Properties

Label 2268.2.bm.j.593.4
Level $2268$
Weight $2$
Character 2268.593
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(593,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.4
Character \(\chi\) \(=\) 2268.593
Dual form 2268.2.bm.j.1025.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00351 q^{5} +(1.37922 - 2.25782i) q^{7} -4.80039i q^{11} +(-0.864497 + 0.499118i) q^{13} +(-0.0445736 - 0.0772037i) q^{17} +(3.68849 + 2.12955i) q^{19} -0.969708i q^{23} -0.985965 q^{25} +(-2.93010 - 1.69169i) q^{29} +(4.35640 + 2.51517i) q^{31} +(-2.76327 + 4.52356i) q^{35} +(-0.0675641 + 0.117024i) q^{37} +(-5.62189 - 9.73740i) q^{41} +(-3.66779 + 6.35280i) q^{43} +(-1.76803 - 3.06231i) q^{47} +(-3.19551 - 6.22806i) q^{49} +(-5.31849 + 3.07063i) q^{53} +9.61761i q^{55} +(-4.88252 + 8.45678i) q^{59} +(-11.2876 + 6.51692i) q^{61} +(1.73203 - 0.999985i) q^{65} +(7.57741 - 13.1245i) q^{67} +4.56985i q^{71} +(3.73647 - 2.15725i) q^{73} +(-10.8384 - 6.62079i) q^{77} +(-5.94084 - 10.2898i) q^{79} +(-1.62494 + 2.81449i) q^{83} +(0.0893034 + 0.154678i) q^{85} +(1.06316 - 1.84146i) q^{89} +(-0.0654127 + 2.64027i) q^{91} +(-7.38992 - 4.26657i) q^{95} +(-1.03527 - 0.597713i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} - 12 q^{13} + 32 q^{25} - 24 q^{31} - 4 q^{37} - 4 q^{43} - 16 q^{49} - 12 q^{61} + 4 q^{67} - 36 q^{73} + 28 q^{79} + 12 q^{85} - 36 q^{91} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00351 −0.895995 −0.447998 0.894035i \(-0.647863\pi\)
−0.447998 + 0.894035i \(0.647863\pi\)
\(6\) 0 0
\(7\) 1.37922 2.25782i 0.521296 0.853376i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.80039i 1.44737i −0.690129 0.723686i \(-0.742446\pi\)
0.690129 0.723686i \(-0.257554\pi\)
\(12\) 0 0
\(13\) −0.864497 + 0.499118i −0.239768 + 0.138430i −0.615070 0.788472i \(-0.710872\pi\)
0.375302 + 0.926903i \(0.377539\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.0445736 0.0772037i −0.0108107 0.0187246i 0.860569 0.509333i \(-0.170108\pi\)
−0.871380 + 0.490608i \(0.836775\pi\)
\(18\) 0 0
\(19\) 3.68849 + 2.12955i 0.846198 + 0.488553i 0.859366 0.511361i \(-0.170858\pi\)
−0.0131681 + 0.999913i \(0.504192\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.969708i 0.202198i −0.994876 0.101099i \(-0.967764\pi\)
0.994876 0.101099i \(-0.0322359\pi\)
\(24\) 0 0
\(25\) −0.985965 −0.197193
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.93010 1.69169i −0.544105 0.314139i 0.202636 0.979254i \(-0.435049\pi\)
−0.746741 + 0.665115i \(0.768383\pi\)
\(30\) 0 0
\(31\) 4.35640 + 2.51517i 0.782433 + 0.451738i 0.837292 0.546756i \(-0.184137\pi\)
−0.0548586 + 0.998494i \(0.517471\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.76327 + 4.52356i −0.467078 + 0.764621i
\(36\) 0 0
\(37\) −0.0675641 + 0.117024i −0.0111075 + 0.0192387i −0.871526 0.490350i \(-0.836869\pi\)
0.860418 + 0.509589i \(0.170202\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.62189 9.73740i −0.877992 1.52073i −0.853541 0.521025i \(-0.825550\pi\)
−0.0244505 0.999701i \(-0.507784\pi\)
\(42\) 0 0
\(43\) −3.66779 + 6.35280i −0.559333 + 0.968793i 0.438219 + 0.898868i \(0.355609\pi\)
−0.997552 + 0.0699250i \(0.977724\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.76803 3.06231i −0.257893 0.446684i 0.707784 0.706429i \(-0.249695\pi\)
−0.965677 + 0.259745i \(0.916362\pi\)
\(48\) 0 0
\(49\) −3.19551 6.22806i −0.456501 0.889723i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.31849 + 3.07063i −0.730551 + 0.421784i −0.818624 0.574330i \(-0.805263\pi\)
0.0880726 + 0.996114i \(0.471929\pi\)
\(54\) 0 0
\(55\) 9.61761i 1.29684i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.88252 + 8.45678i −0.635650 + 1.10098i 0.350727 + 0.936478i \(0.385935\pi\)
−0.986377 + 0.164501i \(0.947399\pi\)
\(60\) 0 0
\(61\) −11.2876 + 6.51692i −1.44523 + 0.834407i −0.998192 0.0601058i \(-0.980856\pi\)
−0.447043 + 0.894513i \(0.647523\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.73203 0.999985i 0.214831 0.124033i
\(66\) 0 0
\(67\) 7.57741 13.1245i 0.925728 1.60341i 0.135343 0.990799i \(-0.456786\pi\)
0.790386 0.612610i \(-0.209880\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.56985i 0.542341i 0.962531 + 0.271171i \(0.0874108\pi\)
−0.962531 + 0.271171i \(0.912589\pi\)
\(72\) 0 0
\(73\) 3.73647 2.15725i 0.437321 0.252487i −0.265140 0.964210i \(-0.585418\pi\)
0.702460 + 0.711723i \(0.252085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.8384 6.62079i −1.23515 0.754509i
\(78\) 0 0
\(79\) −5.94084 10.2898i −0.668397 1.15770i −0.978352 0.206946i \(-0.933647\pi\)
0.309955 0.950751i \(-0.399686\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.62494 + 2.81449i −0.178361 + 0.308930i −0.941319 0.337518i \(-0.890413\pi\)
0.762958 + 0.646448i \(0.223746\pi\)
\(84\) 0 0
\(85\) 0.0893034 + 0.154678i 0.00968631 + 0.0167772i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.06316 1.84146i 0.112695 0.195194i −0.804161 0.594412i \(-0.797385\pi\)
0.916856 + 0.399218i \(0.130718\pi\)
\(90\) 0 0
\(91\) −0.0654127 + 2.64027i −0.00685711 + 0.276776i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.38992 4.26657i −0.758189 0.437741i
\(96\) 0 0
\(97\) −1.03527 0.597713i −0.105116 0.0606885i 0.446521 0.894773i \(-0.352663\pi\)
−0.551636 + 0.834085i \(0.685996\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11.9879 1.19284 0.596420 0.802673i \(-0.296589\pi\)
0.596420 + 0.802673i \(0.296589\pi\)
\(102\) 0 0
\(103\) 9.53268i 0.939282i −0.882857 0.469641i \(-0.844383\pi\)
0.882857 0.469641i \(-0.155617\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.2170 9.36287i −1.56775 0.905143i −0.996430 0.0844177i \(-0.973097\pi\)
−0.571323 0.820725i \(-0.693570\pi\)
\(108\) 0 0
\(109\) 0.901223 + 1.56096i 0.0863215 + 0.149513i 0.905954 0.423377i \(-0.139155\pi\)
−0.819632 + 0.572890i \(0.805822\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.6314 + 6.13804i −1.00012 + 0.577419i −0.908283 0.418356i \(-0.862607\pi\)
−0.0918351 + 0.995774i \(0.529273\pi\)
\(114\) 0 0
\(115\) 1.94282i 0.181168i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.235789 0.00584166i −0.0216147 0.000535504i
\(120\) 0 0
\(121\) −12.0438 −1.09489
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.9929 1.07268
\(126\) 0 0
\(127\) −7.35545 −0.652690 −0.326345 0.945251i \(-0.605817\pi\)
−0.326345 + 0.945251i \(0.605817\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.4996 −0.917355 −0.458678 0.888603i \(-0.651677\pi\)
−0.458678 + 0.888603i \(0.651677\pi\)
\(132\) 0 0
\(133\) 9.89539 5.39084i 0.858039 0.467445i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.3867i 1.31457i −0.753640 0.657287i \(-0.771704\pi\)
0.753640 0.657287i \(-0.228296\pi\)
\(138\) 0 0
\(139\) 12.6370 7.29600i 1.07186 0.618838i 0.143171 0.989698i \(-0.454270\pi\)
0.928689 + 0.370860i \(0.120937\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.39596 + 4.14993i 0.200360 + 0.347034i
\(144\) 0 0
\(145\) 5.87046 + 3.38931i 0.487515 + 0.281467i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.3861i 1.17856i −0.807930 0.589279i \(-0.799412\pi\)
0.807930 0.589279i \(-0.200588\pi\)
\(150\) 0 0
\(151\) −15.5150 −1.26259 −0.631297 0.775541i \(-0.717477\pi\)
−0.631297 + 0.775541i \(0.717477\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.72808 5.03916i −0.701056 0.404755i
\(156\) 0 0
\(157\) 3.02449 + 1.74619i 0.241381 + 0.139361i 0.615811 0.787894i \(-0.288828\pi\)
−0.374431 + 0.927255i \(0.622162\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.18943 1.33744i −0.172551 0.105405i
\(162\) 0 0
\(163\) 6.91917 11.9844i 0.541951 0.938687i −0.456841 0.889548i \(-0.651019\pi\)
0.998792 0.0491384i \(-0.0156475\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.95252 3.38186i −0.151090 0.261696i 0.780538 0.625108i \(-0.214945\pi\)
−0.931629 + 0.363412i \(0.881612\pi\)
\(168\) 0 0
\(169\) −6.00176 + 10.3954i −0.461674 + 0.799643i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.96624 15.5300i −0.681690 1.18072i −0.974465 0.224541i \(-0.927912\pi\)
0.292774 0.956182i \(-0.405422\pi\)
\(174\) 0 0
\(175\) −1.35986 + 2.22613i −0.102796 + 0.168280i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.93535 + 3.42678i −0.443629 + 0.256129i −0.705136 0.709072i \(-0.749114\pi\)
0.261507 + 0.965202i \(0.415781\pi\)
\(180\) 0 0
\(181\) 12.1011i 0.899468i 0.893163 + 0.449734i \(0.148481\pi\)
−0.893163 + 0.449734i \(0.851519\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.135365 0.234459i 0.00995223 0.0172378i
\(186\) 0 0
\(187\) −0.370608 + 0.213971i −0.0271015 + 0.0156471i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.35854 + 4.24846i −0.532446 + 0.307408i −0.742012 0.670387i \(-0.766128\pi\)
0.209566 + 0.977794i \(0.432795\pi\)
\(192\) 0 0
\(193\) −6.79801 + 11.7745i −0.489331 + 0.847547i −0.999925 0.0122755i \(-0.996092\pi\)
0.510593 + 0.859822i \(0.329426\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.5565i 1.67833i 0.543878 + 0.839164i \(0.316955\pi\)
−0.543878 + 0.839164i \(0.683045\pi\)
\(198\) 0 0
\(199\) −11.7796 + 6.80093i −0.835030 + 0.482105i −0.855572 0.517684i \(-0.826794\pi\)
0.0205416 + 0.999789i \(0.493461\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.86078 + 4.28242i −0.551718 + 0.300567i
\(204\) 0 0
\(205\) 11.2635 + 19.5089i 0.786676 + 1.36256i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.2227 17.7062i 0.707118 1.22476i
\(210\) 0 0
\(211\) 8.44148 + 14.6211i 0.581136 + 1.00656i 0.995345 + 0.0963750i \(0.0307248\pi\)
−0.414209 + 0.910182i \(0.635942\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.34844 12.7279i 0.501160 0.868034i
\(216\) 0 0
\(217\) 11.6872 6.36701i 0.793382 0.432221i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.0770674 + 0.0444949i 0.00518412 + 0.00299305i
\(222\) 0 0
\(223\) 3.83410 + 2.21362i 0.256750 + 0.148235i 0.622851 0.782340i \(-0.285974\pi\)
−0.366101 + 0.930575i \(0.619308\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.3910 −0.888794 −0.444397 0.895830i \(-0.646582\pi\)
−0.444397 + 0.895830i \(0.646582\pi\)
\(228\) 0 0
\(229\) 7.64997i 0.505524i −0.967528 0.252762i \(-0.918661\pi\)
0.967528 0.252762i \(-0.0813390\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.1646 7.02323i −0.796929 0.460107i 0.0454674 0.998966i \(-0.485522\pi\)
−0.842396 + 0.538859i \(0.818856\pi\)
\(234\) 0 0
\(235\) 3.54225 + 6.13535i 0.231071 + 0.400226i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.5035 8.37362i 0.938156 0.541644i 0.0487739 0.998810i \(-0.484469\pi\)
0.889382 + 0.457165i \(0.151135\pi\)
\(240\) 0 0
\(241\) 30.6471i 1.97415i −0.160255 0.987076i \(-0.551232\pi\)
0.160255 0.987076i \(-0.448768\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.40222 + 12.4780i 0.409023 + 0.797187i
\(246\) 0 0
\(247\) −4.25159 −0.270522
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.56378 0.288063 0.144032 0.989573i \(-0.453993\pi\)
0.144032 + 0.989573i \(0.453993\pi\)
\(252\) 0 0
\(253\) −4.65498 −0.292656
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 26.7837 1.67072 0.835361 0.549702i \(-0.185259\pi\)
0.835361 + 0.549702i \(0.185259\pi\)
\(258\) 0 0
\(259\) 0.171034 + 0.313950i 0.0106276 + 0.0195079i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.9160i 1.28974i 0.764293 + 0.644869i \(0.223088\pi\)
−0.764293 + 0.644869i \(0.776912\pi\)
\(264\) 0 0
\(265\) 10.6556 6.15203i 0.654570 0.377916i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.3200 + 23.0709i 0.812133 + 1.40666i 0.911368 + 0.411592i \(0.135027\pi\)
−0.0992351 + 0.995064i \(0.531640\pi\)
\(270\) 0 0
\(271\) 17.6224 + 10.1743i 1.07048 + 0.618045i 0.928314 0.371798i \(-0.121258\pi\)
0.142171 + 0.989842i \(0.454592\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.73302i 0.285412i
\(276\) 0 0
\(277\) 2.04224 0.122706 0.0613531 0.998116i \(-0.480458\pi\)
0.0613531 + 0.998116i \(0.480458\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.6608 + 8.46441i 0.874590 + 0.504945i 0.868871 0.495039i \(-0.164846\pi\)
0.00571889 + 0.999984i \(0.498180\pi\)
\(282\) 0 0
\(283\) −9.97089 5.75670i −0.592708 0.342200i 0.173460 0.984841i \(-0.444505\pi\)
−0.766168 + 0.642641i \(0.777839\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −29.7391 0.736786i −1.75544 0.0434911i
\(288\) 0 0
\(289\) 8.49603 14.7155i 0.499766 0.865621i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.4055 + 18.0229i 0.607898 + 1.05291i 0.991586 + 0.129447i \(0.0413203\pi\)
−0.383689 + 0.923463i \(0.625346\pi\)
\(294\) 0 0
\(295\) 9.78216 16.9432i 0.569539 0.986471i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.483998 + 0.838310i 0.0279903 + 0.0484807i
\(300\) 0 0
\(301\) 9.28480 + 17.0431i 0.535167 + 0.982349i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 22.6149 13.0567i 1.29492 0.747624i
\(306\) 0 0
\(307\) 2.00298i 0.114316i −0.998365 0.0571580i \(-0.981796\pi\)
0.998365 0.0571580i \(-0.0182039\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.35374 + 7.54089i −0.246878 + 0.427605i −0.962658 0.270721i \(-0.912738\pi\)
0.715780 + 0.698326i \(0.246071\pi\)
\(312\) 0 0
\(313\) −9.54198 + 5.50906i −0.539345 + 0.311391i −0.744813 0.667273i \(-0.767461\pi\)
0.205469 + 0.978664i \(0.434128\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.92196 5.72844i 0.557273 0.321742i −0.194777 0.980847i \(-0.562398\pi\)
0.752050 + 0.659106i \(0.229065\pi\)
\(318\) 0 0
\(319\) −8.12078 + 14.0656i −0.454677 + 0.787523i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.379687i 0.0211263i
\(324\) 0 0
\(325\) 0.852364 0.492113i 0.0472806 0.0272975i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.35264 0.231711i −0.515628 0.0127747i
\(330\) 0 0
\(331\) −2.70596 4.68685i −0.148733 0.257613i 0.782027 0.623245i \(-0.214186\pi\)
−0.930759 + 0.365632i \(0.880853\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −15.1814 + 26.2949i −0.829448 + 1.43665i
\(336\) 0 0
\(337\) −12.1854 21.1058i −0.663783 1.14971i −0.979614 0.200890i \(-0.935617\pi\)
0.315831 0.948815i \(-0.397717\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0738 20.9125i 0.653834 1.13247i
\(342\) 0 0
\(343\) −18.4691 1.37497i −0.997240 0.0742413i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.74410 + 4.47106i 0.415725 + 0.240019i 0.693247 0.720700i \(-0.256180\pi\)
−0.277522 + 0.960719i \(0.589513\pi\)
\(348\) 0 0
\(349\) 9.68628 + 5.59238i 0.518495 + 0.299353i 0.736319 0.676635i \(-0.236562\pi\)
−0.217824 + 0.975988i \(0.569896\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.5130 0.719225 0.359613 0.933102i \(-0.382909\pi\)
0.359613 + 0.933102i \(0.382909\pi\)
\(354\) 0 0
\(355\) 9.15572i 0.485935i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.5673 17.0707i −1.56050 0.900957i −0.997206 0.0747023i \(-0.976199\pi\)
−0.563297 0.826254i \(-0.690467\pi\)
\(360\) 0 0
\(361\) −0.430017 0.744810i −0.0226324 0.0392006i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.48604 + 4.32206i −0.391837 + 0.226227i
\(366\) 0 0
\(367\) 1.06520i 0.0556029i −0.999613 0.0278015i \(-0.991149\pi\)
0.999613 0.0278015i \(-0.00885062\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.402427 + 16.2433i −0.0208929 + 0.843309i
\(372\) 0 0
\(373\) −4.33310 −0.224359 −0.112180 0.993688i \(-0.535783\pi\)
−0.112180 + 0.993688i \(0.535783\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.37741 0.173946
\(378\) 0 0
\(379\) 2.43862 0.125263 0.0626317 0.998037i \(-0.480051\pi\)
0.0626317 + 0.998037i \(0.480051\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 37.5103 1.91669 0.958344 0.285618i \(-0.0921988\pi\)
0.958344 + 0.285618i \(0.0921988\pi\)
\(384\) 0 0
\(385\) 21.7149 + 13.2648i 1.10669 + 0.676037i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.89422i 0.349551i 0.984608 + 0.174775i \(0.0559199\pi\)
−0.984608 + 0.174775i \(0.944080\pi\)
\(390\) 0 0
\(391\) −0.0748650 + 0.0432233i −0.00378609 + 0.00218590i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.9025 + 20.6158i 0.598880 + 1.03729i
\(396\) 0 0
\(397\) −33.7783 19.5019i −1.69529 0.978774i −0.950114 0.311902i \(-0.899034\pi\)
−0.745172 0.666872i \(-0.767633\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.6023i 0.928955i −0.885585 0.464477i \(-0.846242\pi\)
0.885585 0.464477i \(-0.153758\pi\)
\(402\) 0 0
\(403\) −5.02147 −0.250137
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.561763 + 0.324334i 0.0278456 + 0.0160766i
\(408\) 0 0
\(409\) 1.89129 + 1.09193i 0.0935181 + 0.0539927i 0.546030 0.837766i \(-0.316139\pi\)
−0.452512 + 0.891759i \(0.649472\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.3598 + 22.6876i 0.608187 + 1.11638i
\(414\) 0 0
\(415\) 3.25559 5.63884i 0.159810 0.276800i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.9333 + 25.8653i 0.729540 + 1.26360i 0.957078 + 0.289831i \(0.0935992\pi\)
−0.227538 + 0.973769i \(0.573067\pi\)
\(420\) 0 0
\(421\) 0.673150 1.16593i 0.0328073 0.0568240i −0.849156 0.528143i \(-0.822889\pi\)
0.881963 + 0.471319i \(0.156222\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.0439480 + 0.0761201i 0.00213179 + 0.00369237i
\(426\) 0 0
\(427\) −0.854086 + 34.4737i −0.0413321 + 1.66830i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 22.9854 13.2706i 1.10717 0.639223i 0.169072 0.985604i \(-0.445923\pi\)
0.938094 + 0.346381i \(0.112590\pi\)
\(432\) 0 0
\(433\) 27.4682i 1.32004i −0.751250 0.660018i \(-0.770549\pi\)
0.751250 0.660018i \(-0.229451\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.06504 3.57676i 0.0987844 0.171100i
\(438\) 0 0
\(439\) −3.49248 + 2.01638i −0.166687 + 0.0962367i −0.581023 0.813887i \(-0.697347\pi\)
0.414336 + 0.910124i \(0.364014\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −29.3085 + 16.9212i −1.39249 + 0.803953i −0.993590 0.113043i \(-0.963940\pi\)
−0.398897 + 0.916996i \(0.630607\pi\)
\(444\) 0 0
\(445\) −2.13006 + 3.68937i −0.100974 + 0.174893i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.7395i 1.49788i −0.662638 0.748940i \(-0.730563\pi\)
0.662638 0.748940i \(-0.269437\pi\)
\(450\) 0 0
\(451\) −46.7433 + 26.9873i −2.20106 + 1.27078i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.131055 5.28980i 0.00614394 0.247990i
\(456\) 0 0
\(457\) 17.7802 + 30.7963i 0.831724 + 1.44059i 0.896670 + 0.442700i \(0.145979\pi\)
−0.0649459 + 0.997889i \(0.520687\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.2947 28.2232i 0.758919 1.31449i −0.184483 0.982836i \(-0.559061\pi\)
0.943402 0.331650i \(-0.107605\pi\)
\(462\) 0 0
\(463\) 10.6397 + 18.4286i 0.494471 + 0.856448i 0.999980 0.00637294i \(-0.00202858\pi\)
−0.505509 + 0.862821i \(0.668695\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.0189 32.9417i 0.880090 1.52436i 0.0288500 0.999584i \(-0.490815\pi\)
0.851240 0.524777i \(-0.175851\pi\)
\(468\) 0 0
\(469\) −19.1818 35.2100i −0.885732 1.62584i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 30.4959 + 17.6068i 1.40221 + 0.809563i
\(474\) 0 0
\(475\) −3.63672 2.09966i −0.166864 0.0963392i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.5363 0.481415 0.240707 0.970598i \(-0.422621\pi\)
0.240707 + 0.970598i \(0.422621\pi\)
\(480\) 0 0
\(481\) 0.134890i 0.00615044i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.07417 + 1.19752i 0.0941831 + 0.0543766i
\(486\) 0 0
\(487\) −4.92393 8.52850i −0.223125 0.386463i 0.732631 0.680627i \(-0.238292\pi\)
−0.955755 + 0.294163i \(0.904959\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.74760 3.89573i 0.304515 0.175812i −0.339954 0.940442i \(-0.610412\pi\)
0.644469 + 0.764630i \(0.277078\pi\)
\(492\) 0 0
\(493\) 0.301619i 0.0135842i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.3179 + 6.30282i 0.462821 + 0.282720i
\(498\) 0 0
\(499\) −23.7900 −1.06499 −0.532493 0.846434i \(-0.678745\pi\)
−0.532493 + 0.846434i \(0.678745\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.1692 0.676363 0.338182 0.941081i \(-0.390188\pi\)
0.338182 + 0.941081i \(0.390188\pi\)
\(504\) 0 0
\(505\) −24.0178 −1.06878
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.1830 0.761624 0.380812 0.924652i \(-0.375644\pi\)
0.380812 + 0.924652i \(0.375644\pi\)
\(510\) 0 0
\(511\) 0.282722 11.4116i 0.0125069 0.504819i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.0988i 0.841592i
\(516\) 0 0
\(517\) −14.7003 + 8.48722i −0.646518 + 0.373267i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.70778 + 15.0823i 0.381495 + 0.660768i 0.991276 0.131802i \(-0.0420762\pi\)
−0.609782 + 0.792570i \(0.708743\pi\)
\(522\) 0 0
\(523\) 25.5361 + 14.7432i 1.11661 + 0.644677i 0.940534 0.339699i \(-0.110325\pi\)
0.176079 + 0.984376i \(0.443658\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.448441i 0.0195344i
\(528\) 0 0
\(529\) 22.0597 0.959116
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.72022 + 5.61197i 0.421029 + 0.243081i
\(534\) 0 0
\(535\) 32.4908 + 18.7586i 1.40470 + 0.811004i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −29.8971 + 15.3397i −1.28776 + 0.660728i
\(540\) 0 0
\(541\) 3.51522 6.08854i 0.151131 0.261767i −0.780512 0.625140i \(-0.785042\pi\)
0.931644 + 0.363373i \(0.118375\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.80561 3.12740i −0.0773437 0.133963i
\(546\) 0 0
\(547\) 15.9847 27.6863i 0.683456 1.18378i −0.290463 0.956886i \(-0.593809\pi\)
0.973919 0.226894i \(-0.0728572\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.20509 12.4796i −0.306947 0.531648i
\(552\) 0 0
\(553\) −31.4263 0.778586i −1.33638 0.0331089i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.37676 + 3.10427i −0.227821 + 0.131532i −0.609566 0.792735i \(-0.708656\pi\)
0.381746 + 0.924267i \(0.375323\pi\)
\(558\) 0 0
\(559\) 7.32264i 0.309715i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.0447 + 24.3261i −0.591913 + 1.02522i 0.402062 + 0.915613i \(0.368294\pi\)
−0.993975 + 0.109611i \(0.965040\pi\)
\(564\) 0 0
\(565\) 21.3001 12.2976i 0.896101 0.517364i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −28.3016 + 16.3399i −1.18646 + 0.685005i −0.957501 0.288430i \(-0.906867\pi\)
−0.228963 + 0.973435i \(0.573533\pi\)
\(570\) 0 0
\(571\) 8.71183 15.0893i 0.364579 0.631469i −0.624130 0.781321i \(-0.714546\pi\)
0.988708 + 0.149852i \(0.0478797\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.956098i 0.0398720i
\(576\) 0 0
\(577\) 29.9406 17.2862i 1.24645 0.719635i 0.276047 0.961144i \(-0.410976\pi\)
0.970399 + 0.241509i \(0.0776423\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.11345 + 7.55063i 0.170655 + 0.313253i
\(582\) 0 0
\(583\) 14.7402 + 25.5309i 0.610479 + 1.05738i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.01942 + 12.1580i −0.289722 + 0.501814i −0.973743 0.227648i \(-0.926896\pi\)
0.684021 + 0.729462i \(0.260230\pi\)
\(588\) 0 0
\(589\) 10.7124 + 18.5544i 0.441396 + 0.764520i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.5686 39.0900i 0.926782 1.60523i 0.138112 0.990417i \(-0.455897\pi\)
0.788670 0.614817i \(-0.210770\pi\)
\(594\) 0 0
\(595\) 0.472404 + 0.0117038i 0.0193667 + 0.000479809i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9.51980 + 5.49626i 0.388969 + 0.224571i 0.681713 0.731620i \(-0.261235\pi\)
−0.292745 + 0.956191i \(0.594569\pi\)
\(600\) 0 0
\(601\) −31.1448 17.9815i −1.27042 0.733479i −0.295356 0.955387i \(-0.595438\pi\)
−0.975068 + 0.221908i \(0.928772\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.1298 0.981015
\(606\) 0 0
\(607\) 25.2806i 1.02611i −0.858357 0.513053i \(-0.828514\pi\)
0.858357 0.513053i \(-0.171486\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.05691 + 1.76491i 0.123669 + 0.0714004i
\(612\) 0 0
\(613\) 1.24691 + 2.15971i 0.0503621 + 0.0872298i 0.890108 0.455751i \(-0.150629\pi\)
−0.839745 + 0.542980i \(0.817296\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.91940 4.57227i 0.318823 0.184072i −0.332045 0.943264i \(-0.607739\pi\)
0.650868 + 0.759191i \(0.274405\pi\)
\(618\) 0 0
\(619\) 24.8019i 0.996873i −0.866926 0.498437i \(-0.833908\pi\)
0.866926 0.498437i \(-0.166092\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.69134 4.94021i −0.107826 0.197925i
\(624\) 0 0
\(625\) −19.0980 −0.763922
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.0120463 0.000480317
\(630\) 0 0
\(631\) 8.66061 0.344773 0.172387 0.985029i \(-0.444852\pi\)
0.172387 + 0.985029i \(0.444852\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.7367 0.584807
\(636\) 0 0
\(637\) 5.87104 + 3.78920i 0.232619 + 0.150134i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.0736i 0.911351i −0.890146 0.455676i \(-0.849398\pi\)
0.890146 0.455676i \(-0.150602\pi\)
\(642\) 0 0
\(643\) −15.8108 + 9.12837i −0.623517 + 0.359988i −0.778237 0.627971i \(-0.783886\pi\)
0.154720 + 0.987958i \(0.450552\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.59782 2.76751i −0.0628168 0.108802i 0.832907 0.553413i \(-0.186675\pi\)
−0.895723 + 0.444612i \(0.853342\pi\)
\(648\) 0 0
\(649\) 40.5959 + 23.4380i 1.59353 + 0.920023i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.0411i 0.784269i −0.919908 0.392134i \(-0.871737\pi\)
0.919908 0.392134i \(-0.128263\pi\)
\(654\) 0 0
\(655\) 21.0360 0.821946
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 29.7095 + 17.1528i 1.15732 + 0.668178i 0.950660 0.310235i \(-0.100408\pi\)
0.206658 + 0.978413i \(0.433741\pi\)
\(660\) 0 0
\(661\) 24.6383 + 14.2249i 0.958320 + 0.553286i 0.895656 0.444748i \(-0.146707\pi\)
0.0626645 + 0.998035i \(0.480040\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −19.8255 + 10.8006i −0.768798 + 0.418828i
\(666\) 0 0
\(667\) −1.64045 + 2.84134i −0.0635183 + 0.110017i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 31.2838 + 54.1851i 1.20770 + 2.09179i
\(672\) 0 0
\(673\) 12.9705 22.4656i 0.499977 0.865986i −0.500023 0.866012i \(-0.666675\pi\)
1.00000 2.64053e-5i \(8.40506e-6\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.1894 + 31.5050i 0.699075 + 1.21083i 0.968787 + 0.247893i \(0.0797381\pi\)
−0.269712 + 0.962941i \(0.586929\pi\)
\(678\) 0 0
\(679\) −2.77739 + 1.51307i −0.106586 + 0.0580665i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.25354 0.723729i 0.0479652 0.0276927i −0.475826 0.879540i \(-0.657851\pi\)
0.523791 + 0.851847i \(0.324517\pi\)
\(684\) 0 0
\(685\) 30.8273i 1.17785i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.06522 5.30911i 0.116775 0.202261i
\(690\) 0 0
\(691\) −31.1043 + 17.9581i −1.18326 + 0.683157i −0.956767 0.290856i \(-0.906060\pi\)
−0.226495 + 0.974012i \(0.572727\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −25.3184 + 14.6176i −0.960381 + 0.554476i
\(696\) 0 0
\(697\) −0.501175 + 0.868061i −0.0189834 + 0.0328802i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.3851i 1.56309i 0.623847 + 0.781547i \(0.285569\pi\)
−0.623847 + 0.781547i \(0.714431\pi\)
\(702\) 0 0
\(703\) −0.498419 + 0.287762i −0.0187982 + 0.0108532i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.5339 27.0665i 0.621822 1.01794i
\(708\) 0 0
\(709\) 9.22204 + 15.9730i 0.346341 + 0.599880i 0.985596 0.169114i \(-0.0540907\pi\)
−0.639256 + 0.768994i \(0.720757\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.43898 4.22444i 0.0913406 0.158207i
\(714\) 0 0
\(715\) −4.80032 8.31440i −0.179522 0.310941i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.923351 1.59929i 0.0344352 0.0596435i −0.848294 0.529525i \(-0.822370\pi\)
0.882729 + 0.469882i \(0.155703\pi\)
\(720\) 0 0
\(721\) −21.5231 13.1476i −0.801561 0.489644i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.88897 + 1.66795i 0.107294 + 0.0619460i
\(726\) 0 0
\(727\) −28.4243 16.4108i −1.05420 0.608642i −0.130378 0.991464i \(-0.541619\pi\)
−0.923822 + 0.382822i \(0.874952\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.653946 0.0241871
\(732\) 0 0
\(733\) 15.4249i 0.569731i 0.958567 + 0.284866i \(0.0919490\pi\)
−0.958567 + 0.284866i \(0.908051\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −63.0026 36.3746i −2.32073 1.33987i
\(738\) 0 0
\(739\) −11.6142 20.1165i −0.427237 0.739996i 0.569390 0.822068i \(-0.307180\pi\)
−0.996626 + 0.0820719i \(0.973846\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.5757 + 13.6114i −0.864908 + 0.499355i −0.865653 0.500645i \(-0.833096\pi\)
0.000744979 1.00000i \(0.499763\pi\)
\(744\) 0 0
\(745\) 28.8227i 1.05598i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −43.5064 + 23.7016i −1.58969 + 0.866036i
\(750\) 0 0
\(751\) 21.3098 0.777607 0.388804 0.921321i \(-0.372888\pi\)
0.388804 + 0.921321i \(0.372888\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 31.0844 1.13128
\(756\) 0 0
\(757\) 43.2079 1.57042 0.785209 0.619231i \(-0.212556\pi\)
0.785209 + 0.619231i \(0.212556\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 49.7704 1.80417 0.902087 0.431554i \(-0.142035\pi\)
0.902087 + 0.431554i \(0.142035\pi\)
\(762\) 0 0
\(763\) 4.76736 + 0.118111i 0.172590 + 0.00427591i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.74781i 0.351973i
\(768\) 0 0
\(769\) −15.1354 + 8.73843i −0.545797 + 0.315116i −0.747425 0.664346i \(-0.768710\pi\)
0.201628 + 0.979462i \(0.435377\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 20.7020 + 35.8569i 0.744598 + 1.28968i 0.950382 + 0.311085i \(0.100692\pi\)
−0.205784 + 0.978597i \(0.565974\pi\)
\(774\) 0 0
\(775\) −4.29526 2.47987i −0.154290 0.0890796i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 47.8884i 1.71578i
\(780\) 0 0
\(781\) 21.9371 0.784970
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.05958 3.49850i −0.216276 0.124867i
\(786\) 0 0
\(787\) 21.8422 + 12.6106i 0.778591 + 0.449519i 0.835931 0.548835i \(-0.184929\pi\)
−0.0573400 + 0.998355i \(0.518262\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.804431 + 32.4695i −0.0286023 + 1.15448i
\(792\) 0 0
\(793\) 6.50543 11.2677i 0.231014 0.400129i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.8320 25.6898i −0.525377 0.909980i −0.999563 0.0295555i \(-0.990591\pi\)
0.474186 0.880425i \(-0.342743\pi\)
\(798\) 0 0
\(799\) −0.157614 + 0.272996i −0.00557600 + 0.00965791i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.3557 17.9365i −0.365443 0.632966i
\(804\) 0 0
\(805\) 4.38653 + 2.67957i 0.154605 + 0.0944423i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.88592 + 3.39824i −0.206938 + 0.119476i −0.599888 0.800084i \(-0.704788\pi\)
0.392950 + 0.919560i \(0.371455\pi\)
\(810\) 0 0
\(811\) 0.00414872i 0.000145681i 1.00000 7.28407e-5i \(2.31859e-5\pi\)
−1.00000 7.28407e-5i \(0.999977\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.8626 + 24.0107i −0.485585 + 0.841059i
\(816\) 0 0
\(817\) −27.0572 + 15.6215i −0.946613 + 0.546527i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.8842 14.3669i 0.868465 0.501409i 0.00162745 0.999999i \(-0.499482\pi\)
0.866838 + 0.498590i \(0.166149\pi\)
\(822\) 0 0
\(823\) 25.3472 43.9026i 0.883547 1.53035i 0.0361761 0.999345i \(-0.488482\pi\)
0.847371 0.531002i \(-0.178184\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.19233i 0.111008i 0.998458 + 0.0555041i \(0.0176766\pi\)
−0.998458 + 0.0555041i \(0.982323\pi\)
\(828\) 0 0
\(829\) −41.4645 + 23.9395i −1.44012 + 0.831454i −0.997857 0.0654311i \(-0.979158\pi\)
−0.442264 + 0.896885i \(0.645824\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.338394 + 0.524312i −0.0117246 + 0.0181663i
\(834\) 0 0
\(835\) 3.91188 + 6.77557i 0.135376 + 0.234478i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.18287 10.7091i 0.213456 0.369717i −0.739337 0.673335i \(-0.764861\pi\)
0.952794 + 0.303618i \(0.0981945\pi\)
\(840\) 0 0
\(841\) −8.77636 15.2011i −0.302633 0.524176i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.0246 20.8272i 0.413658 0.716476i
\(846\) 0 0
\(847\) −16.6110 + 27.1927i −0.570761 + 0.934352i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.113479 + 0.0655174i 0.00389003 + 0.00224591i
\(852\) 0 0
\(853\) −20.3474 11.7476i −0.696680 0.402229i 0.109429 0.993995i \(-0.465098\pi\)
−0.806110 + 0.591766i \(0.798431\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −17.5192 −0.598444 −0.299222 0.954183i \(-0.596727\pi\)
−0.299222 + 0.954183i \(0.596727\pi\)
\(858\) 0 0
\(859\) 13.7668i 0.469716i 0.972030 + 0.234858i \(0.0754625\pi\)
−0.972030 + 0.234858i \(0.924537\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22.0835 12.7499i −0.751732 0.434013i 0.0745872 0.997214i \(-0.476236\pi\)
−0.826319 + 0.563202i \(0.809569\pi\)
\(864\) 0 0
\(865\) 17.9639 + 31.1144i 0.610791 + 1.05792i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −49.3953 + 28.5184i −1.67562 + 0.967420i
\(870\) 0 0
\(871\) 15.1281i 0.512596i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 16.5409 27.0779i 0.559183 0.915399i
\(876\) 0 0
\(877\) −51.9791 −1.75521 −0.877604 0.479386i \(-0.840859\pi\)
−0.877604 + 0.479386i \(0.840859\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37.6723 1.26921 0.634607 0.772835i \(-0.281162\pi\)
0.634607 + 0.772835i \(0.281162\pi\)
\(882\) 0 0
\(883\) −37.4259 −1.25948 −0.629741 0.776805i \(-0.716839\pi\)
−0.629741 + 0.776805i \(0.716839\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −54.9081 −1.84363 −0.921817 0.387625i \(-0.873295\pi\)
−0.921817 + 0.387625i \(0.873295\pi\)
\(888\) 0 0
\(889\) −10.1448 + 16.6073i −0.340245 + 0.556990i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15.0604i 0.503977i
\(894\) 0 0
\(895\) 11.8915 6.86557i 0.397490 0.229491i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.50979 14.7394i −0.283817 0.491586i
\(900\) 0 0
\(901\) 0.474128 + 0.273738i 0.0157955 + 0.00911954i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24.2446i 0.805919i
\(906\) 0 0
\(907\) −8.65342 −0.287332 −0.143666 0.989626i \(-0.545889\pi\)
−0.143666 + 0.989626i \(0.545889\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.63346 + 5.56188i 0.319171 + 0.184273i 0.651023 0.759058i \(-0.274340\pi\)
−0.331852 + 0.943331i \(0.607673\pi\)
\(912\) 0 0
\(913\) 13.5106 + 7.80037i 0.447137 + 0.258155i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14.4813 + 23.7062i −0.478214 + 0.782849i
\(918\) 0 0
\(919\) 22.9971 39.8322i 0.758605 1.31394i −0.184957 0.982747i \(-0.559215\pi\)
0.943562 0.331196i \(-0.107452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.28089 3.95062i −0.0750765 0.130036i
\(924\) 0 0
\(925\) 0.0666158 0.115382i 0.00219031 0.00379373i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.9035 31.0097i −0.587394 1.01740i −0.994572 0.104048i \(-0.966820\pi\)
0.407178 0.913349i \(-0.366513\pi\)
\(930\) 0 0
\(931\) 1.47636 29.7772i 0.0483858 0.975907i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.742515 0.428691i 0.0242828 0.0140197i
\(936\) 0 0
\(937\) 1.01234i 0.0330718i −0.999863 0.0165359i \(-0.994736\pi\)
0.999863 0.0165359i \(-0.00526377\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −17.7953 + 30.8223i −0.580109 + 1.00478i 0.415357 + 0.909658i \(0.363657\pi\)
−0.995466 + 0.0951193i \(0.969677\pi\)
\(942\) 0 0
\(943\) −9.44243 + 5.45159i −0.307488 + 0.177528i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.6494 + 15.9634i −0.898485 + 0.518741i −0.876708 0.481022i \(-0.840266\pi\)
−0.0217769 + 0.999763i \(0.506932\pi\)
\(948\) 0 0
\(949\) −2.15344 + 3.72988i −0.0699038 + 0.121077i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.6179i 0.700273i −0.936699 0.350136i \(-0.886135\pi\)
0.936699 0.350136i \(-0.113865\pi\)
\(954\) 0 0
\(955\) 14.7429 8.51181i 0.477069 0.275436i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −34.7404 21.2216i −1.12183 0.685282i
\(960\) 0 0
\(961\) −2.84783 4.93258i −0.0918653 0.159115i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.6199 23.5903i 0.438439 0.759398i
\(966\) 0 0
\(967\) 7.79433 + 13.5002i 0.250649 + 0.434137i 0.963705 0.266971i \(-0.0860227\pi\)
−0.713056 + 0.701107i \(0.752689\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.94294 10.2935i 0.190718 0.330334i −0.754770 0.655989i \(-0.772252\pi\)
0.945488 + 0.325656i \(0.105585\pi\)
\(972\) 0 0
\(973\) 0.956188 38.5949i 0.0306540 1.23730i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −37.6105 21.7144i −1.20327 0.694706i −0.241986 0.970280i \(-0.577799\pi\)
−0.961280 + 0.275573i \(0.911132\pi\)
\(978\) 0 0
\(979\) −8.83971 5.10361i −0.282518 0.163112i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 34.9407 1.11444 0.557218 0.830366i \(-0.311869\pi\)
0.557218 + 0.830366i \(0.311869\pi\)
\(984\) 0 0
\(985\) 47.1955i 1.50377i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.16036 + 3.55669i 0.195888 + 0.113096i
\(990\) 0 0
\(991\) 2.17783 + 3.77211i 0.0691811 + 0.119825i 0.898541 0.438889i \(-0.144628\pi\)
−0.829360 + 0.558715i \(0.811295\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 23.6004 13.6257i 0.748183 0.431964i
\(996\) 0 0
\(997\) 50.4909i 1.59906i −0.600625 0.799531i \(-0.705082\pi\)
0.600625 0.799531i \(-0.294918\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.bm.j.593.4 32
3.2 odd 2 inner 2268.2.bm.j.593.13 32
7.3 odd 6 2268.2.w.j.269.4 32
9.2 odd 6 2268.2.t.c.2105.4 yes 32
9.4 even 3 2268.2.w.j.1349.13 32
9.5 odd 6 2268.2.w.j.1349.4 32
9.7 even 3 2268.2.t.c.2105.13 yes 32
21.17 even 6 2268.2.w.j.269.13 32
63.31 odd 6 inner 2268.2.bm.j.1025.13 32
63.38 even 6 2268.2.t.c.1781.13 yes 32
63.52 odd 6 2268.2.t.c.1781.4 32
63.59 even 6 inner 2268.2.bm.j.1025.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.4 32 63.52 odd 6
2268.2.t.c.1781.13 yes 32 63.38 even 6
2268.2.t.c.2105.4 yes 32 9.2 odd 6
2268.2.t.c.2105.13 yes 32 9.7 even 3
2268.2.w.j.269.4 32 7.3 odd 6
2268.2.w.j.269.13 32 21.17 even 6
2268.2.w.j.1349.4 32 9.5 odd 6
2268.2.w.j.1349.13 32 9.4 even 3
2268.2.bm.j.593.4 32 1.1 even 1 trivial
2268.2.bm.j.593.13 32 3.2 odd 2 inner
2268.2.bm.j.1025.4 32 63.59 even 6 inner
2268.2.bm.j.1025.13 32 63.31 odd 6 inner