L(s) = 1 | + (−1.26 + 2.18i)5-s + (−2.50 − 0.839i)7-s + (−0.687 − 1.18i)11-s + 5.60·13-s + (2.69 + 4.66i)17-s + (2.44 − 4.23i)19-s + (2.08 − 3.61i)23-s + (−0.675 − 1.17i)25-s − 3.13·29-s + (−2.40 − 4.15i)31-s + (4.99 − 4.41i)35-s + (−2.69 + 4.67i)37-s − 6.05·41-s − 4.89·43-s + (−2.82 + 4.89i)47-s + ⋯ |
L(s) = 1 | + (−0.563 + 0.976i)5-s + (−0.948 − 0.317i)7-s + (−0.207 − 0.358i)11-s + 1.55·13-s + (0.653 + 1.13i)17-s + (0.561 − 0.972i)19-s + (0.435 − 0.753i)23-s + (−0.135 − 0.234i)25-s − 0.582·29-s + (−0.431 − 0.746i)31-s + (0.844 − 0.746i)35-s + (−0.443 + 0.768i)37-s − 0.946·41-s − 0.746·43-s + (−0.412 + 0.714i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.285836708\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.285836708\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.50 + 0.839i)T \) |
good | 5 | \( 1 + (1.26 - 2.18i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.687 + 1.18i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.60T + 13T^{2} \) |
| 17 | \( 1 + (-2.69 - 4.66i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.44 + 4.23i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.08 + 3.61i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.13T + 29T^{2} \) |
| 31 | \( 1 + (2.40 + 4.15i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.69 - 4.67i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.05T + 41T^{2} \) |
| 43 | \( 1 + 4.89T + 43T^{2} \) |
| 47 | \( 1 + (2.82 - 4.89i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-7.00 - 12.1i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.13 - 12.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.42 + 5.93i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.05 - 7.02i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2.25T + 71T^{2} \) |
| 73 | \( 1 + (-3.51 - 6.08i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.37 - 2.38i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 14.9T + 83T^{2} \) |
| 89 | \( 1 + (2.75 - 4.77i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 1.78T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.105196446610748041642636349765, −8.407658882831399845529218918663, −7.57017869794162991754641105229, −6.77156561875936155474838510880, −6.26936647209924396726357105517, −5.38384073476103397269604960140, −3.94824655856742945150844758142, −3.50068510891799140135240735771, −2.70603251877323211462286497805, −1.04331822762229550964097805499,
0.54949357346831254051921424704, 1.77143644891930864017450804028, 3.43367153473769938545217073249, 3.64281685934941251263934028736, 5.09879929356779432574184332669, 5.48789607976764296975825152739, 6.57529466241199894563182697719, 7.33767541824723733842934597645, 8.261109036627417527605795295037, 8.786297596344336386396801805339