Properties

Label 2268.2.w.j.269.4
Level $2268$
Weight $2$
Character 2268.269
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(269,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.269"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.4
Character \(\chi\) \(=\) 2268.269
Dual form 2268.2.w.j.1349.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00175 + 1.73509i) q^{5} +(1.26572 - 2.32335i) q^{7} +(-4.15726 + 2.40020i) q^{11} +(0.864497 - 0.499118i) q^{13} +(0.0445736 - 0.0772037i) q^{17} +(3.68849 - 2.12955i) q^{19} +(0.839792 + 0.484854i) q^{23} +(0.492982 + 0.853871i) q^{25} +(-2.93010 - 1.69169i) q^{29} +5.03034i q^{31} +(2.76327 + 4.52356i) q^{35} +(-0.0675641 - 0.117024i) q^{37} +(5.62189 + 9.73740i) q^{41} +(-3.66779 + 6.35280i) q^{43} -3.53605 q^{47} +(-3.79590 - 5.88142i) q^{49} +(5.31849 + 3.07063i) q^{53} -9.61761i q^{55} -9.76504 q^{59} +13.0338i q^{61} +1.99997i q^{65} -15.1548 q^{67} +4.56985i q^{71} +(3.73647 + 2.15725i) q^{73} +(0.314561 + 12.6968i) q^{77} +11.8817 q^{79} +(1.62494 - 2.81449i) q^{83} +(0.0893034 + 0.154678i) q^{85} +(-1.06316 - 1.84146i) q^{89} +(-0.0654127 - 2.64027i) q^{91} +8.53314i q^{95} +(1.03527 + 0.597713i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} + 12 q^{13} - 16 q^{25} - 4 q^{37} - 4 q^{43} + 20 q^{49} - 8 q^{67} - 36 q^{73} - 56 q^{79} + 12 q^{85} - 36 q^{91} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00175 + 1.73509i −0.447998 + 0.775954i −0.998256 0.0590402i \(-0.981196\pi\)
0.550258 + 0.834995i \(0.314529\pi\)
\(6\) 0 0
\(7\) 1.26572 2.32335i 0.478397 0.878143i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.15726 + 2.40020i −1.25346 + 0.723686i −0.971795 0.235826i \(-0.924220\pi\)
−0.281666 + 0.959512i \(0.590887\pi\)
\(12\) 0 0
\(13\) 0.864497 0.499118i 0.239768 0.138430i −0.375302 0.926903i \(-0.622461\pi\)
0.615070 + 0.788472i \(0.289128\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.0445736 0.0772037i 0.0108107 0.0187246i −0.860569 0.509333i \(-0.829892\pi\)
0.871380 + 0.490608i \(0.163225\pi\)
\(18\) 0 0
\(19\) 3.68849 2.12955i 0.846198 0.488553i −0.0131681 0.999913i \(-0.504192\pi\)
0.859366 + 0.511361i \(0.170858\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.839792 + 0.484854i 0.175109 + 0.101099i 0.584993 0.811039i \(-0.301097\pi\)
−0.409884 + 0.912138i \(0.634431\pi\)
\(24\) 0 0
\(25\) 0.492982 + 0.853871i 0.0985965 + 0.170774i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.93010 1.69169i −0.544105 0.314139i 0.202636 0.979254i \(-0.435049\pi\)
−0.746741 + 0.665115i \(0.768383\pi\)
\(30\) 0 0
\(31\) 5.03034i 0.903476i 0.892151 + 0.451738i \(0.149196\pi\)
−0.892151 + 0.451738i \(0.850804\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.76327 + 4.52356i 0.467078 + 0.764621i
\(36\) 0 0
\(37\) −0.0675641 0.117024i −0.0111075 0.0192387i 0.860418 0.509589i \(-0.170202\pi\)
−0.871526 + 0.490350i \(0.836869\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.62189 + 9.73740i 0.877992 + 1.52073i 0.853541 + 0.521025i \(0.174450\pi\)
0.0244505 + 0.999701i \(0.492216\pi\)
\(42\) 0 0
\(43\) −3.66779 + 6.35280i −0.559333 + 0.968793i 0.438219 + 0.898868i \(0.355609\pi\)
−0.997552 + 0.0699250i \(0.977724\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.53605 −0.515786 −0.257893 0.966173i \(-0.583028\pi\)
−0.257893 + 0.966173i \(0.583028\pi\)
\(48\) 0 0
\(49\) −3.79590 5.88142i −0.542272 0.840203i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.31849 + 3.07063i 0.730551 + 0.421784i 0.818624 0.574330i \(-0.194737\pi\)
−0.0880726 + 0.996114i \(0.528071\pi\)
\(54\) 0 0
\(55\) 9.61761i 1.29684i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.76504 −1.27130 −0.635650 0.771977i \(-0.719268\pi\)
−0.635650 + 0.771977i \(0.719268\pi\)
\(60\) 0 0
\(61\) 13.0338i 1.66881i 0.551149 + 0.834407i \(0.314190\pi\)
−0.551149 + 0.834407i \(0.685810\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.99997i 0.248066i
\(66\) 0 0
\(67\) −15.1548 −1.85146 −0.925728 0.378189i \(-0.876547\pi\)
−0.925728 + 0.378189i \(0.876547\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.56985i 0.542341i 0.962531 + 0.271171i \(0.0874108\pi\)
−0.962531 + 0.271171i \(0.912589\pi\)
\(72\) 0 0
\(73\) 3.73647 + 2.15725i 0.437321 + 0.252487i 0.702460 0.711723i \(-0.252085\pi\)
−0.265140 + 0.964210i \(0.585418\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.314561 + 12.6968i 0.0358476 + 1.44693i
\(78\) 0 0
\(79\) 11.8817 1.33679 0.668397 0.743805i \(-0.266981\pi\)
0.668397 + 0.743805i \(0.266981\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.62494 2.81449i 0.178361 0.308930i −0.762958 0.646448i \(-0.776254\pi\)
0.941319 + 0.337518i \(0.109587\pi\)
\(84\) 0 0
\(85\) 0.0893034 + 0.154678i 0.00968631 + 0.0167772i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.06316 1.84146i −0.112695 0.195194i 0.804161 0.594412i \(-0.202615\pi\)
−0.916856 + 0.399218i \(0.869282\pi\)
\(90\) 0 0
\(91\) −0.0654127 2.64027i −0.00685711 0.276776i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.53314i 0.875482i
\(96\) 0 0
\(97\) 1.03527 + 0.597713i 0.105116 + 0.0606885i 0.551636 0.834085i \(-0.314004\pi\)
−0.446521 + 0.894773i \(0.647337\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.99395 + 10.3818i 0.596420 + 1.03303i 0.993345 + 0.115179i \(0.0367440\pi\)
−0.396925 + 0.917851i \(0.629923\pi\)
\(102\) 0 0
\(103\) −8.25554 4.76634i −0.813442 0.469641i 0.0347074 0.999398i \(-0.488950\pi\)
−0.848150 + 0.529756i \(0.822283\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.2170 9.36287i 1.56775 0.905143i 0.571323 0.820725i \(-0.306430\pi\)
0.996430 0.0844177i \(-0.0269030\pi\)
\(108\) 0 0
\(109\) 0.901223 1.56096i 0.0863215 0.149513i −0.819632 0.572890i \(-0.805822\pi\)
0.905954 + 0.423377i \(0.139155\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.6314 + 6.13804i −1.00012 + 0.577419i −0.908283 0.418356i \(-0.862607\pi\)
−0.0918351 + 0.995774i \(0.529273\pi\)
\(114\) 0 0
\(115\) −1.68253 + 0.971408i −0.156896 + 0.0905842i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.122953 0.201278i −0.0112711 0.0184511i
\(120\) 0 0
\(121\) 6.02189 10.4302i 0.547444 0.948201i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.9929 −1.07268
\(126\) 0 0
\(127\) −7.35545 −0.652690 −0.326345 0.945251i \(-0.605817\pi\)
−0.326345 + 0.945251i \(0.605817\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.24981 + 9.09293i −0.458678 + 0.794453i −0.998891 0.0470748i \(-0.985010\pi\)
0.540214 + 0.841528i \(0.318343\pi\)
\(132\) 0 0
\(133\) −0.279092 11.2651i −0.0242003 0.976806i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.3253 + 7.69335i −1.13845 + 0.657287i −0.946047 0.324028i \(-0.894963\pi\)
−0.192407 + 0.981315i \(0.561629\pi\)
\(138\) 0 0
\(139\) −12.6370 + 7.29600i −1.07186 + 0.618838i −0.928689 0.370860i \(-0.879063\pi\)
−0.143171 + 0.989698i \(0.545730\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.39596 + 4.14993i −0.200360 + 0.347034i
\(144\) 0 0
\(145\) 5.87046 3.38931i 0.487515 0.281467i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.4588 + 7.19307i 1.02066 + 0.589279i 0.914295 0.405048i \(-0.132745\pi\)
0.106366 + 0.994327i \(0.466079\pi\)
\(150\) 0 0
\(151\) 7.75751 + 13.4364i 0.631297 + 1.09344i 0.987287 + 0.158949i \(0.0508104\pi\)
−0.355990 + 0.934490i \(0.615856\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.72808 5.03916i −0.701056 0.404755i
\(156\) 0 0
\(157\) 3.49238i 0.278722i 0.990242 + 0.139361i \(0.0445049\pi\)
−0.990242 + 0.139361i \(0.955495\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.18943 1.33744i 0.172551 0.105405i
\(162\) 0 0
\(163\) 6.91917 + 11.9844i 0.541951 + 0.938687i 0.998792 + 0.0491384i \(0.0156475\pi\)
−0.456841 + 0.889548i \(0.651019\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.95252 + 3.38186i 0.151090 + 0.261696i 0.931629 0.363412i \(-0.118388\pi\)
−0.780538 + 0.625108i \(0.785055\pi\)
\(168\) 0 0
\(169\) −6.00176 + 10.3954i −0.461674 + 0.799643i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −17.9325 −1.36338 −0.681690 0.731641i \(-0.738755\pi\)
−0.681690 + 0.731641i \(0.738755\pi\)
\(174\) 0 0
\(175\) 2.60782 0.0646086i 0.197132 0.00488395i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.93535 + 3.42678i 0.443629 + 0.256129i 0.705136 0.709072i \(-0.250886\pi\)
−0.261507 + 0.965202i \(0.584219\pi\)
\(180\) 0 0
\(181\) 12.1011i 0.899468i −0.893163 0.449734i \(-0.851519\pi\)
0.893163 0.449734i \(-0.148481\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.270730 0.0199045
\(186\) 0 0
\(187\) 0.427941i 0.0312942i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.49691i 0.614815i −0.951578 0.307408i \(-0.900539\pi\)
0.951578 0.307408i \(-0.0994615\pi\)
\(192\) 0 0
\(193\) 13.5960 0.978663 0.489331 0.872098i \(-0.337241\pi\)
0.489331 + 0.872098i \(0.337241\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.5565i 1.67833i 0.543878 + 0.839164i \(0.316955\pi\)
−0.543878 + 0.839164i \(0.683045\pi\)
\(198\) 0 0
\(199\) −11.7796 6.80093i −0.835030 0.482105i 0.0205416 0.999789i \(-0.493461\pi\)
−0.855572 + 0.517684i \(0.826794\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.63907 + 4.66643i −0.536158 + 0.327519i
\(204\) 0 0
\(205\) −22.5270 −1.57335
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.2227 + 17.7062i −0.707118 + 1.22476i
\(210\) 0 0
\(211\) 8.44148 + 14.6211i 0.581136 + 1.00656i 0.995345 + 0.0963750i \(0.0307248\pi\)
−0.414209 + 0.910182i \(0.635942\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.34844 12.7279i −0.501160 0.868034i
\(216\) 0 0
\(217\) 11.6872 + 6.36701i 0.793382 + 0.432221i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.0889898i 0.00598610i
\(222\) 0 0
\(223\) −3.83410 2.21362i −0.256750 0.148235i 0.366101 0.930575i \(-0.380692\pi\)
−0.622851 + 0.782340i \(0.714026\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.69552 11.5970i −0.444397 0.769718i 0.553613 0.832774i \(-0.313249\pi\)
−0.998010 + 0.0630557i \(0.979915\pi\)
\(228\) 0 0
\(229\) −6.62507 3.82498i −0.437797 0.252762i 0.264866 0.964285i \(-0.414672\pi\)
−0.702663 + 0.711523i \(0.748006\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.1646 7.02323i 0.796929 0.460107i −0.0454674 0.998966i \(-0.514478\pi\)
0.842396 + 0.538859i \(0.181144\pi\)
\(234\) 0 0
\(235\) 3.54225 6.13535i 0.231071 0.400226i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.5035 8.37362i 0.938156 0.541644i 0.0487739 0.998810i \(-0.484469\pi\)
0.889382 + 0.457165i \(0.151135\pi\)
\(240\) 0 0
\(241\) 26.5411 15.3235i 1.70967 0.987076i 0.774705 0.632323i \(-0.217898\pi\)
0.934960 0.354753i \(-0.115435\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 14.0073 0.694489i 0.894896 0.0443692i
\(246\) 0 0
\(247\) 2.12579 3.68198i 0.135261 0.234279i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.56378 −0.288063 −0.144032 0.989573i \(-0.546007\pi\)
−0.144032 + 0.989573i \(0.546007\pi\)
\(252\) 0 0
\(253\) −4.65498 −0.292656
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.3918 23.1954i 0.835361 1.44689i −0.0583759 0.998295i \(-0.518592\pi\)
0.893736 0.448592i \(-0.148074\pi\)
\(258\) 0 0
\(259\) −0.357406 + 0.00885471i −0.0222081 + 0.000550205i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.1138 10.4580i 1.11695 0.644869i 0.176326 0.984332i \(-0.443579\pi\)
0.940619 + 0.339463i \(0.110245\pi\)
\(264\) 0 0
\(265\) −10.6556 + 6.15203i −0.654570 + 0.377916i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.3200 + 23.0709i −0.812133 + 1.40666i 0.0992351 + 0.995064i \(0.468360\pi\)
−0.911368 + 0.411592i \(0.864973\pi\)
\(270\) 0 0
\(271\) 17.6224 10.1743i 1.07048 0.618045i 0.142171 0.989842i \(-0.454592\pi\)
0.928314 + 0.371798i \(0.121258\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.09891 2.36651i −0.247174 0.142706i
\(276\) 0 0
\(277\) −1.02112 1.76863i −0.0613531 0.106267i 0.833717 0.552191i \(-0.186208\pi\)
−0.895070 + 0.445925i \(0.852875\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.6608 + 8.46441i 0.874590 + 0.504945i 0.868871 0.495039i \(-0.164846\pi\)
0.00571889 + 0.999984i \(0.498180\pi\)
\(282\) 0 0
\(283\) 11.5134i 0.684400i −0.939627 0.342200i \(-0.888828\pi\)
0.939627 0.342200i \(-0.111172\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 29.7391 0.736786i 1.75544 0.0434911i
\(288\) 0 0
\(289\) 8.49603 + 14.7155i 0.499766 + 0.865621i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.4055 18.0229i −0.607898 1.05291i −0.991586 0.129447i \(-0.958680\pi\)
0.383689 0.923463i \(-0.374654\pi\)
\(294\) 0 0
\(295\) 9.78216 16.9432i 0.569539 0.986471i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.967997 0.0559807
\(300\) 0 0
\(301\) 10.1174 + 16.5624i 0.583156 + 0.954643i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −22.6149 13.0567i −1.29492 0.747624i
\(306\) 0 0
\(307\) 2.00298i 0.114316i 0.998365 + 0.0571580i \(0.0182039\pi\)
−0.998365 + 0.0571580i \(0.981796\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.70747 −0.493756 −0.246878 0.969047i \(-0.579405\pi\)
−0.246878 + 0.969047i \(0.579405\pi\)
\(312\) 0 0
\(313\) 11.0181i 0.622782i 0.950282 + 0.311391i \(0.100795\pi\)
−0.950282 + 0.311391i \(0.899205\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.4569i 0.643483i 0.946828 + 0.321742i \(0.104268\pi\)
−0.946828 + 0.321742i \(0.895732\pi\)
\(318\) 0 0
\(319\) 16.2416 0.909353
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.379687i 0.0211263i
\(324\) 0 0
\(325\) 0.852364 + 0.492113i 0.0472806 + 0.0272975i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.47565 + 8.21548i −0.246751 + 0.452934i
\(330\) 0 0
\(331\) 5.41191 0.297466 0.148733 0.988877i \(-0.452481\pi\)
0.148733 + 0.988877i \(0.452481\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 15.1814 26.2949i 0.829448 1.43665i
\(336\) 0 0
\(337\) −12.1854 21.1058i −0.663783 1.14971i −0.979614 0.200890i \(-0.935617\pi\)
0.315831 0.948815i \(-0.397717\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.0738 20.9125i −0.653834 1.13247i
\(342\) 0 0
\(343\) −18.4691 + 1.37497i −0.997240 + 0.0742413i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.94211i 0.480038i −0.970768 0.240019i \(-0.922846\pi\)
0.970768 0.240019i \(-0.0771536\pi\)
\(348\) 0 0
\(349\) −9.68628 5.59238i −0.518495 0.299353i 0.217824 0.975988i \(-0.430104\pi\)
−0.736319 + 0.676635i \(0.763438\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.75651 + 11.7026i 0.359613 + 0.622867i 0.987896 0.155117i \(-0.0495756\pi\)
−0.628284 + 0.777984i \(0.716242\pi\)
\(354\) 0 0
\(355\) −7.92908 4.57786i −0.420832 0.242968i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.5673 17.0707i 1.56050 0.900957i 0.563297 0.826254i \(-0.309533\pi\)
0.997206 0.0747023i \(-0.0238007\pi\)
\(360\) 0 0
\(361\) −0.430017 + 0.744810i −0.0226324 + 0.0392006i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.48604 + 4.32206i −0.391837 + 0.226227i
\(366\) 0 0
\(367\) 0.922490 0.532600i 0.0481536 0.0278015i −0.475730 0.879591i \(-0.657816\pi\)
0.523884 + 0.851790i \(0.324483\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.8659 8.47015i 0.719881 0.439748i
\(372\) 0 0
\(373\) 2.16655 3.75257i 0.112180 0.194301i −0.804469 0.593994i \(-0.797550\pi\)
0.916649 + 0.399694i \(0.130883\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.37741 −0.173946
\(378\) 0 0
\(379\) 2.43862 0.125263 0.0626317 0.998037i \(-0.480051\pi\)
0.0626317 + 0.998037i \(0.480051\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 18.7552 32.4849i 0.958344 1.65990i 0.231819 0.972759i \(-0.425532\pi\)
0.726524 0.687141i \(-0.241135\pi\)
\(384\) 0 0
\(385\) −22.3451 12.1732i −1.13881 0.620404i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.97057 3.44711i 0.302720 0.174775i −0.340944 0.940083i \(-0.610747\pi\)
0.643664 + 0.765308i \(0.277413\pi\)
\(390\) 0 0
\(391\) 0.0748650 0.0432233i 0.00378609 0.00218590i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11.9025 + 20.6158i −0.598880 + 1.03729i
\(396\) 0 0
\(397\) −33.7783 + 19.5019i −1.69529 + 0.978774i −0.745172 + 0.666872i \(0.767633\pi\)
−0.950114 + 0.311902i \(0.899034\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.1101 + 9.30115i 0.804498 + 0.464477i 0.845042 0.534700i \(-0.179576\pi\)
−0.0405433 + 0.999178i \(0.512909\pi\)
\(402\) 0 0
\(403\) 2.51073 + 4.34872i 0.125069 + 0.216625i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.561763 + 0.324334i 0.0278456 + 0.0160766i
\(408\) 0 0
\(409\) 2.18387i 0.107985i 0.998541 + 0.0539927i \(0.0171948\pi\)
−0.998541 + 0.0539927i \(0.982805\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −12.3598 + 22.6876i −0.608187 + 1.11638i
\(414\) 0 0
\(415\) 3.25559 + 5.63884i 0.159810 + 0.276800i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.9333 25.8653i −0.729540 1.26360i −0.957078 0.289831i \(-0.906401\pi\)
0.227538 0.973769i \(-0.426933\pi\)
\(420\) 0 0
\(421\) 0.673150 1.16593i 0.0328073 0.0568240i −0.849156 0.528143i \(-0.822889\pi\)
0.881963 + 0.471319i \(0.156222\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.0878959 0.00426358
\(426\) 0 0
\(427\) 30.2822 + 16.4972i 1.46546 + 0.798356i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −22.9854 13.2706i −1.10717 0.639223i −0.169072 0.985604i \(-0.554077\pi\)
−0.938094 + 0.346381i \(0.887410\pi\)
\(432\) 0 0
\(433\) 27.4682i 1.32004i 0.751250 + 0.660018i \(0.229451\pi\)
−0.751250 + 0.660018i \(0.770549\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.13009 0.197569
\(438\) 0 0
\(439\) 4.03277i 0.192473i 0.995358 + 0.0962367i \(0.0306806\pi\)
−0.995358 + 0.0962367i \(0.969319\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 33.8425i 1.60791i −0.594693 0.803953i \(-0.702726\pi\)
0.594693 0.803953i \(-0.297274\pi\)
\(444\) 0 0
\(445\) 4.26011 0.201949
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.7395i 1.49788i −0.662638 0.748940i \(-0.730563\pi\)
0.662638 0.748940i \(-0.269437\pi\)
\(450\) 0 0
\(451\) −46.7433 26.9873i −2.20106 1.27078i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.64663 + 2.53140i 0.217837 + 0.118674i
\(456\) 0 0
\(457\) −35.5605 −1.66345 −0.831724 0.555189i \(-0.812646\pi\)
−0.831724 + 0.555189i \(0.812646\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.2947 + 28.2232i −0.758919 + 1.31449i 0.184483 + 0.982836i \(0.440939\pi\)
−0.943402 + 0.331650i \(0.892395\pi\)
\(462\) 0 0
\(463\) 10.6397 + 18.4286i 0.494471 + 0.856448i 0.999980 0.00637294i \(-0.00202858\pi\)
−0.505509 + 0.862821i \(0.668695\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.0189 32.9417i −0.880090 1.52436i −0.851240 0.524777i \(-0.824149\pi\)
−0.0288500 0.999584i \(-0.509185\pi\)
\(468\) 0 0
\(469\) −19.1818 + 35.2100i −0.885732 + 1.62584i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 35.2137i 1.61913i
\(474\) 0 0
\(475\) 3.63672 + 2.09966i 0.166864 + 0.0963392i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.26814 + 9.12468i 0.240707 + 0.416917i 0.960916 0.276840i \(-0.0892873\pi\)
−0.720209 + 0.693758i \(0.755954\pi\)
\(480\) 0 0
\(481\) −0.116818 0.0674448i −0.00532644 0.00307522i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.07417 + 1.19752i −0.0941831 + 0.0543766i
\(486\) 0 0
\(487\) −4.92393 + 8.52850i −0.223125 + 0.386463i −0.955755 0.294163i \(-0.904959\pi\)
0.732631 + 0.680627i \(0.238292\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.74760 3.89573i 0.304515 0.175812i −0.339954 0.940442i \(-0.610412\pi\)
0.644469 + 0.764630i \(0.277078\pi\)
\(492\) 0 0
\(493\) −0.261210 + 0.150809i −0.0117643 + 0.00679211i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.6174 + 5.78415i 0.476253 + 0.259455i
\(498\) 0 0
\(499\) 11.8950 20.6027i 0.532493 0.922305i −0.466787 0.884370i \(-0.654589\pi\)
0.999280 0.0379356i \(-0.0120782\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −15.1692 −0.676363 −0.338182 0.941081i \(-0.609812\pi\)
−0.338182 + 0.941081i \(0.609812\pi\)
\(504\) 0 0
\(505\) −24.0178 −1.06878
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.59151 14.8809i 0.380812 0.659586i −0.610367 0.792119i \(-0.708978\pi\)
0.991179 + 0.132533i \(0.0423112\pi\)
\(510\) 0 0
\(511\) 9.74137 5.95064i 0.430933 0.263241i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.5400 9.54939i 0.728840 0.420796i
\(516\) 0 0
\(517\) 14.7003 8.48722i 0.646518 0.373267i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8.70778 + 15.0823i −0.381495 + 0.660768i −0.991276 0.131802i \(-0.957924\pi\)
0.609782 + 0.792570i \(0.291257\pi\)
\(522\) 0 0
\(523\) 25.5361 14.7432i 1.11661 0.644677i 0.176079 0.984376i \(-0.443658\pi\)
0.940534 + 0.339699i \(0.110325\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.388361 + 0.224220i 0.0169173 + 0.00976719i
\(528\) 0 0
\(529\) −11.0298 19.1042i −0.479558 0.830619i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.72022 + 5.61197i 0.421029 + 0.243081i
\(534\) 0 0
\(535\) 37.5171i 1.62201i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 29.8971 + 15.3397i 1.28776 + 0.660728i
\(540\) 0 0
\(541\) 3.51522 + 6.08854i 0.151131 + 0.261767i 0.931644 0.363373i \(-0.118375\pi\)
−0.780512 + 0.625140i \(0.785042\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.80561 + 3.12740i 0.0773437 + 0.133963i
\(546\) 0 0
\(547\) 15.9847 27.6863i 0.683456 1.18378i −0.290463 0.956886i \(-0.593809\pi\)
0.973919 0.226894i \(-0.0728572\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −14.4102 −0.613894
\(552\) 0 0
\(553\) 15.0389 27.6053i 0.639519 1.17390i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.37676 + 3.10427i 0.227821 + 0.131532i 0.609566 0.792735i \(-0.291344\pi\)
−0.381746 + 0.924267i \(0.624677\pi\)
\(558\) 0 0
\(559\) 7.32264i 0.309715i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.0894 −1.18383 −0.591913 0.806002i \(-0.701627\pi\)
−0.591913 + 0.806002i \(0.701627\pi\)
\(564\) 0 0
\(565\) 24.5952i 1.03473i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 32.6798i 1.37001i −0.728538 0.685005i \(-0.759800\pi\)
0.728538 0.685005i \(-0.240200\pi\)
\(570\) 0 0
\(571\) −17.4237 −0.729157 −0.364579 0.931173i \(-0.618787\pi\)
−0.364579 + 0.931173i \(0.618787\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.956098i 0.0398720i
\(576\) 0 0
\(577\) 29.9406 + 17.2862i 1.24645 + 0.719635i 0.970399 0.241509i \(-0.0776423\pi\)
0.276047 + 0.961144i \(0.410976\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.48231 7.33767i −0.185958 0.304418i
\(582\) 0 0
\(583\) −29.4805 −1.22096
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.01942 12.1580i 0.289722 0.501814i −0.684021 0.729462i \(-0.739770\pi\)
0.973743 + 0.227648i \(0.0731037\pi\)
\(588\) 0 0
\(589\) 10.7124 + 18.5544i 0.441396 + 0.764520i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −22.5686 39.0900i −0.926782 1.60523i −0.788670 0.614817i \(-0.789230\pi\)
−0.138112 0.990417i \(-0.544103\pi\)
\(594\) 0 0
\(595\) 0.472404 0.0117038i 0.0193667 0.000479809i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.9925i 0.449142i −0.974458 0.224571i \(-0.927902\pi\)
0.974458 0.224571i \(-0.0720981\pi\)
\(600\) 0 0
\(601\) 31.1448 + 17.9815i 1.27042 + 0.733479i 0.975068 0.221908i \(-0.0712285\pi\)
0.295356 + 0.955387i \(0.404562\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12.0649 + 20.8970i 0.490507 + 0.849584i
\(606\) 0 0
\(607\) −21.8936 12.6403i −0.888634 0.513053i −0.0151385 0.999885i \(-0.504819\pi\)
−0.873495 + 0.486832i \(0.838152\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.05691 + 1.76491i −0.123669 + 0.0714004i
\(612\) 0 0
\(613\) 1.24691 2.15971i 0.0503621 0.0872298i −0.839745 0.542980i \(-0.817296\pi\)
0.890108 + 0.455751i \(0.150629\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.91940 4.57227i 0.318823 0.184072i −0.332045 0.943264i \(-0.607739\pi\)
0.650868 + 0.759191i \(0.274405\pi\)
\(618\) 0 0
\(619\) 21.4791 12.4010i 0.863317 0.498437i −0.00180436 0.999998i \(-0.500574\pi\)
0.865122 + 0.501562i \(0.167241\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.62401 + 0.139335i −0.225321 + 0.00558233i
\(624\) 0 0
\(625\) 9.54902 16.5394i 0.381961 0.661576i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.0120463 −0.000480317
\(630\) 0 0
\(631\) 8.66061 0.344773 0.172387 0.985029i \(-0.444852\pi\)
0.172387 + 0.985029i \(0.444852\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.36834 12.7623i 0.292404 0.506458i
\(636\) 0 0
\(637\) −6.21707 3.18987i −0.246329 0.126387i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −19.9823 + 11.5368i −0.789253 + 0.455676i −0.839700 0.543051i \(-0.817269\pi\)
0.0504463 + 0.998727i \(0.483936\pi\)
\(642\) 0 0
\(643\) 15.8108 9.12837i 0.623517 0.359988i −0.154720 0.987958i \(-0.549448\pi\)
0.778237 + 0.627971i \(0.216114\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.59782 2.76751i 0.0628168 0.108802i −0.832907 0.553413i \(-0.813325\pi\)
0.895723 + 0.444612i \(0.146658\pi\)
\(648\) 0 0
\(649\) 40.5959 23.4380i 1.59353 0.920023i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.3561 + 10.0206i 0.679197 + 0.392134i 0.799552 0.600596i \(-0.205070\pi\)
−0.120356 + 0.992731i \(0.538403\pi\)
\(654\) 0 0
\(655\) −10.5180 18.2177i −0.410973 0.711826i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 29.7095 + 17.1528i 1.15732 + 0.668178i 0.950660 0.310235i \(-0.100408\pi\)
0.206658 + 0.978413i \(0.433741\pi\)
\(660\) 0 0
\(661\) 28.4499i 1.10657i 0.832991 + 0.553286i \(0.186626\pi\)
−0.832991 + 0.553286i \(0.813374\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 19.8255 + 10.8006i 0.768798 + 0.418828i
\(666\) 0 0
\(667\) −1.64045 2.84134i −0.0635183 0.110017i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −31.2838 54.1851i −1.20770 2.09179i
\(672\) 0 0
\(673\) 12.9705 22.4656i 0.499977 0.865986i −0.500023 0.866012i \(-0.666675\pi\)
1.00000 2.64053e-5i \(8.40506e-6\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 36.3788 1.39815 0.699075 0.715048i \(-0.253595\pi\)
0.699075 + 0.715048i \(0.253595\pi\)
\(678\) 0 0
\(679\) 2.69906 1.64875i 0.103580 0.0632734i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.25354 0.723729i −0.0479652 0.0276927i 0.475826 0.879540i \(-0.342149\pi\)
−0.523791 + 0.851847i \(0.675483\pi\)
\(684\) 0 0
\(685\) 30.8273i 1.17785i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.13043 0.233551
\(690\) 0 0
\(691\) 35.9161i 1.36631i 0.730272 + 0.683157i \(0.239393\pi\)
−0.730272 + 0.683157i \(0.760607\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 29.2351i 1.10895i
\(696\) 0 0
\(697\) 1.00235 0.0379667
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.3851i 1.56309i 0.623847 + 0.781547i \(0.285569\pi\)
−0.623847 + 0.781547i \(0.714431\pi\)
\(702\) 0 0
\(703\) −0.498419 0.287762i −0.0187982 0.0108532i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 31.7073 0.785546i 1.19247 0.0295435i
\(708\) 0 0
\(709\) −18.4441 −0.692682 −0.346341 0.938109i \(-0.612576\pi\)
−0.346341 + 0.938109i \(0.612576\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.43898 + 4.22444i −0.0913406 + 0.158207i
\(714\) 0 0
\(715\) −4.80032 8.31440i −0.179522 0.310941i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.923351 1.59929i −0.0344352 0.0596435i 0.848294 0.529525i \(-0.177630\pi\)
−0.882729 + 0.469882i \(0.844297\pi\)
\(720\) 0 0
\(721\) −21.5231 + 13.1476i −0.801561 + 0.489644i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.33590i 0.123892i
\(726\) 0 0
\(727\) 28.4243 + 16.4108i 1.05420 + 0.608642i 0.923822 0.382822i \(-0.125048\pi\)
0.130378 + 0.991464i \(0.458381\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.326973 + 0.566334i 0.0120935 + 0.0209466i
\(732\) 0 0
\(733\) 13.3583 + 7.71244i 0.493402 + 0.284866i 0.725985 0.687711i \(-0.241384\pi\)
−0.232583 + 0.972577i \(0.574718\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 63.0026 36.3746i 2.32073 1.33987i
\(738\) 0 0
\(739\) −11.6142 + 20.1165i −0.427237 + 0.739996i −0.996626 0.0820719i \(-0.973846\pi\)
0.569390 + 0.822068i \(0.307180\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.5757 + 13.6114i −0.864908 + 0.499355i −0.865653 0.500645i \(-0.833096\pi\)
0.000744979 1.00000i \(0.499763\pi\)
\(744\) 0 0
\(745\) −24.9612 + 14.4113i −0.914507 + 0.527991i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.22707 49.5285i −0.0448360 1.80973i
\(750\) 0 0
\(751\) −10.6549 + 18.4549i −0.388804 + 0.673428i −0.992289 0.123946i \(-0.960445\pi\)
0.603485 + 0.797374i \(0.293778\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −31.0844 −1.13128
\(756\) 0 0
\(757\) 43.2079 1.57042 0.785209 0.619231i \(-0.212556\pi\)
0.785209 + 0.619231i \(0.212556\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 24.8852 43.1024i 0.902087 1.56246i 0.0773067 0.997007i \(-0.475368\pi\)
0.824780 0.565453i \(-0.191299\pi\)
\(762\) 0 0
\(763\) −2.48597 4.06960i −0.0899981 0.147329i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.44185 + 4.87391i −0.304818 + 0.175987i
\(768\) 0 0
\(769\) 15.1354 8.73843i 0.545797 0.315116i −0.201628 0.979462i \(-0.564623\pi\)
0.747425 + 0.664346i \(0.231290\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.7020 + 35.8569i −0.744598 + 1.28968i 0.205784 + 0.978597i \(0.434026\pi\)
−0.950382 + 0.311085i \(0.899308\pi\)
\(774\) 0 0
\(775\) −4.29526 + 2.47987i −0.154290 + 0.0890796i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 41.4726 + 23.9442i 1.48591 + 0.857891i
\(780\) 0 0
\(781\) −10.9685 18.9981i −0.392485 0.679804i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.05958 3.49850i −0.216276 0.124867i
\(786\) 0 0
\(787\) 25.2212i 0.899039i 0.893271 + 0.449519i \(0.148405\pi\)
−0.893271 + 0.449519i \(0.851595\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.804431 + 32.4695i 0.0286023 + 1.15448i
\(792\) 0 0
\(793\) 6.50543 + 11.2677i 0.231014 + 0.400129i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.8320 + 25.6898i 0.525377 + 0.909980i 0.999563 + 0.0295555i \(0.00940919\pi\)
−0.474186 + 0.880425i \(0.657257\pi\)
\(798\) 0 0
\(799\) −0.157614 + 0.272996i −0.00557600 + 0.00965791i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20.7113 −0.730886
\(804\) 0 0
\(805\) 0.127309 + 5.13863i 0.00448706 + 0.181113i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.88592 + 3.39824i 0.206938 + 0.119476i 0.599888 0.800084i \(-0.295212\pi\)
−0.392950 + 0.919560i \(0.628545\pi\)
\(810\) 0 0
\(811\) 0.00414872i 0.000145681i −1.00000 7.28407e-5i \(-0.999977\pi\)
1.00000 7.28407e-5i \(-2.31859e-5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −27.7252 −0.971171
\(816\) 0 0
\(817\) 31.2430i 1.09305i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.7338i 1.00282i 0.865211 + 0.501409i \(0.167185\pi\)
−0.865211 + 0.501409i \(0.832815\pi\)
\(822\) 0 0
\(823\) −50.6943 −1.76709 −0.883547 0.468343i \(-0.844851\pi\)
−0.883547 + 0.468343i \(0.844851\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.19233i 0.111008i 0.998458 + 0.0555041i \(0.0176766\pi\)
−0.998458 + 0.0555041i \(0.982323\pi\)
\(828\) 0 0
\(829\) −41.4645 23.9395i −1.44012 0.831454i −0.442264 0.896885i \(-0.645824\pi\)
−0.997857 + 0.0654311i \(0.979158\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.623264 + 0.0309017i −0.0215948 + 0.00107068i
\(834\) 0 0
\(835\) −7.82375 −0.270752
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6.18287 + 10.7091i −0.213456 + 0.369717i −0.952794 0.303618i \(-0.901805\pi\)
0.739337 + 0.673335i \(0.235139\pi\)
\(840\) 0 0
\(841\) −8.77636 15.2011i −0.302633 0.524176i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.0246 20.8272i −0.413658 0.716476i
\(846\) 0 0
\(847\) −16.6110 27.1927i −0.570761 0.934352i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.131035i 0.00449182i
\(852\) 0 0
\(853\) 20.3474 + 11.7476i 0.696680 + 0.402229i 0.806110 0.591766i \(-0.201569\pi\)
−0.109429 + 0.993995i \(0.534902\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.75960 15.1721i −0.299222 0.518268i 0.676736 0.736226i \(-0.263394\pi\)
−0.975958 + 0.217958i \(0.930060\pi\)
\(858\) 0 0
\(859\) 11.9224 + 6.88338i 0.406786 + 0.234858i 0.689408 0.724373i \(-0.257871\pi\)
−0.282622 + 0.959231i \(0.591204\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.0835 12.7499i 0.751732 0.434013i −0.0745872 0.997214i \(-0.523764\pi\)
0.826319 + 0.563202i \(0.190431\pi\)
\(864\) 0 0
\(865\) 17.9639 31.1144i 0.610791 1.05792i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −49.3953 + 28.5184i −1.67562 + 0.967420i
\(870\) 0 0
\(871\) −13.1013 + 7.56404i −0.443921 + 0.256298i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −15.1797 + 27.8637i −0.513167 + 0.941966i
\(876\) 0 0
\(877\) 25.9895 45.0152i 0.877604 1.52005i 0.0236415 0.999721i \(-0.492474\pi\)
0.853963 0.520334i \(-0.174193\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −37.6723 −1.26921 −0.634607 0.772835i \(-0.718838\pi\)
−0.634607 + 0.772835i \(0.718838\pi\)
\(882\) 0 0
\(883\) −37.4259 −1.25948 −0.629741 0.776805i \(-0.716839\pi\)
−0.629741 + 0.776805i \(0.716839\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −27.4541 + 47.5518i −0.921817 + 1.59663i −0.125215 + 0.992130i \(0.539962\pi\)
−0.796602 + 0.604504i \(0.793371\pi\)
\(888\) 0 0
\(889\) −9.30994 + 17.0893i −0.312245 + 0.573156i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13.0427 + 7.53020i −0.436457 + 0.251989i
\(894\) 0 0
\(895\) −11.8915 + 6.86557i −0.397490 + 0.229491i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.50979 14.7394i 0.283817 0.491586i
\(900\) 0 0
\(901\) 0.474128 0.273738i 0.0157955 0.00911954i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.9965 + 12.1223i 0.697946 + 0.402959i
\(906\) 0 0
\(907\) 4.32671 + 7.49408i 0.143666 + 0.248837i 0.928874 0.370395i \(-0.120778\pi\)
−0.785208 + 0.619232i \(0.787444\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.63346 + 5.56188i 0.319171 + 0.184273i 0.651023 0.759058i \(-0.274340\pi\)
−0.331852 + 0.943331i \(0.607673\pi\)
\(912\) 0 0
\(913\) 15.6007i 0.516309i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.4813 + 23.7062i 0.478214 + 0.782849i
\(918\) 0 0
\(919\) 22.9971 + 39.8322i 0.758605 + 1.31394i 0.943562 + 0.331196i \(0.107452\pi\)
−0.184957 + 0.982747i \(0.559215\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.28089 + 3.95062i 0.0750765 + 0.130036i
\(924\) 0 0
\(925\) 0.0666158 0.115382i 0.00219031 0.00379373i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −35.8070 −1.17479 −0.587394 0.809301i \(-0.699846\pi\)
−0.587394 + 0.809301i \(0.699846\pi\)
\(930\) 0 0
\(931\) −26.5260 13.6100i −0.869353 0.446050i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.742515 0.428691i −0.0242828 0.0140197i
\(936\) 0 0
\(937\) 1.01234i 0.0330718i 0.999863 + 0.0165359i \(0.00526377\pi\)
−0.999863 + 0.0165359i \(0.994736\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −35.5905 −1.16022 −0.580109 0.814539i \(-0.696990\pi\)
−0.580109 + 0.814539i \(0.696990\pi\)
\(942\) 0 0
\(943\) 10.9032i 0.355056i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31.9268i 1.03748i −0.854932 0.518741i \(-0.826401\pi\)
0.854932 0.518741i \(-0.173599\pi\)
\(948\) 0 0
\(949\) 4.30689 0.139808
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.6179i 0.700273i −0.936699 0.350136i \(-0.886135\pi\)
0.936699 0.350136i \(-0.113865\pi\)
\(954\) 0 0
\(955\) 14.7429 + 8.51181i 0.477069 + 0.275436i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.00826 + 40.6969i 0.0325585 + 1.31417i
\(960\) 0 0
\(961\) 5.69565 0.183731
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.6199 + 23.5903i −0.438439 + 0.759398i
\(966\) 0 0
\(967\) 7.79433 + 13.5002i 0.250649 + 0.434137i 0.963705 0.266971i \(-0.0860227\pi\)
−0.713056 + 0.701107i \(0.752689\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.94294 10.2935i −0.190718 0.330334i 0.754770 0.655989i \(-0.227748\pi\)
−0.945488 + 0.325656i \(0.894415\pi\)
\(972\) 0 0
\(973\) 0.956188 + 38.5949i 0.0306540 + 1.23730i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 43.4289i 1.38941i 0.719294 + 0.694706i \(0.244466\pi\)
−0.719294 + 0.694706i \(0.755534\pi\)
\(978\) 0 0
\(979\) 8.83971 + 5.10361i 0.282518 + 0.163112i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.4704 + 30.2596i 0.557218 + 0.965130i 0.997727 + 0.0673821i \(0.0214646\pi\)
−0.440509 + 0.897748i \(0.645202\pi\)
\(984\) 0 0
\(985\) −40.8725 23.5977i −1.30231 0.751887i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.16036 + 3.55669i −0.195888 + 0.113096i
\(990\) 0 0
\(991\) 2.17783 3.77211i 0.0691811 0.119825i −0.829360 0.558715i \(-0.811295\pi\)
0.898541 + 0.438889i \(0.144628\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 23.6004 13.6257i 0.748183 0.431964i
\(996\) 0 0
\(997\) 43.7264 25.2454i 1.38483 0.799531i 0.392102 0.919922i \(-0.371748\pi\)
0.992727 + 0.120391i \(0.0384149\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.w.j.269.4 32
3.2 odd 2 inner 2268.2.w.j.269.13 32
7.5 odd 6 2268.2.bm.j.593.4 32
9.2 odd 6 2268.2.t.c.1781.13 yes 32
9.4 even 3 2268.2.bm.j.1025.13 32
9.5 odd 6 2268.2.bm.j.1025.4 32
9.7 even 3 2268.2.t.c.1781.4 32
21.5 even 6 2268.2.bm.j.593.13 32
63.5 even 6 inner 2268.2.w.j.1349.4 32
63.40 odd 6 inner 2268.2.w.j.1349.13 32
63.47 even 6 2268.2.t.c.2105.4 yes 32
63.61 odd 6 2268.2.t.c.2105.13 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.4 32 9.7 even 3
2268.2.t.c.1781.13 yes 32 9.2 odd 6
2268.2.t.c.2105.4 yes 32 63.47 even 6
2268.2.t.c.2105.13 yes 32 63.61 odd 6
2268.2.w.j.269.4 32 1.1 even 1 trivial
2268.2.w.j.269.13 32 3.2 odd 2 inner
2268.2.w.j.1349.4 32 63.5 even 6 inner
2268.2.w.j.1349.13 32 63.40 odd 6 inner
2268.2.bm.j.593.4 32 7.5 odd 6
2268.2.bm.j.593.13 32 21.5 even 6
2268.2.bm.j.1025.4 32 9.5 odd 6
2268.2.bm.j.1025.13 32 9.4 even 3