Properties

Label 5292.2.j.h.1765.1
Level $5292$
Weight $2$
Character 5292.1765
Analytic conductor $42.257$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(1765,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.1765"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1765.1
Root \(-1.58203 - 0.705117i\) of defining polynomial
Character \(\chi\) \(=\) 5292.1765
Dual form 5292.2.j.h.3529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26013 + 2.18261i) q^{5} +(-0.687041 - 1.18999i) q^{11} +(-2.80008 + 4.84989i) q^{13} -5.39225 q^{17} -4.89435 q^{19} +(2.08765 - 3.61591i) q^{23} +(-0.675864 - 1.17063i) q^{25} +(1.56761 + 2.71518i) q^{29} +(-2.40060 + 4.15797i) q^{31} +5.39677 q^{37} +(3.02991 - 5.24797i) q^{41} +(2.44717 + 4.23863i) q^{43} +(-2.82774 - 4.89779i) q^{47} -14.0056 q^{53} +3.46305 q^{55} +(7.13442 - 12.3572i) q^{59} +(3.42860 + 5.93852i) q^{61} +(-7.05695 - 12.2230i) q^{65} +(4.05678 - 7.02655i) q^{67} +2.25704 q^{71} -7.02911 q^{73} +(-1.37843 - 2.38750i) q^{79} +(-7.48876 - 12.9709i) q^{83} +(6.79495 - 11.7692i) q^{85} +5.51608 q^{89} +(6.16752 - 10.6825i) q^{95} +(0.894003 + 1.54846i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} - 2 q^{11} + 2 q^{13} + 4 q^{17} - 14 q^{19} - 11 q^{23} - 9 q^{25} - q^{29} - q^{31} - 20 q^{37} + 33 q^{41} + 7 q^{43} + 3 q^{47} - 30 q^{53} - 28 q^{55} + 14 q^{59} - 10 q^{61} - 15 q^{65}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.26013 + 2.18261i −0.563548 + 0.976094i 0.433635 + 0.901089i \(0.357231\pi\)
−0.997183 + 0.0750053i \(0.976103\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.687041 1.18999i −0.207151 0.358796i 0.743665 0.668552i \(-0.233086\pi\)
−0.950816 + 0.309757i \(0.899752\pi\)
\(12\) 0 0
\(13\) −2.80008 + 4.84989i −0.776603 + 1.34512i 0.157285 + 0.987553i \(0.449726\pi\)
−0.933889 + 0.357563i \(0.883608\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.39225 −1.30781 −0.653907 0.756575i \(-0.726871\pi\)
−0.653907 + 0.756575i \(0.726871\pi\)
\(18\) 0 0
\(19\) −4.89435 −1.12284 −0.561420 0.827531i \(-0.689745\pi\)
−0.561420 + 0.827531i \(0.689745\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.08765 3.61591i 0.435304 0.753969i −0.562016 0.827126i \(-0.689974\pi\)
0.997320 + 0.0731570i \(0.0233074\pi\)
\(24\) 0 0
\(25\) −0.675864 1.17063i −0.135173 0.234126i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.56761 + 2.71518i 0.291097 + 0.504195i 0.974069 0.226249i \(-0.0726463\pi\)
−0.682972 + 0.730444i \(0.739313\pi\)
\(30\) 0 0
\(31\) −2.40060 + 4.15797i −0.431161 + 0.746793i −0.996974 0.0777407i \(-0.975229\pi\)
0.565812 + 0.824534i \(0.308563\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.39677 0.887224 0.443612 0.896219i \(-0.353697\pi\)
0.443612 + 0.896219i \(0.353697\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.02991 5.24797i 0.473193 0.819595i −0.526336 0.850277i \(-0.676435\pi\)
0.999529 + 0.0306820i \(0.00976793\pi\)
\(42\) 0 0
\(43\) 2.44717 + 4.23863i 0.373190 + 0.646385i 0.990054 0.140685i \(-0.0449305\pi\)
−0.616864 + 0.787070i \(0.711597\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82774 4.89779i −0.412468 0.714416i 0.582691 0.812694i \(-0.302000\pi\)
−0.995159 + 0.0982782i \(0.968667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −14.0056 −1.92382 −0.961910 0.273365i \(-0.911863\pi\)
−0.961910 + 0.273365i \(0.911863\pi\)
\(54\) 0 0
\(55\) 3.46305 0.466958
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.13442 12.3572i 0.928823 1.60877i 0.143529 0.989646i \(-0.454155\pi\)
0.785294 0.619122i \(-0.212512\pi\)
\(60\) 0 0
\(61\) 3.42860 + 5.93852i 0.438988 + 0.760349i 0.997612 0.0690720i \(-0.0220038\pi\)
−0.558624 + 0.829421i \(0.688670\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.05695 12.2230i −0.875307 1.51608i
\(66\) 0 0
\(67\) 4.05678 7.02655i 0.495615 0.858430i −0.504373 0.863486i \(-0.668276\pi\)
0.999987 + 0.00505643i \(0.00160952\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.25704 0.267861 0.133931 0.990991i \(-0.457240\pi\)
0.133931 + 0.990991i \(0.457240\pi\)
\(72\) 0 0
\(73\) −7.02911 −0.822695 −0.411348 0.911479i \(-0.634942\pi\)
−0.411348 + 0.911479i \(0.634942\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.37843 2.38750i −0.155085 0.268615i 0.778005 0.628258i \(-0.216232\pi\)
−0.933090 + 0.359643i \(0.882898\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.48876 12.9709i −0.821998 1.42374i −0.904192 0.427127i \(-0.859526\pi\)
0.0821933 0.996616i \(-0.473808\pi\)
\(84\) 0 0
\(85\) 6.79495 11.7692i 0.737016 1.27655i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.51608 0.584703 0.292352 0.956311i \(-0.405562\pi\)
0.292352 + 0.956311i \(0.405562\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.16752 10.6825i 0.632774 1.09600i
\(96\) 0 0
\(97\) 0.894003 + 1.54846i 0.0907722 + 0.157222i 0.907836 0.419325i \(-0.137733\pi\)
−0.817064 + 0.576547i \(0.804400\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.69534 + 11.5967i 0.666211 + 1.15391i 0.978955 + 0.204074i \(0.0654183\pi\)
−0.312744 + 0.949837i \(0.601248\pi\)
\(102\) 0 0
\(103\) −1.10164 + 1.90810i −0.108548 + 0.188010i −0.915182 0.403040i \(-0.867953\pi\)
0.806634 + 0.591051i \(0.201287\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.86567 0.953750 0.476875 0.878971i \(-0.341769\pi\)
0.476875 + 0.878971i \(0.341769\pi\)
\(108\) 0 0
\(109\) −3.08680 −0.295662 −0.147831 0.989013i \(-0.547229\pi\)
−0.147831 + 0.989013i \(0.547229\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.218815 + 0.378999i −0.0205844 + 0.0356532i −0.876134 0.482067i \(-0.839886\pi\)
0.855550 + 0.517721i \(0.173219\pi\)
\(114\) 0 0
\(115\) 5.26142 + 9.11304i 0.490630 + 0.849796i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 4.55595 7.89113i 0.414177 0.717376i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.19461 −0.822391
\(126\) 0 0
\(127\) −5.75958 −0.511080 −0.255540 0.966798i \(-0.582253\pi\)
−0.255540 + 0.966798i \(0.582253\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.714865 + 1.23818i −0.0624580 + 0.108180i −0.895564 0.444934i \(-0.853227\pi\)
0.833106 + 0.553114i \(0.186561\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.59335 + 9.68796i 0.477872 + 0.827698i 0.999678 0.0253656i \(-0.00807500\pi\)
−0.521806 + 0.853064i \(0.674742\pi\)
\(138\) 0 0
\(139\) 7.87024 13.6317i 0.667545 1.15622i −0.311044 0.950396i \(-0.600679\pi\)
0.978589 0.205826i \(-0.0659881\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.69509 0.643496
\(144\) 0 0
\(145\) −7.90157 −0.656189
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.96513 6.86780i 0.324836 0.562632i −0.656643 0.754201i \(-0.728024\pi\)
0.981479 + 0.191569i \(0.0613576\pi\)
\(150\) 0 0
\(151\) 5.39683 + 9.34758i 0.439188 + 0.760696i 0.997627 0.0688499i \(-0.0219329\pi\)
−0.558439 + 0.829545i \(0.688600\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.05016 10.4792i −0.485960 0.841708i
\(156\) 0 0
\(157\) −10.5884 + 18.3396i −0.845045 + 1.46366i 0.0405373 + 0.999178i \(0.487093\pi\)
−0.885582 + 0.464483i \(0.846240\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.07310 −0.0840520 −0.0420260 0.999117i \(-0.513381\pi\)
−0.0420260 + 0.999117i \(0.513381\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.71638 13.3652i 0.597112 1.03423i −0.396133 0.918193i \(-0.629648\pi\)
0.993245 0.116035i \(-0.0370185\pi\)
\(168\) 0 0
\(169\) −9.18094 15.9018i −0.706226 1.22322i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.1810 + 17.6340i 0.774046 + 1.34069i 0.935329 + 0.353779i \(0.115103\pi\)
−0.161283 + 0.986908i \(0.551563\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.09920 0.455876 0.227938 0.973676i \(-0.426802\pi\)
0.227938 + 0.973676i \(0.426802\pi\)
\(180\) 0 0
\(181\) 10.0056 0.743714 0.371857 0.928290i \(-0.378721\pi\)
0.371857 + 0.928290i \(0.378721\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.80065 + 11.7791i −0.499993 + 0.866014i
\(186\) 0 0
\(187\) 3.70470 + 6.41673i 0.270915 + 0.469238i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.0993 19.2246i −0.803120 1.39104i −0.917553 0.397613i \(-0.869839\pi\)
0.114433 0.993431i \(-0.463495\pi\)
\(192\) 0 0
\(193\) 13.3080 23.0501i 0.957930 1.65918i 0.230414 0.973093i \(-0.425992\pi\)
0.727516 0.686091i \(-0.240675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.1696 −0.724551 −0.362276 0.932071i \(-0.618000\pi\)
−0.362276 + 0.932071i \(0.618000\pi\)
\(198\) 0 0
\(199\) 3.32485 0.235693 0.117846 0.993032i \(-0.462401\pi\)
0.117846 + 0.993032i \(0.462401\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 7.63618 + 13.2263i 0.533334 + 0.923762i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.36262 + 5.82423i 0.232597 + 0.402870i
\(210\) 0 0
\(211\) −1.29535 + 2.24361i −0.0891755 + 0.154456i −0.907163 0.420780i \(-0.861757\pi\)
0.817987 + 0.575236i \(0.195090\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −12.3350 −0.841243
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 15.0988 26.1518i 1.01565 1.75916i
\(222\) 0 0
\(223\) −12.4029 21.4824i −0.830556 1.43857i −0.897598 0.440816i \(-0.854689\pi\)
0.0670411 0.997750i \(-0.478644\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.55125 + 6.15095i 0.235705 + 0.408253i 0.959477 0.281786i \(-0.0909267\pi\)
−0.723772 + 0.690039i \(0.757593\pi\)
\(228\) 0 0
\(229\) 3.23252 5.59889i 0.213611 0.369985i −0.739231 0.673452i \(-0.764811\pi\)
0.952842 + 0.303467i \(0.0981442\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.85900 −0.580372 −0.290186 0.956970i \(-0.593717\pi\)
−0.290186 + 0.956970i \(0.593717\pi\)
\(234\) 0 0
\(235\) 14.2533 0.929782
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.60836 + 14.9101i −0.556828 + 0.964455i 0.440930 + 0.897541i \(0.354649\pi\)
−0.997759 + 0.0669138i \(0.978685\pi\)
\(240\) 0 0
\(241\) −10.1106 17.5120i −0.651279 1.12805i −0.982813 0.184604i \(-0.940900\pi\)
0.331534 0.943443i \(-0.392434\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 13.7046 23.7370i 0.872001 1.51035i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.32214 −0.462169 −0.231085 0.972934i \(-0.574227\pi\)
−0.231085 + 0.972934i \(0.574227\pi\)
\(252\) 0 0
\(253\) −5.73720 −0.360695
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.07308 5.32274i 0.191694 0.332023i −0.754118 0.656739i \(-0.771935\pi\)
0.945812 + 0.324716i \(0.105269\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.0824634 0.142831i −0.00508491 0.00880732i 0.863472 0.504397i \(-0.168285\pi\)
−0.868557 + 0.495590i \(0.834952\pi\)
\(264\) 0 0
\(265\) 17.6489 30.5689i 1.08417 1.87783i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.72954 −0.227394 −0.113697 0.993515i \(-0.536269\pi\)
−0.113697 + 0.993515i \(0.536269\pi\)
\(270\) 0 0
\(271\) 0.787304 0.0478253 0.0239127 0.999714i \(-0.492388\pi\)
0.0239127 + 0.999714i \(0.492388\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.928693 + 1.60854i −0.0560023 + 0.0969988i
\(276\) 0 0
\(277\) 1.62954 + 2.82245i 0.0979096 + 0.169584i 0.910819 0.412805i \(-0.135451\pi\)
−0.812910 + 0.582390i \(0.802118\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.39147 16.2665i −0.560248 0.970379i −0.997474 0.0710269i \(-0.977372\pi\)
0.437226 0.899352i \(-0.355961\pi\)
\(282\) 0 0
\(283\) 6.41848 11.1171i 0.381539 0.660845i −0.609743 0.792599i \(-0.708727\pi\)
0.991282 + 0.131754i \(0.0420608\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 12.0764 0.710377
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.6293 23.6066i 0.796230 1.37911i −0.125825 0.992052i \(-0.540158\pi\)
0.922055 0.387058i \(-0.126509\pi\)
\(294\) 0 0
\(295\) 17.9806 + 31.1434i 1.04687 + 1.81324i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.6912 + 20.2497i 0.676118 + 1.17107i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −17.2820 −0.989563
\(306\) 0 0
\(307\) 24.4623 1.39614 0.698069 0.716030i \(-0.254043\pi\)
0.698069 + 0.716030i \(0.254043\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.58916 + 14.8769i −0.487047 + 0.843590i −0.999889 0.0148930i \(-0.995259\pi\)
0.512842 + 0.858483i \(0.328593\pi\)
\(312\) 0 0
\(313\) −7.93226 13.7391i −0.448358 0.776578i 0.549922 0.835216i \(-0.314658\pi\)
−0.998279 + 0.0586380i \(0.981324\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.3626 19.6806i −0.638188 1.10537i −0.985830 0.167747i \(-0.946351\pi\)
0.347642 0.937627i \(-0.386983\pi\)
\(318\) 0 0
\(319\) 2.15402 3.73088i 0.120602 0.208889i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.3916 1.46847
\(324\) 0 0
\(325\) 7.56990 0.419903
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −12.1140 20.9821i −0.665848 1.15328i −0.979055 0.203597i \(-0.934737\pi\)
0.313207 0.949685i \(-0.398597\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.2242 + 17.7088i 0.558605 + 0.967533i
\(336\) 0 0
\(337\) −2.20181 + 3.81365i −0.119940 + 0.207743i −0.919744 0.392519i \(-0.871604\pi\)
0.799803 + 0.600262i \(0.204937\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.59726 0.357262
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.12528 + 10.6093i −0.328823 + 0.569537i −0.982278 0.187427i \(-0.939985\pi\)
0.653456 + 0.756965i \(0.273318\pi\)
\(348\) 0 0
\(349\) 7.19444 + 12.4611i 0.385110 + 0.667030i 0.991784 0.127921i \(-0.0408303\pi\)
−0.606675 + 0.794950i \(0.707497\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.40835 7.63549i −0.234633 0.406396i 0.724533 0.689240i \(-0.242055\pi\)
−0.959166 + 0.282844i \(0.908722\pi\)
\(354\) 0 0
\(355\) −2.84417 + 4.92624i −0.150953 + 0.261458i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.09819 −0.321850 −0.160925 0.986967i \(-0.551448\pi\)
−0.160925 + 0.986967i \(0.551448\pi\)
\(360\) 0 0
\(361\) 4.95462 0.260770
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.85761 15.3418i 0.463628 0.803028i
\(366\) 0 0
\(367\) 3.45814 + 5.98967i 0.180513 + 0.312658i 0.942055 0.335457i \(-0.108891\pi\)
−0.761542 + 0.648115i \(0.775557\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 11.9489 20.6961i 0.618691 1.07160i −0.371034 0.928619i \(-0.620997\pi\)
0.989725 0.142985i \(-0.0456701\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −17.5577 −0.904269
\(378\) 0 0
\(379\) 34.6719 1.78097 0.890487 0.455008i \(-0.150364\pi\)
0.890487 + 0.455008i \(0.150364\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.71507 16.8270i 0.496417 0.859820i −0.503574 0.863952i \(-0.667982\pi\)
0.999991 + 0.00413220i \(0.00131532\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −16.3172 28.2623i −0.827317 1.43295i −0.900136 0.435610i \(-0.856533\pi\)
0.0728190 0.997345i \(-0.476800\pi\)
\(390\) 0 0
\(391\) −11.2571 + 19.4979i −0.569297 + 0.986051i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.94799 0.349591
\(396\) 0 0
\(397\) 6.23613 0.312982 0.156491 0.987679i \(-0.449982\pi\)
0.156491 + 0.987679i \(0.449982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.3672 + 21.4207i −0.617591 + 1.06970i 0.372333 + 0.928099i \(0.378558\pi\)
−0.989924 + 0.141599i \(0.954776\pi\)
\(402\) 0 0
\(403\) −13.4438 23.2853i −0.669683 1.15992i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.70781 6.42211i −0.183789 0.318332i
\(408\) 0 0
\(409\) 11.5749 20.0484i 0.572344 0.991329i −0.423981 0.905671i \(-0.639368\pi\)
0.996325 0.0856575i \(-0.0272991\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 37.7473 1.85294
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.703260 1.21808i 0.0343565 0.0595072i −0.848336 0.529458i \(-0.822395\pi\)
0.882692 + 0.469951i \(0.155729\pi\)
\(420\) 0 0
\(421\) −0.663904 1.14992i −0.0323567 0.0560435i 0.849394 0.527760i \(-0.176968\pi\)
−0.881750 + 0.471716i \(0.843635\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.64443 + 6.31234i 0.176781 + 0.306193i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.66756 −0.272997 −0.136498 0.990640i \(-0.543585\pi\)
−0.136498 + 0.990640i \(0.543585\pi\)
\(432\) 0 0
\(433\) 1.60371 0.0770696 0.0385348 0.999257i \(-0.487731\pi\)
0.0385348 + 0.999257i \(0.487731\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.2177 + 17.6975i −0.488777 + 0.846587i
\(438\) 0 0
\(439\) 0.227323 + 0.393735i 0.0108495 + 0.0187919i 0.871399 0.490575i \(-0.163213\pi\)
−0.860550 + 0.509367i \(0.829880\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.31442 + 16.1331i 0.442542 + 0.766505i 0.997877 0.0651217i \(-0.0207436\pi\)
−0.555336 + 0.831626i \(0.687410\pi\)
\(444\) 0 0
\(445\) −6.95099 + 12.0395i −0.329508 + 0.570725i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.2330 0.671696 0.335848 0.941916i \(-0.390977\pi\)
0.335848 + 0.941916i \(0.390977\pi\)
\(450\) 0 0
\(451\) −8.32671 −0.392089
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −14.6729 25.4142i −0.686370 1.18883i −0.973004 0.230788i \(-0.925870\pi\)
0.286634 0.958040i \(-0.407464\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.6587 + 21.9254i 0.589572 + 1.02117i 0.994288 + 0.106727i \(0.0340371\pi\)
−0.404716 + 0.914442i \(0.632630\pi\)
\(462\) 0 0
\(463\) −11.6503 + 20.1789i −0.541435 + 0.937793i 0.457387 + 0.889268i \(0.348785\pi\)
−0.998822 + 0.0485250i \(0.984548\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −41.6819 −1.92881 −0.964403 0.264436i \(-0.914814\pi\)
−0.964403 + 0.264436i \(0.914814\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.36262 5.82423i 0.154613 0.267798i
\(474\) 0 0
\(475\) 3.30791 + 5.72947i 0.151777 + 0.262886i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.76946 + 4.79684i 0.126540 + 0.219173i 0.922334 0.386394i \(-0.126280\pi\)
−0.795794 + 0.605567i \(0.792946\pi\)
\(480\) 0 0
\(481\) −15.1114 + 26.1737i −0.689021 + 1.19342i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.50624 −0.204618
\(486\) 0 0
\(487\) −24.6714 −1.11797 −0.558985 0.829178i \(-0.688809\pi\)
−0.558985 + 0.829178i \(0.688809\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.0509 17.4087i 0.453590 0.785642i −0.545015 0.838426i \(-0.683476\pi\)
0.998606 + 0.0527842i \(0.0168096\pi\)
\(492\) 0 0
\(493\) −8.45294 14.6409i −0.380701 0.659394i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −17.7587 + 30.7589i −0.794987 + 1.37696i 0.127861 + 0.991792i \(0.459189\pi\)
−0.922848 + 0.385166i \(0.874144\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.2236 −1.08008 −0.540039 0.841640i \(-0.681590\pi\)
−0.540039 + 0.841640i \(0.681590\pi\)
\(504\) 0 0
\(505\) −33.7480 −1.50177
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.86723 + 6.69824i −0.171412 + 0.296894i −0.938914 0.344153i \(-0.888166\pi\)
0.767502 + 0.641047i \(0.221500\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.77642 4.80891i −0.122344 0.211906i
\(516\) 0 0
\(517\) −3.88555 + 6.72997i −0.170886 + 0.295984i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −29.8099 −1.30600 −0.652998 0.757360i \(-0.726489\pi\)
−0.652998 + 0.757360i \(0.726489\pi\)
\(522\) 0 0
\(523\) 3.52436 0.154109 0.0770547 0.997027i \(-0.475448\pi\)
0.0770547 + 0.997027i \(0.475448\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.9447 22.4208i 0.563879 0.976667i
\(528\) 0 0
\(529\) 2.78347 + 4.82110i 0.121020 + 0.209613i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.9680 + 29.3895i 0.734967 + 1.27300i
\(534\) 0 0
\(535\) −12.4320 + 21.5329i −0.537484 + 0.930950i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −27.6871 −1.19036 −0.595180 0.803593i \(-0.702919\pi\)
−0.595180 + 0.803593i \(0.702919\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.88977 6.73729i 0.166620 0.288594i
\(546\) 0 0
\(547\) −16.6136 28.7756i −0.710347 1.23036i −0.964727 0.263253i \(-0.915205\pi\)
0.254380 0.967104i \(-0.418129\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.67241 13.2890i −0.326856 0.566131i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.6175 0.661733 0.330866 0.943678i \(-0.392659\pi\)
0.330866 + 0.943678i \(0.392659\pi\)
\(558\) 0 0
\(559\) −27.4092 −1.15928
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.75592 + 16.8977i −0.411163 + 0.712155i −0.995017 0.0997034i \(-0.968211\pi\)
0.583854 + 0.811858i \(0.301544\pi\)
\(564\) 0 0
\(565\) −0.551472 0.955177i −0.0232006 0.0401846i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.59181 + 6.22119i 0.150576 + 0.260806i 0.931439 0.363896i \(-0.118554\pi\)
−0.780863 + 0.624702i \(0.785220\pi\)
\(570\) 0 0
\(571\) −14.7886 + 25.6147i −0.618886 + 1.07194i 0.370804 + 0.928711i \(0.379082\pi\)
−0.989689 + 0.143230i \(0.954251\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.64386 −0.235365
\(576\) 0 0
\(577\) −10.3782 −0.432051 −0.216025 0.976388i \(-0.569309\pi\)
−0.216025 + 0.976388i \(0.569309\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.62244 + 16.6666i 0.398521 + 0.690259i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.4563 25.0391i −0.596677 1.03348i −0.993308 0.115497i \(-0.963154\pi\)
0.396630 0.917978i \(-0.370179\pi\)
\(588\) 0 0
\(589\) 11.7494 20.3505i 0.484125 0.838530i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −20.5290 −0.843024 −0.421512 0.906823i \(-0.638500\pi\)
−0.421512 + 0.906823i \(0.638500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.91652 6.78361i 0.160025 0.277171i −0.774853 0.632142i \(-0.782176\pi\)
0.934877 + 0.354971i \(0.115509\pi\)
\(600\) 0 0
\(601\) −7.27021 12.5924i −0.296558 0.513654i 0.678788 0.734334i \(-0.262505\pi\)
−0.975346 + 0.220681i \(0.929172\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.4822 + 19.8877i 0.466817 + 0.808551i
\(606\) 0 0
\(607\) 15.2755 26.4579i 0.620013 1.07389i −0.369470 0.929243i \(-0.620461\pi\)
0.989483 0.144651i \(-0.0462060\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 31.6716 1.28130
\(612\) 0 0
\(613\) 28.9292 1.16844 0.584220 0.811595i \(-0.301401\pi\)
0.584220 + 0.811595i \(0.301401\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.2106 + 35.0059i −0.813650 + 1.40928i 0.0966430 + 0.995319i \(0.469189\pi\)
−0.910293 + 0.413964i \(0.864144\pi\)
\(618\) 0 0
\(619\) 9.05857 + 15.6899i 0.364095 + 0.630631i 0.988630 0.150366i \(-0.0480451\pi\)
−0.624536 + 0.780996i \(0.714712\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 14.9657 25.9214i 0.598629 1.03686i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −29.1008 −1.16032
\(630\) 0 0
\(631\) 8.50373 0.338528 0.169264 0.985571i \(-0.445861\pi\)
0.169264 + 0.985571i \(0.445861\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.25783 12.5709i 0.288018 0.498862i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.0020 + 19.0561i 0.434554 + 0.752669i 0.997259 0.0739883i \(-0.0235727\pi\)
−0.562705 + 0.826658i \(0.690239\pi\)
\(642\) 0 0
\(643\) 13.1156 22.7170i 0.517230 0.895869i −0.482569 0.875858i \(-0.660296\pi\)
0.999800 0.0200115i \(-0.00637029\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 39.1690 1.53989 0.769946 0.638108i \(-0.220283\pi\)
0.769946 + 0.638108i \(0.220283\pi\)
\(648\) 0 0
\(649\) −19.6066 −0.769626
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.83467 11.8380i 0.267461 0.463257i −0.700744 0.713413i \(-0.747149\pi\)
0.968206 + 0.250156i \(0.0804819\pi\)
\(654\) 0 0
\(655\) −1.80165 3.12054i −0.0703962 0.121930i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.06683 + 5.31191i 0.119467 + 0.206923i 0.919557 0.392958i \(-0.128548\pi\)
−0.800090 + 0.599880i \(0.795215\pi\)
\(660\) 0 0
\(661\) 22.3118 38.6451i 0.867828 1.50312i 0.00361604 0.999993i \(-0.498849\pi\)
0.864212 0.503128i \(-0.167818\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 13.0904 0.506864
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.71119 8.16001i 0.181873 0.315014i
\(672\) 0 0
\(673\) −16.3833 28.3767i −0.631531 1.09384i −0.987239 0.159246i \(-0.949094\pi\)
0.355708 0.934597i \(-0.384240\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.5764 + 23.5150i 0.521782 + 0.903753i 0.999679 + 0.0253373i \(0.00806596\pi\)
−0.477897 + 0.878416i \(0.658601\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −38.0668 −1.45659 −0.728293 0.685266i \(-0.759686\pi\)
−0.728293 + 0.685266i \(0.759686\pi\)
\(684\) 0 0
\(685\) −28.1934 −1.07721
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 39.2169 67.9257i 1.49405 2.58776i
\(690\) 0 0
\(691\) 6.37848 + 11.0478i 0.242649 + 0.420280i 0.961468 0.274917i \(-0.0886504\pi\)
−0.718819 + 0.695197i \(0.755317\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.8351 + 34.3554i 0.752387 + 1.30317i
\(696\) 0 0
\(697\) −16.3381 + 28.2984i −0.618849 + 1.07188i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −40.6428 −1.53506 −0.767528 0.641015i \(-0.778514\pi\)
−0.767528 + 0.641015i \(0.778514\pi\)
\(702\) 0 0
\(703\) −26.4137 −0.996211
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.74552 + 6.48743i 0.140666 + 0.243640i 0.927748 0.373208i \(-0.121742\pi\)
−0.787082 + 0.616849i \(0.788409\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.0232 + 17.3607i 0.375373 + 0.650165i
\(714\) 0 0
\(715\) −9.69683 + 16.7954i −0.362641 + 0.628112i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.28113 −0.122365 −0.0611827 0.998127i \(-0.519487\pi\)
−0.0611827 + 0.998127i \(0.519487\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.11898 3.67018i 0.0786969 0.136307i
\(726\) 0 0
\(727\) 8.01088 + 13.8753i 0.297107 + 0.514605i 0.975473 0.220120i \(-0.0706448\pi\)
−0.678366 + 0.734724i \(0.737311\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −13.1958 22.8558i −0.488064 0.845351i
\(732\) 0 0
\(733\) −14.8123 + 25.6556i −0.547104 + 0.947611i 0.451368 + 0.892338i \(0.350936\pi\)
−0.998471 + 0.0552733i \(0.982397\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.1487 −0.410668
\(738\) 0 0
\(739\) 44.5733 1.63966 0.819829 0.572609i \(-0.194069\pi\)
0.819829 + 0.572609i \(0.194069\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.67364 9.82704i 0.208146 0.360519i −0.742985 0.669308i \(-0.766590\pi\)
0.951130 + 0.308789i \(0.0999238\pi\)
\(744\) 0 0
\(745\) 9.99317 + 17.3087i 0.366121 + 0.634141i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −17.5928 + 30.4716i −0.641970 + 1.11192i 0.343023 + 0.939327i \(0.388549\pi\)
−0.984992 + 0.172597i \(0.944784\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −27.2029 −0.990014
\(756\) 0 0
\(757\) 40.9186 1.48721 0.743605 0.668619i \(-0.233114\pi\)
0.743605 + 0.668619i \(0.233114\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.72243 9.91155i 0.207438 0.359293i −0.743469 0.668771i \(-0.766821\pi\)
0.950907 + 0.309477i \(0.100154\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 39.9540 + 69.2023i 1.44265 + 2.49875i
\(768\) 0 0
\(769\) −14.9723 + 25.9328i −0.539916 + 0.935162i 0.458992 + 0.888440i \(0.348211\pi\)
−0.998908 + 0.0467217i \(0.985123\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.93155 −0.285278 −0.142639 0.989775i \(-0.545559\pi\)
−0.142639 + 0.989775i \(0.545559\pi\)
\(774\) 0 0
\(775\) 6.48993 0.233125
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.8295 + 25.6854i −0.531320 + 0.920274i
\(780\) 0 0
\(781\) −1.55068 2.68586i −0.0554877 0.0961075i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −26.6855 46.2207i −0.952447 1.64969i
\(786\) 0 0
\(787\) −21.6037 + 37.4187i −0.770089 + 1.33383i 0.167425 + 0.985885i \(0.446455\pi\)
−0.937514 + 0.347949i \(0.886878\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −38.4015 −1.36368
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.34385 14.4520i 0.295554 0.511915i −0.679559 0.733620i \(-0.737829\pi\)
0.975114 + 0.221706i \(0.0711624\pi\)
\(798\) 0 0
\(799\) 15.2479 + 26.4101i 0.539432 + 0.934323i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.82929 + 8.36458i 0.170422 + 0.295180i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.09692 −0.179198 −0.0895992 0.995978i \(-0.528559\pi\)
−0.0895992 + 0.995978i \(0.528559\pi\)
\(810\) 0 0
\(811\) 10.2996 0.361666 0.180833 0.983514i \(-0.442121\pi\)
0.180833 + 0.983514i \(0.442121\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.35225 2.34217i 0.0473674 0.0820427i
\(816\) 0 0
\(817\) −11.9773 20.7453i −0.419033 0.725787i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.6369 21.8878i −0.441031 0.763889i 0.556735 0.830690i \(-0.312054\pi\)
−0.997766 + 0.0668013i \(0.978721\pi\)
\(822\) 0 0
\(823\) −4.44391 + 7.69707i −0.154905 + 0.268303i −0.933024 0.359813i \(-0.882840\pi\)
0.778120 + 0.628116i \(0.216174\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.1680 0.457895 0.228947 0.973439i \(-0.426472\pi\)
0.228947 + 0.973439i \(0.426472\pi\)
\(828\) 0 0
\(829\) 22.6917 0.788117 0.394058 0.919085i \(-0.371071\pi\)
0.394058 + 0.919085i \(0.371071\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 19.4473 + 33.6838i 0.673002 + 1.16567i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 14.9632 + 25.9171i 0.516588 + 0.894757i 0.999814 + 0.0192618i \(0.00613161\pi\)
−0.483226 + 0.875496i \(0.660535\pi\)
\(840\) 0 0
\(841\) 9.58522 16.6021i 0.330525 0.572486i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 46.2768 1.59197
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.2666 19.5142i 0.386213 0.668940i
\(852\) 0 0
\(853\) 6.46929 + 11.2051i 0.221504 + 0.383657i 0.955265 0.295751i \(-0.0955699\pi\)
−0.733761 + 0.679408i \(0.762237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.12252 7.14042i −0.140823 0.243912i 0.786984 0.616973i \(-0.211641\pi\)
−0.927807 + 0.373061i \(0.878308\pi\)
\(858\) 0 0
\(859\) −1.73399 + 3.00336i −0.0591630 + 0.102473i −0.894090 0.447888i \(-0.852177\pi\)
0.834927 + 0.550361i \(0.185510\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.512788 −0.0174555 −0.00872775 0.999962i \(-0.502778\pi\)
−0.00872775 + 0.999962i \(0.502778\pi\)
\(864\) 0 0
\(865\) −51.3175 −1.74485
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.89407 + 3.28063i −0.0642519 + 0.111288i
\(870\) 0 0
\(871\) 22.7186 + 39.3499i 0.769792 + 1.33332i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.1880 + 31.5026i −0.614166 + 1.06377i 0.376365 + 0.926472i \(0.377174\pi\)
−0.990530 + 0.137295i \(0.956159\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 23.3999 0.788363 0.394181 0.919033i \(-0.371028\pi\)
0.394181 + 0.919033i \(0.371028\pi\)
\(882\) 0 0
\(883\) −22.8345 −0.768442 −0.384221 0.923241i \(-0.625530\pi\)
−0.384221 + 0.923241i \(0.625530\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.0791 38.2421i 0.741344 1.28405i −0.210539 0.977585i \(-0.567522\pi\)
0.951883 0.306460i \(-0.0991446\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.8399 + 23.9715i 0.463136 + 0.802175i
\(894\) 0 0
\(895\) −7.68579 + 13.3122i −0.256908 + 0.444977i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −15.0528 −0.502040
\(900\) 0 0
\(901\) 75.5219 2.51600
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.6084 + 21.8384i −0.419118 + 0.725934i
\(906\) 0 0
\(907\) −3.53884 6.12946i −0.117505 0.203525i 0.801273 0.598299i \(-0.204156\pi\)
−0.918778 + 0.394773i \(0.870823\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 23.6764 + 41.0088i 0.784435 + 1.35868i 0.929336 + 0.369235i \(0.120380\pi\)
−0.144901 + 0.989446i \(0.546286\pi\)
\(912\) 0 0
\(913\) −10.2902 + 17.8231i −0.340555 + 0.589859i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −25.9503 −0.856022 −0.428011 0.903773i \(-0.640786\pi\)
−0.428011 + 0.903773i \(0.640786\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.31990 + 10.9464i −0.208022 + 0.360305i
\(924\) 0 0
\(925\) −3.64748 6.31763i −0.119929 0.207722i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.66110 4.60917i −0.0873080 0.151222i 0.819064 0.573702i \(-0.194493\pi\)
−0.906372 + 0.422480i \(0.861160\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −18.6736 −0.610694
\(936\) 0 0
\(937\) −30.4266 −0.993994 −0.496997 0.867752i \(-0.665564\pi\)
−0.496997 + 0.867752i \(0.665564\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.8818 18.8479i 0.354738 0.614424i −0.632335 0.774695i \(-0.717903\pi\)
0.987073 + 0.160271i \(0.0512368\pi\)
\(942\) 0 0
\(943\) −12.6508 21.9118i −0.411966 0.713546i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.4392 30.2055i −0.566697 0.981548i −0.996890 0.0788112i \(-0.974888\pi\)
0.430192 0.902737i \(-0.358446\pi\)
\(948\) 0 0
\(949\) 19.6821 34.0904i 0.638908 1.10662i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −27.3744 −0.886742 −0.443371 0.896338i \(-0.646218\pi\)
−0.443371 + 0.896338i \(0.646218\pi\)
\(954\) 0 0
\(955\) 55.9465 1.81039
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 3.97419 + 6.88350i 0.128200 + 0.222048i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 33.5396 + 58.0924i 1.07968 + 1.87006i
\(966\) 0 0
\(967\) 7.21327 12.4937i 0.231963 0.401772i −0.726423 0.687248i \(-0.758819\pi\)
0.958386 + 0.285476i \(0.0921518\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −26.5185 −0.851018 −0.425509 0.904954i \(-0.639905\pi\)
−0.425509 + 0.904954i \(0.639905\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.1867 + 34.9643i −0.645829 + 1.11861i 0.338281 + 0.941045i \(0.390155\pi\)
−0.984109 + 0.177563i \(0.943179\pi\)
\(978\) 0 0
\(979\) −3.78978 6.56408i −0.121122 0.209789i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10.7299 18.5847i −0.342230 0.592759i 0.642617 0.766188i \(-0.277849\pi\)
−0.984846 + 0.173429i \(0.944515\pi\)
\(984\) 0 0
\(985\) 12.8150 22.1962i 0.408319 0.707230i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 20.4353 0.649806
\(990\) 0 0
\(991\) −14.5068 −0.460824 −0.230412 0.973093i \(-0.574007\pi\)
−0.230412 + 0.973093i \(0.574007\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.18975 + 7.25687i −0.132824 + 0.230058i
\(996\) 0 0
\(997\) −18.2204 31.5587i −0.577047 0.999475i −0.995816 0.0913822i \(-0.970871\pi\)
0.418769 0.908093i \(-0.362462\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.j.h.1765.1 14
3.2 odd 2 1764.2.j.g.589.5 14
7.2 even 3 756.2.l.b.361.7 14
7.3 odd 6 5292.2.i.i.1549.7 14
7.4 even 3 756.2.i.b.37.1 14
7.5 odd 6 5292.2.l.i.361.1 14
7.6 odd 2 5292.2.j.g.1765.7 14
9.2 odd 6 1764.2.j.g.1177.5 14
9.7 even 3 inner 5292.2.j.h.3529.1 14
21.2 odd 6 252.2.l.b.193.2 yes 14
21.5 even 6 1764.2.l.i.949.6 14
21.11 odd 6 252.2.i.b.121.6 yes 14
21.17 even 6 1764.2.i.i.373.2 14
21.20 even 2 1764.2.j.h.589.3 14
28.11 odd 6 3024.2.q.j.2305.1 14
28.23 odd 6 3024.2.t.j.1873.7 14
63.2 odd 6 252.2.i.b.25.6 14
63.4 even 3 2268.2.k.f.1297.1 14
63.11 odd 6 252.2.l.b.205.2 yes 14
63.16 even 3 756.2.i.b.613.1 14
63.20 even 6 1764.2.j.h.1177.3 14
63.23 odd 6 2268.2.k.e.1621.7 14
63.25 even 3 756.2.l.b.289.7 14
63.32 odd 6 2268.2.k.e.1297.7 14
63.34 odd 6 5292.2.j.g.3529.7 14
63.38 even 6 1764.2.l.i.961.6 14
63.47 even 6 1764.2.i.i.1537.2 14
63.52 odd 6 5292.2.l.i.3313.1 14
63.58 even 3 2268.2.k.f.1621.1 14
63.61 odd 6 5292.2.i.i.2125.7 14
84.11 even 6 1008.2.q.j.625.2 14
84.23 even 6 1008.2.t.j.193.6 14
252.11 even 6 1008.2.t.j.961.6 14
252.79 odd 6 3024.2.q.j.2881.1 14
252.151 odd 6 3024.2.t.j.289.7 14
252.191 even 6 1008.2.q.j.529.2 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.6 14 63.2 odd 6
252.2.i.b.121.6 yes 14 21.11 odd 6
252.2.l.b.193.2 yes 14 21.2 odd 6
252.2.l.b.205.2 yes 14 63.11 odd 6
756.2.i.b.37.1 14 7.4 even 3
756.2.i.b.613.1 14 63.16 even 3
756.2.l.b.289.7 14 63.25 even 3
756.2.l.b.361.7 14 7.2 even 3
1008.2.q.j.529.2 14 252.191 even 6
1008.2.q.j.625.2 14 84.11 even 6
1008.2.t.j.193.6 14 84.23 even 6
1008.2.t.j.961.6 14 252.11 even 6
1764.2.i.i.373.2 14 21.17 even 6
1764.2.i.i.1537.2 14 63.47 even 6
1764.2.j.g.589.5 14 3.2 odd 2
1764.2.j.g.1177.5 14 9.2 odd 6
1764.2.j.h.589.3 14 21.20 even 2
1764.2.j.h.1177.3 14 63.20 even 6
1764.2.l.i.949.6 14 21.5 even 6
1764.2.l.i.961.6 14 63.38 even 6
2268.2.k.e.1297.7 14 63.32 odd 6
2268.2.k.e.1621.7 14 63.23 odd 6
2268.2.k.f.1297.1 14 63.4 even 3
2268.2.k.f.1621.1 14 63.58 even 3
3024.2.q.j.2305.1 14 28.11 odd 6
3024.2.q.j.2881.1 14 252.79 odd 6
3024.2.t.j.289.7 14 252.151 odd 6
3024.2.t.j.1873.7 14 28.23 odd 6
5292.2.i.i.1549.7 14 7.3 odd 6
5292.2.i.i.2125.7 14 63.61 odd 6
5292.2.j.g.1765.7 14 7.6 odd 2
5292.2.j.g.3529.7 14 63.34 odd 6
5292.2.j.h.1765.1 14 1.1 even 1 trivial
5292.2.j.h.3529.1 14 9.7 even 3 inner
5292.2.l.i.361.1 14 7.5 odd 6
5292.2.l.i.3313.1 14 63.52 odd 6