\pi\)
0.355708 0.934597i \(-0.384240\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.5764 23.5150i 0.521782 0.903753i −0.477897 0.878416i \(-0.658601\pi\)
0.999679 0.0253373i \(-0.00806596\pi\)
\(678\) 0 0
\(679\) −0.943451 + 4.63558i −0.0362063 + 0.177897i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 19.0334 32.9668i 0.728293 1.26144i −0.229312 0.973353i \(-0.573647\pi\)
0.957604 0.288087i \(-0.0930192\pi\)
\(684\) 0 0
\(685\) −28.1934 −1.07721
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 39.2169 + 67.9257i 1.49405 + 2.58776i
\(690\) 0 0
\(691\) 6.37848 11.0478i 0.242649 0.420280i −0.718819 0.695197i \(-0.755317\pi\)
0.961468 + 0.274917i \(0.0886504\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.8351 34.3554i 0.752387 1.30317i
\(696\) 0 0
\(697\) −16.3381 28.2984i −0.618849 1.07188i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −40.6428 −1.53506 −0.767528 0.641015i \(-0.778514\pi\)
−0.767528 + 0.641015i \(0.778514\pi\)
\(702\) 0 0
\(703\) 13.2068 22.8749i 0.498105 0.862744i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −26.5327 23.4774i −0.997865 0.882958i
\(708\) 0 0
\(709\) 3.74552 6.48743i 0.140666 0.243640i −0.787082 0.616849i \(-0.788409\pi\)
0.927748 + 0.373208i \(0.121742\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.0232 + 17.3607i 0.375373 + 0.650165i
\(714\) 0 0
\(715\) −9.69683 + 16.7954i −0.362641 + 0.628112i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.64056 + 2.84154i 0.0611827 + 0.105972i 0.894994 0.446078i \(-0.147179\pi\)
−0.833812 + 0.552049i \(0.813846\pi\)
\(720\) 0 0
\(721\) 4.36565 + 3.86293i 0.162585 + 0.143863i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.11898 + 3.67018i 0.0786969 + 0.136307i
\(726\) 0 0
\(727\) 8.01088 + 13.8753i 0.297107 + 0.514605i 0.975473 0.220120i \(-0.0706448\pi\)
−0.678366 + 0.734724i \(0.737311\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 26.3916 0.976127
\(732\) 0 0
\(733\) 29.6245 1.09421 0.547104 0.837065i \(-0.315730\pi\)
0.547104 + 0.837065i \(0.315730\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.57435 + 9.65506i 0.205334 + 0.355649i
\(738\) 0 0
\(739\) −22.2867 + 38.6017i −0.819829 + 1.41998i 0.0859797 + 0.996297i \(0.472598\pi\)
−0.905808 + 0.423688i \(0.860735\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.67364 9.82704i 0.208146 0.360519i −0.742985 0.669308i \(-0.766590\pi\)
0.951130 + 0.308789i \(0.0999238\pi\)
\(744\) 0 0
\(745\) −19.9863 −0.732243
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.20567 25.5777i 0.190211 0.934591i
\(750\) 0 0
\(751\) 35.1856 1.28394 0.641970 0.766730i \(-0.278117\pi\)
0.641970 + 0.766730i \(0.278117\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −27.2029 −0.990014
\(756\) 0 0
\(757\) 40.9186 1.48721 0.743605 0.668619i \(-0.233114\pi\)
0.743605 + 0.668619i \(0.233114\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.4449 −0.414876 −0.207438 0.978248i \(-0.566513\pi\)
−0.207438 + 0.978248i \(0.566513\pi\)
\(762\) 0 0
\(763\) 7.74505 2.59087i 0.280390 0.0937957i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −79.9079 −2.88531
\(768\) 0 0
\(769\) −14.9723 + 25.9328i −0.539916 + 0.935162i 0.458992 + 0.888440i \(0.348211\pi\)
−0.998908 + 0.0467217i \(0.985123\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.96578 6.86893i 0.142639 0.247058i −0.785851 0.618416i \(-0.787775\pi\)
0.928490 + 0.371358i \(0.121108\pi\)
\(774\) 0 0
\(775\) −3.24496 5.62044i −0.116563 0.201892i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 29.6589 1.06264
\(780\) 0 0
\(781\) 3.10136 0.110975
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −26.6855 46.2207i −0.952447 1.64969i
\(786\) 0 0
\(787\) −21.6037 37.4187i −0.770089 1.33383i −0.937514 0.347949i \(-0.886878\pi\)
0.167425 0.985885i \(-0.446455\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.09805 + 0.367320i −0.0390422 + 0.0130604i
\(792\) 0 0
\(793\) 19.2008 + 33.2567i 0.681839 + 1.18098i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.34385 14.4520i 0.295554 0.511915i −0.679559 0.733620i \(-0.737829\pi\)
0.975114 + 0.221706i \(0.0711624\pi\)
\(798\) 0 0
\(799\) 15.2479 + 26.4101i 0.539432 + 0.934323i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.82929 8.36458i 0.170422 0.295180i
\(804\) 0 0
\(805\) −20.8503 18.4493i −0.734876 0.650253i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.54846 4.41407i 0.0895992 0.155190i −0.817743 0.575584i \(-0.804775\pi\)
0.907342 + 0.420394i \(0.138108\pi\)
\(810\) 0 0
\(811\) 10.2996 0.361666 0.180833 0.983514i \(-0.442121\pi\)
0.180833 + 0.983514i \(0.442121\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.35225 + 2.34217i 0.0473674 + 0.0820427i
\(816\) 0 0
\(817\) −11.9773 + 20.7453i −0.419033 + 0.725787i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.6369 + 21.8878i −0.441031 + 0.763889i −0.997766 0.0668013i \(-0.978721\pi\)
0.556735 + 0.830690i \(0.312054\pi\)
\(822\) 0 0
\(823\) −4.44391 7.69707i −0.154905 0.268303i 0.778120 0.628116i \(-0.216174\pi\)
−0.933024 + 0.359813i \(0.882840\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.1680 0.457895 0.228947 0.973439i \(-0.426472\pi\)
0.228947 + 0.973439i \(0.426472\pi\)
\(828\) 0 0
\(829\) −11.3459 + 19.6516i −0.394058 + 0.682529i −0.992981 0.118278i \(-0.962263\pi\)
0.598922 + 0.800807i \(0.295596\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 34.7432 + 14.7532i 1.20378 + 0.511168i
\(834\) 0 0
\(835\) 19.4473 33.6838i 0.673002 1.16567i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 14.9632 + 25.9171i 0.516588 + 0.894757i 0.999814 + 0.0192618i \(0.00613161\pi\)
−0.483226 + 0.875496i \(0.660535\pi\)
\(840\) 0 0
\(841\) 9.58522 16.6021i 0.330525 0.572486i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −23.1384 40.0768i −0.795984 1.37869i
\(846\) 0 0
\(847\) −18.0546 15.9756i −0.620363 0.548927i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.2666 + 19.5142i 0.386213 + 0.668940i
\(852\) 0 0
\(853\) 6.46929 + 11.2051i 0.221504 + 0.383657i 0.955265 0.295751i \(-0.0955699\pi\)
−0.733761 + 0.679408i \(0.762237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.24505 0.281645 0.140823 0.990035i \(-0.455025\pi\)
0.140823 + 0.990035i \(0.455025\pi\)
\(858\) 0 0
\(859\) 3.46798 0.118326 0.0591630 0.998248i \(-0.481157\pi\)
0.0591630 + 0.998248i \(0.481157\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.256394 + 0.444087i 0.00872775 + 0.0151169i 0.870356 0.492423i \(-0.163889\pi\)
−0.861629 + 0.507539i \(0.830555\pi\)
\(864\) 0 0
\(865\) 25.6588 44.4423i 0.872424 1.51108i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.89407 + 3.28063i −0.0642519 + 0.111288i
\(870\) 0 0
\(871\) −45.4373 −1.53958
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −18.2185 16.1206i −0.615897 0.544975i
\(876\) 0 0
\(877\) 36.3760 1.22833 0.614166 0.789177i \(-0.289493\pi\)
0.614166 + 0.789177i \(0.289493\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 23.3999 0.788363 0.394181 0.919033i \(-0.371028\pi\)
0.394181 + 0.919033i \(0.371028\pi\)
\(882\) 0 0
\(883\) −22.8345 −0.768442 −0.384221 0.923241i \(-0.625530\pi\)
−0.384221 + 0.923241i \(0.625530\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −44.1582 −1.48269 −0.741344 0.671125i \(-0.765811\pi\)
−0.741344 + 0.671125i \(0.765811\pi\)
\(888\) 0 0
\(889\) −11.4122 10.0981i −0.382753 0.338678i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −27.6799 −0.926271
\(894\) 0 0
\(895\) −7.68579 + 13.3122i −0.256908 + 0.444977i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.52641 13.0361i 0.251020 0.434779i
\(900\) 0 0
\(901\) −37.7610 65.4039i −1.25800 2.17892i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 25.2169 0.838237
\(906\) 0 0
\(907\) 7.07769 0.235011 0.117505 0.993072i \(-0.462510\pi\)
0.117505 + 0.993072i \(0.462510\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 23.6764 + 41.0088i 0.784435 + 1.35868i 0.929336 + 0.369235i \(0.120380\pi\)
−0.144901 + 0.989446i \(0.546286\pi\)
\(912\) 0 0
\(913\) −10.2902 17.8231i −0.340555 0.589859i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.83291 + 2.50669i 0.0935509 + 0.0827783i
\(918\) 0 0
\(919\) 12.9752 + 22.4736i 0.428011 + 0.741337i 0.996696 0.0812182i \(-0.0258811\pi\)
−0.568685 + 0.822555i \(0.692548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.31990 + 10.9464i −0.208022 + 0.360305i
\(924\) 0 0
\(925\) −3.64748 6.31763i −0.119929 0.207722i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.66110 + 4.60917i −0.0873080 + 0.151222i −0.906372 0.422480i \(-0.861160\pi\)
0.819064 + 0.573702i \(0.194493\pi\)
\(930\) 0 0
\(931\) −27.3644 + 20.6147i −0.896832 + 0.675619i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9.33682 16.1719i 0.305347 0.528876i
\(936\) 0 0
\(937\) −30.4266 −0.993994 −0.496997 0.867752i \(-0.665564\pi\)
−0.496997 + 0.867752i \(0.665564\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.8818 + 18.8479i 0.354738 + 0.614424i 0.987073 0.160271i \(-0.0512368\pi\)
−0.632335 + 0.774695i \(0.717903\pi\)
\(942\) 0 0
\(943\) −12.6508 + 21.9118i −0.411966 + 0.713546i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.4392 + 30.2055i −0.566697 + 0.981548i 0.430192 + 0.902737i \(0.358446\pi\)
−0.996890 + 0.0788112i \(0.974888\pi\)
\(948\) 0 0
\(949\) 19.6821 + 34.0904i 0.638908 + 1.10662i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −27.3744 −0.886742 −0.443371 0.896338i \(-0.646218\pi\)
−0.443371 + 0.896338i \(0.646218\pi\)
\(954\) 0 0
\(955\) −27.9732 + 48.4511i −0.905193 + 1.56784i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −22.1657 19.6132i −0.715766 0.633344i
\(960\) 0 0
\(961\) 3.97419 6.88350i 0.128200 0.222048i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 33.5396 + 58.0924i 1.07968 + 1.87006i
\(966\) 0 0
\(967\) 7.21327 12.4937i 0.231963 0.401772i −0.726423 0.687248i \(-0.758819\pi\)
0.958386 + 0.285476i \(0.0921518\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 13.2592 + 22.9657i 0.425509 + 0.737004i 0.996468 0.0839752i \(-0.0267617\pi\)
−0.570959 + 0.820979i \(0.693428\pi\)
\(972\) 0 0
\(973\) 39.4942 13.2116i 1.26613 0.423544i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.1867 34.9643i −0.645829 1.11861i −0.984109 0.177563i \(-0.943179\pi\)
0.338281 0.941045i \(-0.390155\pi\)
\(978\) 0 0
\(979\) −3.78978 6.56408i −0.121122 0.209789i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 21.4597 0.684459 0.342230 0.939616i \(-0.388818\pi\)
0.342230 + 0.939616i \(0.388818\pi\)
\(984\) 0 0
\(985\) −25.6300 −0.816639
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.2177 17.6975i −0.324903 0.562748i
\(990\) 0 0
\(991\) 7.25341 12.5633i 0.230412 0.399085i −0.727517 0.686089i \(-0.759326\pi\)
0.957929 + 0.287004i \(0.0926593\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.18975 + 7.25687i −0.132824 + 0.230058i
\(996\) 0 0
\(997\) 36.4409 1.15409 0.577047 0.816711i \(-0.304205\pi\)
0.577047 + 0.816711i \(0.304205\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.l.b.361.7 14
3.2 odd 2 252.2.l.b.193.2 yes 14
4.3 odd 2 3024.2.t.j.1873.7 14
7.2 even 3 756.2.i.b.37.1 14
7.3 odd 6 5292.2.j.g.1765.7 14
7.4 even 3 5292.2.j.h.1765.1 14
7.5 odd 6 5292.2.i.i.1549.7 14
7.6 odd 2 5292.2.l.i.361.1 14
9.2 odd 6 252.2.i.b.25.6 14
9.4 even 3 2268.2.k.f.1621.1 14
9.5 odd 6 2268.2.k.e.1621.7 14
9.7 even 3 756.2.i.b.613.1 14
12.11 even 2 1008.2.t.j.193.6 14
21.2 odd 6 252.2.i.b.121.6 yes 14
21.5 even 6 1764.2.i.i.373.2 14
21.11 odd 6 1764.2.j.g.589.5 14
21.17 even 6 1764.2.j.h.589.3 14
21.20 even 2 1764.2.l.i.949.6 14
28.23 odd 6 3024.2.q.j.2305.1 14
36.7 odd 6 3024.2.q.j.2881.1 14
36.11 even 6 1008.2.q.j.529.2 14
63.2 odd 6 252.2.l.b.205.2 yes 14
63.11 odd 6 1764.2.j.g.1177.5 14
63.16 even 3 inner 756.2.l.b.289.7 14
63.20 even 6 1764.2.i.i.1537.2 14
63.23 odd 6 2268.2.k.e.1297.7 14
63.25 even 3 5292.2.j.h.3529.1 14
63.34 odd 6 5292.2.i.i.2125.7 14
63.38 even 6 1764.2.j.h.1177.3 14
63.47 even 6 1764.2.l.i.961.6 14
63.52 odd 6 5292.2.j.g.3529.7 14
63.58 even 3 2268.2.k.f.1297.1 14
63.61 odd 6 5292.2.l.i.3313.1 14
84.23 even 6 1008.2.q.j.625.2 14
252.79 odd 6 3024.2.t.j.289.7 14
252.191 even 6 1008.2.t.j.961.6 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.6 14 9.2 odd 6
252.2.i.b.121.6 yes 14 21.2 odd 6
252.2.l.b.193.2 yes 14 3.2 odd 2
252.2.l.b.205.2 yes 14 63.2 odd 6
756.2.i.b.37.1 14 7.2 even 3
756.2.i.b.613.1 14 9.7 even 3
756.2.l.b.289.7 14 63.16 even 3 inner
756.2.l.b.361.7 14 1.1 even 1 trivial
1008.2.q.j.529.2 14 36.11 even 6
1008.2.q.j.625.2 14 84.23 even 6
1008.2.t.j.193.6 14 12.11 even 2
1008.2.t.j.961.6 14 252.191 even 6
1764.2.i.i.373.2 14 21.5 even 6
1764.2.i.i.1537.2 14 63.20 even 6
1764.2.j.g.589.5 14 21.11 odd 6
1764.2.j.g.1177.5 14 63.11 odd 6
1764.2.j.h.589.3 14 21.17 even 6
1764.2.j.h.1177.3 14 63.38 even 6
1764.2.l.i.949.6 14 21.20 even 2
1764.2.l.i.961.6 14 63.47 even 6
2268.2.k.e.1297.7 14 63.23 odd 6
2268.2.k.e.1621.7 14 9.5 odd 6
2268.2.k.f.1297.1 14 63.58 even 3
2268.2.k.f.1621.1 14 9.4 even 3
3024.2.q.j.2305.1 14 28.23 odd 6
3024.2.q.j.2881.1 14 36.7 odd 6
3024.2.t.j.289.7 14 252.79 odd 6
3024.2.t.j.1873.7 14 4.3 odd 2
5292.2.i.i.1549.7 14 7.5 odd 6
5292.2.i.i.2125.7 14 63.34 odd 6
5292.2.j.g.1765.7 14 7.3 odd 6
5292.2.j.g.3529.7 14 63.52 odd 6
5292.2.j.h.1765.1 14 7.4 even 3
5292.2.j.h.3529.1 14 63.25 even 3
5292.2.l.i.361.1 14 7.6 odd 2
5292.2.l.i.3313.1 14 63.61 odd 6