Properties

Label 2268.2.w.j.1349.13
Level $2268$
Weight $2$
Character 2268.1349
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(269,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.269"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1349.13
Character \(\chi\) \(=\) 2268.1349
Dual form 2268.2.w.j.269.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00175 + 1.73509i) q^{5} +(1.26572 + 2.32335i) q^{7} +(4.15726 + 2.40020i) q^{11} +(0.864497 + 0.499118i) q^{13} +(-0.0445736 - 0.0772037i) q^{17} +(3.68849 + 2.12955i) q^{19} +(-0.839792 + 0.484854i) q^{23} +(0.492982 - 0.853871i) q^{25} +(2.93010 - 1.69169i) q^{29} -5.03034i q^{31} +(-2.76327 + 4.52356i) q^{35} +(-0.0675641 + 0.117024i) q^{37} +(-5.62189 + 9.73740i) q^{41} +(-3.66779 - 6.35280i) q^{43} +3.53605 q^{47} +(-3.79590 + 5.88142i) q^{49} +(-5.31849 + 3.07063i) q^{53} +9.61761i q^{55} +9.76504 q^{59} -13.0338i q^{61} +1.99997i q^{65} -15.1548 q^{67} +4.56985i q^{71} +(3.73647 - 2.15725i) q^{73} +(-0.314561 + 12.6968i) q^{77} +11.8817 q^{79} +(-1.62494 - 2.81449i) q^{83} +(0.0893034 - 0.154678i) q^{85} +(1.06316 - 1.84146i) q^{89} +(-0.0654127 + 2.64027i) q^{91} +8.53314i q^{95} +(1.03527 - 0.597713i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} + 12 q^{13} - 16 q^{25} - 4 q^{37} - 4 q^{43} + 20 q^{49} - 8 q^{67} - 36 q^{73} - 56 q^{79} + 12 q^{85} - 36 q^{91} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00175 + 1.73509i 0.447998 + 0.775954i 0.998256 0.0590402i \(-0.0188040\pi\)
−0.550258 + 0.834995i \(0.685471\pi\)
\(6\) 0 0
\(7\) 1.26572 + 2.32335i 0.478397 + 0.878143i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.15726 + 2.40020i 1.25346 + 0.723686i 0.971795 0.235826i \(-0.0757795\pi\)
0.281666 + 0.959512i \(0.409113\pi\)
\(12\) 0 0
\(13\) 0.864497 + 0.499118i 0.239768 + 0.138430i 0.615070 0.788472i \(-0.289128\pi\)
−0.375302 + 0.926903i \(0.622461\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.0445736 0.0772037i −0.0108107 0.0187246i 0.860569 0.509333i \(-0.170108\pi\)
−0.871380 + 0.490608i \(0.836775\pi\)
\(18\) 0 0
\(19\) 3.68849 + 2.12955i 0.846198 + 0.488553i 0.859366 0.511361i \(-0.170858\pi\)
−0.0131681 + 0.999913i \(0.504192\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.839792 + 0.484854i −0.175109 + 0.101099i −0.584993 0.811039i \(-0.698903\pi\)
0.409884 + 0.912138i \(0.365569\pi\)
\(24\) 0 0
\(25\) 0.492982 0.853871i 0.0985965 0.170774i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.93010 1.69169i 0.544105 0.314139i −0.202636 0.979254i \(-0.564951\pi\)
0.746741 + 0.665115i \(0.231617\pi\)
\(30\) 0 0
\(31\) 5.03034i 0.903476i −0.892151 0.451738i \(-0.850804\pi\)
0.892151 0.451738i \(-0.149196\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.76327 + 4.52356i −0.467078 + 0.764621i
\(36\) 0 0
\(37\) −0.0675641 + 0.117024i −0.0111075 + 0.0192387i −0.871526 0.490350i \(-0.836869\pi\)
0.860418 + 0.509589i \(0.170202\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.62189 + 9.73740i −0.877992 + 1.52073i −0.0244505 + 0.999701i \(0.507784\pi\)
−0.853541 + 0.521025i \(0.825550\pi\)
\(42\) 0 0
\(43\) −3.66779 6.35280i −0.559333 0.968793i −0.997552 0.0699250i \(-0.977724\pi\)
0.438219 0.898868i \(-0.355609\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.53605 0.515786 0.257893 0.966173i \(-0.416972\pi\)
0.257893 + 0.966173i \(0.416972\pi\)
\(48\) 0 0
\(49\) −3.79590 + 5.88142i −0.542272 + 0.840203i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.31849 + 3.07063i −0.730551 + 0.421784i −0.818624 0.574330i \(-0.805263\pi\)
0.0880726 + 0.996114i \(0.471929\pi\)
\(54\) 0 0
\(55\) 9.61761i 1.29684i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.76504 1.27130 0.635650 0.771977i \(-0.280732\pi\)
0.635650 + 0.771977i \(0.280732\pi\)
\(60\) 0 0
\(61\) 13.0338i 1.66881i −0.551149 0.834407i \(-0.685810\pi\)
0.551149 0.834407i \(-0.314190\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.99997i 0.248066i
\(66\) 0 0
\(67\) −15.1548 −1.85146 −0.925728 0.378189i \(-0.876547\pi\)
−0.925728 + 0.378189i \(0.876547\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.56985i 0.542341i 0.962531 + 0.271171i \(0.0874108\pi\)
−0.962531 + 0.271171i \(0.912589\pi\)
\(72\) 0 0
\(73\) 3.73647 2.15725i 0.437321 0.252487i −0.265140 0.964210i \(-0.585418\pi\)
0.702460 + 0.711723i \(0.252085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.314561 + 12.6968i −0.0358476 + 1.44693i
\(78\) 0 0
\(79\) 11.8817 1.33679 0.668397 0.743805i \(-0.266981\pi\)
0.668397 + 0.743805i \(0.266981\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.62494 2.81449i −0.178361 0.308930i 0.762958 0.646448i \(-0.223746\pi\)
−0.941319 + 0.337518i \(0.890413\pi\)
\(84\) 0 0
\(85\) 0.0893034 0.154678i 0.00968631 0.0167772i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.06316 1.84146i 0.112695 0.195194i −0.804161 0.594412i \(-0.797385\pi\)
0.916856 + 0.399218i \(0.130718\pi\)
\(90\) 0 0
\(91\) −0.0654127 + 2.64027i −0.00685711 + 0.276776i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.53314i 0.875482i
\(96\) 0 0
\(97\) 1.03527 0.597713i 0.105116 0.0606885i −0.446521 0.894773i \(-0.647337\pi\)
0.551636 + 0.834085i \(0.314004\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.99395 + 10.3818i −0.596420 + 1.03303i 0.396925 + 0.917851i \(0.370077\pi\)
−0.993345 + 0.115179i \(0.963256\pi\)
\(102\) 0 0
\(103\) −8.25554 + 4.76634i −0.813442 + 0.469641i −0.848150 0.529756i \(-0.822283\pi\)
0.0347074 + 0.999398i \(0.488950\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.2170 9.36287i −1.56775 0.905143i −0.996430 0.0844177i \(-0.973097\pi\)
−0.571323 0.820725i \(-0.693570\pi\)
\(108\) 0 0
\(109\) 0.901223 + 1.56096i 0.0863215 + 0.149513i 0.905954 0.423377i \(-0.139155\pi\)
−0.819632 + 0.572890i \(0.805822\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.6314 + 6.13804i 1.00012 + 0.577419i 0.908283 0.418356i \(-0.137393\pi\)
0.0918351 + 0.995774i \(0.470727\pi\)
\(114\) 0 0
\(115\) −1.68253 0.971408i −0.156896 0.0905842i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.122953 0.201278i 0.0112711 0.0184511i
\(120\) 0 0
\(121\) 6.02189 + 10.4302i 0.547444 + 0.948201i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.9929 1.07268
\(126\) 0 0
\(127\) −7.35545 −0.652690 −0.326345 0.945251i \(-0.605817\pi\)
−0.326345 + 0.945251i \(0.605817\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.24981 + 9.09293i 0.458678 + 0.794453i 0.998891 0.0470748i \(-0.0149899\pi\)
−0.540214 + 0.841528i \(0.681657\pi\)
\(132\) 0 0
\(133\) −0.279092 + 11.2651i −0.0242003 + 0.976806i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.3253 + 7.69335i 1.13845 + 0.657287i 0.946047 0.324028i \(-0.105037\pi\)
0.192407 + 0.981315i \(0.438371\pi\)
\(138\) 0 0
\(139\) −12.6370 7.29600i −1.07186 0.618838i −0.143171 0.989698i \(-0.545730\pi\)
−0.928689 + 0.370860i \(0.879063\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.39596 + 4.14993i 0.200360 + 0.347034i
\(144\) 0 0
\(145\) 5.87046 + 3.38931i 0.487515 + 0.281467i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.4588 + 7.19307i −1.02066 + 0.589279i −0.914295 0.405048i \(-0.867255\pi\)
−0.106366 + 0.994327i \(0.533921\pi\)
\(150\) 0 0
\(151\) 7.75751 13.4364i 0.631297 1.09344i −0.355990 0.934490i \(-0.615856\pi\)
0.987287 0.158949i \(-0.0508104\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.72808 5.03916i 0.701056 0.404755i
\(156\) 0 0
\(157\) 3.49238i 0.278722i −0.990242 0.139361i \(-0.955495\pi\)
0.990242 0.139361i \(-0.0445049\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.18943 1.33744i −0.172551 0.105405i
\(162\) 0 0
\(163\) 6.91917 11.9844i 0.541951 0.938687i −0.456841 0.889548i \(-0.651019\pi\)
0.998792 0.0491384i \(-0.0156475\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.95252 + 3.38186i −0.151090 + 0.261696i −0.931629 0.363412i \(-0.881612\pi\)
0.780538 + 0.625108i \(0.214945\pi\)
\(168\) 0 0
\(169\) −6.00176 10.3954i −0.461674 0.799643i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.9325 1.36338 0.681690 0.731641i \(-0.261245\pi\)
0.681690 + 0.731641i \(0.261245\pi\)
\(174\) 0 0
\(175\) 2.60782 + 0.0646086i 0.197132 + 0.00488395i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.93535 + 3.42678i −0.443629 + 0.256129i −0.705136 0.709072i \(-0.749114\pi\)
0.261507 + 0.965202i \(0.415781\pi\)
\(180\) 0 0
\(181\) 12.1011i 0.899468i 0.893163 + 0.449734i \(0.148481\pi\)
−0.893163 + 0.449734i \(0.851519\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.270730 −0.0199045
\(186\) 0 0
\(187\) 0.427941i 0.0312942i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.49691i 0.614815i −0.951578 0.307408i \(-0.900539\pi\)
0.951578 0.307408i \(-0.0994615\pi\)
\(192\) 0 0
\(193\) 13.5960 0.978663 0.489331 0.872098i \(-0.337241\pi\)
0.489331 + 0.872098i \(0.337241\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.5565i 1.67833i 0.543878 + 0.839164i \(0.316955\pi\)
−0.543878 + 0.839164i \(0.683045\pi\)
\(198\) 0 0
\(199\) −11.7796 + 6.80093i −0.835030 + 0.482105i −0.855572 0.517684i \(-0.826794\pi\)
0.0205416 + 0.999789i \(0.493461\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.63907 + 4.66643i 0.536158 + 0.327519i
\(204\) 0 0
\(205\) −22.5270 −1.57335
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.2227 + 17.7062i 0.707118 + 1.22476i
\(210\) 0 0
\(211\) 8.44148 14.6211i 0.581136 1.00656i −0.414209 0.910182i \(-0.635942\pi\)
0.995345 0.0963750i \(-0.0307248\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.34844 12.7279i 0.501160 0.868034i
\(216\) 0 0
\(217\) 11.6872 6.36701i 0.793382 0.432221i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.0889898i 0.00598610i
\(222\) 0 0
\(223\) −3.83410 + 2.21362i −0.256750 + 0.148235i −0.622851 0.782340i \(-0.714026\pi\)
0.366101 + 0.930575i \(0.380692\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.69552 11.5970i 0.444397 0.769718i −0.553613 0.832774i \(-0.686751\pi\)
0.998010 + 0.0630557i \(0.0200846\pi\)
\(228\) 0 0
\(229\) −6.62507 + 3.82498i −0.437797 + 0.252762i −0.702663 0.711523i \(-0.748006\pi\)
0.264866 + 0.964285i \(0.414672\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.1646 7.02323i −0.796929 0.460107i 0.0454674 0.998966i \(-0.485522\pi\)
−0.842396 + 0.538859i \(0.818856\pi\)
\(234\) 0 0
\(235\) 3.54225 + 6.13535i 0.231071 + 0.400226i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.5035 8.37362i −0.938156 0.541644i −0.0487739 0.998810i \(-0.515531\pi\)
−0.889382 + 0.457165i \(0.848865\pi\)
\(240\) 0 0
\(241\) 26.5411 + 15.3235i 1.70967 + 0.987076i 0.934960 + 0.354753i \(0.115435\pi\)
0.774705 + 0.632323i \(0.217898\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −14.0073 0.694489i −0.894896 0.0443692i
\(246\) 0 0
\(247\) 2.12579 + 3.68198i 0.135261 + 0.234279i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.56378 0.288063 0.144032 0.989573i \(-0.453993\pi\)
0.144032 + 0.989573i \(0.453993\pi\)
\(252\) 0 0
\(253\) −4.65498 −0.292656
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.3918 23.1954i −0.835361 1.44689i −0.893736 0.448592i \(-0.851926\pi\)
0.0583759 0.998295i \(-0.481408\pi\)
\(258\) 0 0
\(259\) −0.357406 0.00885471i −0.0222081 0.000550205i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.1138 10.4580i −1.11695 0.644869i −0.176326 0.984332i \(-0.556421\pi\)
−0.940619 + 0.339463i \(0.889755\pi\)
\(264\) 0 0
\(265\) −10.6556 6.15203i −0.654570 0.377916i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.3200 + 23.0709i 0.812133 + 1.40666i 0.911368 + 0.411592i \(0.135027\pi\)
−0.0992351 + 0.995064i \(0.531640\pi\)
\(270\) 0 0
\(271\) 17.6224 + 10.1743i 1.07048 + 0.618045i 0.928314 0.371798i \(-0.121258\pi\)
0.142171 + 0.989842i \(0.454592\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.09891 2.36651i 0.247174 0.142706i
\(276\) 0 0
\(277\) −1.02112 + 1.76863i −0.0613531 + 0.106267i −0.895070 0.445925i \(-0.852875\pi\)
0.833717 + 0.552191i \(0.186208\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −14.6608 + 8.46441i −0.874590 + 0.504945i −0.868871 0.495039i \(-0.835154\pi\)
−0.00571889 + 0.999984i \(0.501820\pi\)
\(282\) 0 0
\(283\) 11.5134i 0.684400i 0.939627 + 0.342200i \(0.111172\pi\)
−0.939627 + 0.342200i \(0.888828\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −29.7391 0.736786i −1.75544 0.0434911i
\(288\) 0 0
\(289\) 8.49603 14.7155i 0.499766 0.865621i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.4055 18.0229i 0.607898 1.05291i −0.383689 0.923463i \(-0.625346\pi\)
0.991586 0.129447i \(-0.0413203\pi\)
\(294\) 0 0
\(295\) 9.78216 + 16.9432i 0.569539 + 0.986471i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.967997 −0.0559807
\(300\) 0 0
\(301\) 10.1174 16.5624i 0.583156 0.954643i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 22.6149 13.0567i 1.29492 0.747624i
\(306\) 0 0
\(307\) 2.00298i 0.114316i −0.998365 0.0571580i \(-0.981796\pi\)
0.998365 0.0571580i \(-0.0182039\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.70747 0.493756 0.246878 0.969047i \(-0.420595\pi\)
0.246878 + 0.969047i \(0.420595\pi\)
\(312\) 0 0
\(313\) 11.0181i 0.622782i −0.950282 0.311391i \(-0.899205\pi\)
0.950282 0.311391i \(-0.100795\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.4569i 0.643483i 0.946828 + 0.321742i \(0.104268\pi\)
−0.946828 + 0.321742i \(0.895732\pi\)
\(318\) 0 0
\(319\) 16.2416 0.909353
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.379687i 0.0211263i
\(324\) 0 0
\(325\) 0.852364 0.492113i 0.0472806 0.0272975i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.47565 + 8.21548i 0.246751 + 0.452934i
\(330\) 0 0
\(331\) 5.41191 0.297466 0.148733 0.988877i \(-0.452481\pi\)
0.148733 + 0.988877i \(0.452481\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −15.1814 26.2949i −0.829448 1.43665i
\(336\) 0 0
\(337\) −12.1854 + 21.1058i −0.663783 + 1.14971i 0.315831 + 0.948815i \(0.397717\pi\)
−0.979614 + 0.200890i \(0.935617\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0738 20.9125i 0.653834 1.13247i
\(342\) 0 0
\(343\) −18.4691 1.37497i −0.997240 0.0742413i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.94211i 0.480038i −0.970768 0.240019i \(-0.922846\pi\)
0.970768 0.240019i \(-0.0771536\pi\)
\(348\) 0 0
\(349\) −9.68628 + 5.59238i −0.518495 + 0.299353i −0.736319 0.676635i \(-0.763438\pi\)
0.217824 + 0.975988i \(0.430104\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.75651 + 11.7026i −0.359613 + 0.622867i −0.987896 0.155117i \(-0.950424\pi\)
0.628284 + 0.777984i \(0.283758\pi\)
\(354\) 0 0
\(355\) −7.92908 + 4.57786i −0.420832 + 0.242968i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.5673 17.0707i −1.56050 0.900957i −0.997206 0.0747023i \(-0.976199\pi\)
−0.563297 0.826254i \(-0.690467\pi\)
\(360\) 0 0
\(361\) −0.430017 0.744810i −0.0226324 0.0392006i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.48604 + 4.32206i 0.391837 + 0.226227i
\(366\) 0 0
\(367\) 0.922490 + 0.532600i 0.0481536 + 0.0278015i 0.523884 0.851790i \(-0.324483\pi\)
−0.475730 + 0.879591i \(0.657816\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.8659 8.47015i −0.719881 0.439748i
\(372\) 0 0
\(373\) 2.16655 + 3.75257i 0.112180 + 0.194301i 0.916649 0.399694i \(-0.130883\pi\)
−0.804469 + 0.593994i \(0.797550\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.37741 0.173946
\(378\) 0 0
\(379\) 2.43862 0.125263 0.0626317 0.998037i \(-0.480051\pi\)
0.0626317 + 0.998037i \(0.480051\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.7552 32.4849i −0.958344 1.65990i −0.726524 0.687141i \(-0.758865\pi\)
−0.231819 0.972759i \(-0.574468\pi\)
\(384\) 0 0
\(385\) −22.3451 + 12.1732i −1.13881 + 0.620404i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.97057 3.44711i −0.302720 0.174775i 0.340944 0.940083i \(-0.389253\pi\)
−0.643664 + 0.765308i \(0.722587\pi\)
\(390\) 0 0
\(391\) 0.0748650 + 0.0432233i 0.00378609 + 0.00218590i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.9025 + 20.6158i 0.598880 + 1.03729i
\(396\) 0 0
\(397\) −33.7783 19.5019i −1.69529 0.978774i −0.950114 0.311902i \(-0.899034\pi\)
−0.745172 0.666872i \(-0.767633\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −16.1101 + 9.30115i −0.804498 + 0.464477i −0.845042 0.534700i \(-0.820424\pi\)
0.0405433 + 0.999178i \(0.487091\pi\)
\(402\) 0 0
\(403\) 2.51073 4.34872i 0.125069 0.216625i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.561763 + 0.324334i −0.0278456 + 0.0160766i
\(408\) 0 0
\(409\) 2.18387i 0.107985i −0.998541 0.0539927i \(-0.982805\pi\)
0.998541 0.0539927i \(-0.0171948\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.3598 + 22.6876i 0.608187 + 1.11638i
\(414\) 0 0
\(415\) 3.25559 5.63884i 0.159810 0.276800i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.9333 25.8653i 0.729540 1.26360i −0.227538 0.973769i \(-0.573067\pi\)
0.957078 0.289831i \(-0.0935992\pi\)
\(420\) 0 0
\(421\) 0.673150 + 1.16593i 0.0328073 + 0.0568240i 0.881963 0.471319i \(-0.156222\pi\)
−0.849156 + 0.528143i \(0.822889\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.0878959 −0.00426358
\(426\) 0 0
\(427\) 30.2822 16.4972i 1.46546 0.798356i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 22.9854 13.2706i 1.10717 0.639223i 0.169072 0.985604i \(-0.445923\pi\)
0.938094 + 0.346381i \(0.112590\pi\)
\(432\) 0 0
\(433\) 27.4682i 1.32004i −0.751250 0.660018i \(-0.770549\pi\)
0.751250 0.660018i \(-0.229451\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.13009 −0.197569
\(438\) 0 0
\(439\) 4.03277i 0.192473i −0.995358 0.0962367i \(-0.969319\pi\)
0.995358 0.0962367i \(-0.0306806\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 33.8425i 1.60791i −0.594693 0.803953i \(-0.702726\pi\)
0.594693 0.803953i \(-0.297274\pi\)
\(444\) 0 0
\(445\) 4.26011 0.201949
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.7395i 1.49788i −0.662638 0.748940i \(-0.730563\pi\)
0.662638 0.748940i \(-0.269437\pi\)
\(450\) 0 0
\(451\) −46.7433 + 26.9873i −2.20106 + 1.27078i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.64663 + 2.53140i −0.217837 + 0.118674i
\(456\) 0 0
\(457\) −35.5605 −1.66345 −0.831724 0.555189i \(-0.812646\pi\)
−0.831724 + 0.555189i \(0.812646\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.2947 + 28.2232i 0.758919 + 1.31449i 0.943402 + 0.331650i \(0.107605\pi\)
−0.184483 + 0.982836i \(0.559061\pi\)
\(462\) 0 0
\(463\) 10.6397 18.4286i 0.494471 0.856448i −0.505509 0.862821i \(-0.668695\pi\)
0.999980 + 0.00637294i \(0.00202858\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.0189 32.9417i 0.880090 1.52436i 0.0288500 0.999584i \(-0.490815\pi\)
0.851240 0.524777i \(-0.175851\pi\)
\(468\) 0 0
\(469\) −19.1818 35.2100i −0.885732 1.62584i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 35.2137i 1.61913i
\(474\) 0 0
\(475\) 3.63672 2.09966i 0.166864 0.0963392i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.26814 + 9.12468i −0.240707 + 0.416917i −0.960916 0.276840i \(-0.910713\pi\)
0.720209 + 0.693758i \(0.244046\pi\)
\(480\) 0 0
\(481\) −0.116818 + 0.0674448i −0.00532644 + 0.00307522i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.07417 + 1.19752i 0.0941831 + 0.0543766i
\(486\) 0 0
\(487\) −4.92393 8.52850i −0.223125 0.386463i 0.732631 0.680627i \(-0.238292\pi\)
−0.955755 + 0.294163i \(0.904959\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.74760 3.89573i −0.304515 0.175812i 0.339954 0.940442i \(-0.389588\pi\)
−0.644469 + 0.764630i \(0.722922\pi\)
\(492\) 0 0
\(493\) −0.261210 0.150809i −0.0117643 0.00679211i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.6174 + 5.78415i −0.476253 + 0.259455i
\(498\) 0 0
\(499\) 11.8950 + 20.6027i 0.532493 + 0.922305i 0.999280 + 0.0379356i \(0.0120782\pi\)
−0.466787 + 0.884370i \(0.654589\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.1692 0.676363 0.338182 0.941081i \(-0.390188\pi\)
0.338182 + 0.941081i \(0.390188\pi\)
\(504\) 0 0
\(505\) −24.0178 −1.06878
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.59151 14.8809i −0.380812 0.659586i 0.610367 0.792119i \(-0.291022\pi\)
−0.991179 + 0.132533i \(0.957689\pi\)
\(510\) 0 0
\(511\) 9.74137 + 5.95064i 0.430933 + 0.263241i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.5400 9.54939i −0.728840 0.420796i
\(516\) 0 0
\(517\) 14.7003 + 8.48722i 0.646518 + 0.373267i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.70778 + 15.0823i 0.381495 + 0.660768i 0.991276 0.131802i \(-0.0420762\pi\)
−0.609782 + 0.792570i \(0.708743\pi\)
\(522\) 0 0
\(523\) 25.5361 + 14.7432i 1.11661 + 0.644677i 0.940534 0.339699i \(-0.110325\pi\)
0.176079 + 0.984376i \(0.443658\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.388361 + 0.224220i −0.0169173 + 0.00976719i
\(528\) 0 0
\(529\) −11.0298 + 19.1042i −0.479558 + 0.830619i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9.72022 + 5.61197i −0.421029 + 0.243081i
\(534\) 0 0
\(535\) 37.5171i 1.62201i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −29.8971 + 15.3397i −1.28776 + 0.660728i
\(540\) 0 0
\(541\) 3.51522 6.08854i 0.151131 0.261767i −0.780512 0.625140i \(-0.785042\pi\)
0.931644 + 0.363373i \(0.118375\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.80561 + 3.12740i −0.0773437 + 0.133963i
\(546\) 0 0
\(547\) 15.9847 + 27.6863i 0.683456 + 1.18378i 0.973919 + 0.226894i \(0.0728572\pi\)
−0.290463 + 0.956886i \(0.593809\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14.4102 0.613894
\(552\) 0 0
\(553\) 15.0389 + 27.6053i 0.639519 + 1.17390i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.37676 + 3.10427i −0.227821 + 0.131532i −0.609566 0.792735i \(-0.708656\pi\)
0.381746 + 0.924267i \(0.375323\pi\)
\(558\) 0 0
\(559\) 7.32264i 0.309715i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 28.0894 1.18383 0.591913 0.806002i \(-0.298373\pi\)
0.591913 + 0.806002i \(0.298373\pi\)
\(564\) 0 0
\(565\) 24.5952i 1.03473i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 32.6798i 1.37001i −0.728538 0.685005i \(-0.759800\pi\)
0.728538 0.685005i \(-0.240200\pi\)
\(570\) 0 0
\(571\) −17.4237 −0.729157 −0.364579 0.931173i \(-0.618787\pi\)
−0.364579 + 0.931173i \(0.618787\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.956098i 0.0398720i
\(576\) 0 0
\(577\) 29.9406 17.2862i 1.24645 0.719635i 0.276047 0.961144i \(-0.410976\pi\)
0.970399 + 0.241509i \(0.0776423\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.48231 7.33767i 0.185958 0.304418i
\(582\) 0 0
\(583\) −29.4805 −1.22096
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.01942 12.1580i −0.289722 0.501814i 0.684021 0.729462i \(-0.260230\pi\)
−0.973743 + 0.227648i \(0.926896\pi\)
\(588\) 0 0
\(589\) 10.7124 18.5544i 0.441396 0.764520i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.5686 39.0900i 0.926782 1.60523i 0.138112 0.990417i \(-0.455897\pi\)
0.788670 0.614817i \(-0.210770\pi\)
\(594\) 0 0
\(595\) 0.472404 + 0.0117038i 0.0193667 + 0.000479809i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.9925i 0.449142i −0.974458 0.224571i \(-0.927902\pi\)
0.974458 0.224571i \(-0.0720981\pi\)
\(600\) 0 0
\(601\) 31.1448 17.9815i 1.27042 0.733479i 0.295356 0.955387i \(-0.404562\pi\)
0.975068 + 0.221908i \(0.0712285\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −12.0649 + 20.8970i −0.490507 + 0.849584i
\(606\) 0 0
\(607\) −21.8936 + 12.6403i −0.888634 + 0.513053i −0.873495 0.486832i \(-0.838152\pi\)
−0.0151385 + 0.999885i \(0.504819\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.05691 + 1.76491i 0.123669 + 0.0714004i
\(612\) 0 0
\(613\) 1.24691 + 2.15971i 0.0503621 + 0.0872298i 0.890108 0.455751i \(-0.150629\pi\)
−0.839745 + 0.542980i \(0.817296\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.91940 4.57227i −0.318823 0.184072i 0.332045 0.943264i \(-0.392261\pi\)
−0.650868 + 0.759191i \(0.725595\pi\)
\(618\) 0 0
\(619\) 21.4791 + 12.4010i 0.863317 + 0.498437i 0.865122 0.501562i \(-0.167241\pi\)
−0.00180436 + 0.999998i \(0.500574\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.62401 + 0.139335i 0.225321 + 0.00558233i
\(624\) 0 0
\(625\) 9.54902 + 16.5394i 0.381961 + 0.661576i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.0120463 0.000480317
\(630\) 0 0
\(631\) 8.66061 0.344773 0.172387 0.985029i \(-0.444852\pi\)
0.172387 + 0.985029i \(0.444852\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.36834 12.7623i −0.292404 0.506458i
\(636\) 0 0
\(637\) −6.21707 + 3.18987i −0.246329 + 0.126387i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.9823 + 11.5368i 0.789253 + 0.455676i 0.839700 0.543051i \(-0.182731\pi\)
−0.0504463 + 0.998727i \(0.516064\pi\)
\(642\) 0 0
\(643\) 15.8108 + 9.12837i 0.623517 + 0.359988i 0.778237 0.627971i \(-0.216114\pi\)
−0.154720 + 0.987958i \(0.549448\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.59782 2.76751i −0.0628168 0.108802i 0.832907 0.553413i \(-0.186675\pi\)
−0.895723 + 0.444612i \(0.853342\pi\)
\(648\) 0 0
\(649\) 40.5959 + 23.4380i 1.59353 + 0.920023i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.3561 + 10.0206i −0.679197 + 0.392134i −0.799552 0.600596i \(-0.794930\pi\)
0.120356 + 0.992731i \(0.461597\pi\)
\(654\) 0 0
\(655\) −10.5180 + 18.2177i −0.410973 + 0.711826i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −29.7095 + 17.1528i −1.15732 + 0.668178i −0.950660 0.310235i \(-0.899592\pi\)
−0.206658 + 0.978413i \(0.566259\pi\)
\(660\) 0 0
\(661\) 28.4499i 1.10657i −0.832991 0.553286i \(-0.813374\pi\)
0.832991 0.553286i \(-0.186626\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −19.8255 + 10.8006i −0.768798 + 0.418828i
\(666\) 0 0
\(667\) −1.64045 + 2.84134i −0.0635183 + 0.110017i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 31.2838 54.1851i 1.20770 2.09179i
\(672\) 0 0
\(673\) 12.9705 + 22.4656i 0.499977 + 0.865986i 1.00000 2.64053e-5i \(-8.40506e-6\pi\)
−0.500023 + 0.866012i \(0.666675\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −36.3788 −1.39815 −0.699075 0.715048i \(-0.746405\pi\)
−0.699075 + 0.715048i \(0.746405\pi\)
\(678\) 0 0
\(679\) 2.69906 + 1.64875i 0.103580 + 0.0632734i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.25354 0.723729i 0.0479652 0.0276927i −0.475826 0.879540i \(-0.657851\pi\)
0.523791 + 0.851847i \(0.324517\pi\)
\(684\) 0 0
\(685\) 30.8273i 1.17785i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.13043 −0.233551
\(690\) 0 0
\(691\) 35.9161i 1.36631i −0.730272 0.683157i \(-0.760607\pi\)
0.730272 0.683157i \(-0.239393\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 29.2351i 1.10895i
\(696\) 0 0
\(697\) 1.00235 0.0379667
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.3851i 1.56309i 0.623847 + 0.781547i \(0.285569\pi\)
−0.623847 + 0.781547i \(0.714431\pi\)
\(702\) 0 0
\(703\) −0.498419 + 0.287762i −0.0187982 + 0.0108532i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −31.7073 0.785546i −1.19247 0.0295435i
\(708\) 0 0
\(709\) −18.4441 −0.692682 −0.346341 0.938109i \(-0.612576\pi\)
−0.346341 + 0.938109i \(0.612576\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.43898 + 4.22444i 0.0913406 + 0.158207i
\(714\) 0 0
\(715\) −4.80032 + 8.31440i −0.179522 + 0.310941i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.923351 1.59929i 0.0344352 0.0596435i −0.848294 0.529525i \(-0.822370\pi\)
0.882729 + 0.469882i \(0.155703\pi\)
\(720\) 0 0
\(721\) −21.5231 13.1476i −0.801561 0.489644i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.33590i 0.123892i
\(726\) 0 0
\(727\) 28.4243 16.4108i 1.05420 0.608642i 0.130378 0.991464i \(-0.458381\pi\)
0.923822 + 0.382822i \(0.125048\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.326973 + 0.566334i −0.0120935 + 0.0209466i
\(732\) 0 0
\(733\) 13.3583 7.71244i 0.493402 0.284866i −0.232583 0.972577i \(-0.574718\pi\)
0.725985 + 0.687711i \(0.241384\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −63.0026 36.3746i −2.32073 1.33987i
\(738\) 0 0
\(739\) −11.6142 20.1165i −0.427237 0.739996i 0.569390 0.822068i \(-0.307180\pi\)
−0.996626 + 0.0820719i \(0.973846\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23.5757 + 13.6114i 0.864908 + 0.499355i 0.865653 0.500645i \(-0.166904\pi\)
−0.000744979 1.00000i \(0.500237\pi\)
\(744\) 0 0
\(745\) −24.9612 14.4113i −0.914507 0.527991i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.22707 49.5285i 0.0448360 1.80973i
\(750\) 0 0
\(751\) −10.6549 18.4549i −0.388804 0.673428i 0.603485 0.797374i \(-0.293778\pi\)
−0.992289 + 0.123946i \(0.960445\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 31.0844 1.13128
\(756\) 0 0
\(757\) 43.2079 1.57042 0.785209 0.619231i \(-0.212556\pi\)
0.785209 + 0.619231i \(0.212556\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −24.8852 43.1024i −0.902087 1.56246i −0.824780 0.565453i \(-0.808701\pi\)
−0.0773067 0.997007i \(-0.524632\pi\)
\(762\) 0 0
\(763\) −2.48597 + 4.06960i −0.0899981 + 0.147329i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.44185 + 4.87391i 0.304818 + 0.175987i
\(768\) 0 0
\(769\) 15.1354 + 8.73843i 0.545797 + 0.315116i 0.747425 0.664346i \(-0.231290\pi\)
−0.201628 + 0.979462i \(0.564623\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 20.7020 + 35.8569i 0.744598 + 1.28968i 0.950382 + 0.311085i \(0.100692\pi\)
−0.205784 + 0.978597i \(0.565974\pi\)
\(774\) 0 0
\(775\) −4.29526 2.47987i −0.154290 0.0890796i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −41.4726 + 23.9442i −1.48591 + 0.857891i
\(780\) 0 0
\(781\) −10.9685 + 18.9981i −0.392485 + 0.679804i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.05958 3.49850i 0.216276 0.124867i
\(786\) 0 0
\(787\) 25.2212i 0.899039i −0.893271 0.449519i \(-0.851595\pi\)
0.893271 0.449519i \(-0.148405\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.804431 + 32.4695i −0.0286023 + 1.15448i
\(792\) 0 0
\(793\) 6.50543 11.2677i 0.231014 0.400129i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.8320 + 25.6898i −0.525377 + 0.909980i 0.474186 + 0.880425i \(0.342743\pi\)
−0.999563 + 0.0295555i \(0.990591\pi\)
\(798\) 0 0
\(799\) −0.157614 0.272996i −0.00557600 0.00965791i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 20.7113 0.730886
\(804\) 0 0
\(805\) 0.127309 5.13863i 0.00448706 0.181113i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.88592 + 3.39824i −0.206938 + 0.119476i −0.599888 0.800084i \(-0.704788\pi\)
0.392950 + 0.919560i \(0.371455\pi\)
\(810\) 0 0
\(811\) 0.00414872i 0.000145681i 1.00000 7.28407e-5i \(2.31859e-5\pi\)
−1.00000 7.28407e-5i \(0.999977\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 27.7252 0.971171
\(816\) 0 0
\(817\) 31.2430i 1.09305i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.7338i 1.00282i 0.865211 + 0.501409i \(0.167185\pi\)
−0.865211 + 0.501409i \(0.832815\pi\)
\(822\) 0 0
\(823\) −50.6943 −1.76709 −0.883547 0.468343i \(-0.844851\pi\)
−0.883547 + 0.468343i \(0.844851\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.19233i 0.111008i 0.998458 + 0.0555041i \(0.0176766\pi\)
−0.998458 + 0.0555041i \(0.982323\pi\)
\(828\) 0 0
\(829\) −41.4645 + 23.9395i −1.44012 + 0.831454i −0.997857 0.0654311i \(-0.979158\pi\)
−0.442264 + 0.896885i \(0.645824\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.623264 + 0.0309017i 0.0215948 + 0.00107068i
\(834\) 0 0
\(835\) −7.82375 −0.270752
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.18287 + 10.7091i 0.213456 + 0.369717i 0.952794 0.303618i \(-0.0981945\pi\)
−0.739337 + 0.673335i \(0.764861\pi\)
\(840\) 0 0
\(841\) −8.77636 + 15.2011i −0.302633 + 0.524176i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.0246 20.8272i 0.413658 0.716476i
\(846\) 0 0
\(847\) −16.6110 + 27.1927i −0.570761 + 0.934352i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.131035i 0.00449182i
\(852\) 0 0
\(853\) 20.3474 11.7476i 0.696680 0.402229i −0.109429 0.993995i \(-0.534902\pi\)
0.806110 + 0.591766i \(0.201569\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.75960 15.1721i 0.299222 0.518268i −0.676736 0.736226i \(-0.736606\pi\)
0.975958 + 0.217958i \(0.0699395\pi\)
\(858\) 0 0
\(859\) 11.9224 6.88338i 0.406786 0.234858i −0.282622 0.959231i \(-0.591204\pi\)
0.689408 + 0.724373i \(0.257871\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22.0835 12.7499i −0.751732 0.434013i 0.0745872 0.997214i \(-0.476236\pi\)
−0.826319 + 0.563202i \(0.809569\pi\)
\(864\) 0 0
\(865\) 17.9639 + 31.1144i 0.610791 + 1.05792i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 49.3953 + 28.5184i 1.67562 + 0.967420i
\(870\) 0 0
\(871\) −13.1013 7.56404i −0.443921 0.256298i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 15.1797 + 27.8637i 0.513167 + 0.941966i
\(876\) 0 0
\(877\) 25.9895 + 45.0152i 0.877604 + 1.52005i 0.853963 + 0.520334i \(0.174193\pi\)
0.0236415 + 0.999721i \(0.492474\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37.6723 1.26921 0.634607 0.772835i \(-0.281162\pi\)
0.634607 + 0.772835i \(0.281162\pi\)
\(882\) 0 0
\(883\) −37.4259 −1.25948 −0.629741 0.776805i \(-0.716839\pi\)
−0.629741 + 0.776805i \(0.716839\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27.4541 + 47.5518i 0.921817 + 1.59663i 0.796602 + 0.604504i \(0.206629\pi\)
0.125215 + 0.992130i \(0.460038\pi\)
\(888\) 0 0
\(889\) −9.30994 17.0893i −0.312245 0.573156i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.0427 + 7.53020i 0.436457 + 0.251989i
\(894\) 0 0
\(895\) −11.8915 6.86557i −0.397490 0.229491i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.50979 14.7394i −0.283817 0.491586i
\(900\) 0 0
\(901\) 0.474128 + 0.273738i 0.0157955 + 0.00911954i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −20.9965 + 12.1223i −0.697946 + 0.402959i
\(906\) 0 0
\(907\) 4.32671 7.49408i 0.143666 0.248837i −0.785208 0.619232i \(-0.787444\pi\)
0.928874 + 0.370395i \(0.120778\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.63346 + 5.56188i −0.319171 + 0.184273i −0.651023 0.759058i \(-0.725660\pi\)
0.331852 + 0.943331i \(0.392327\pi\)
\(912\) 0 0
\(913\) 15.6007i 0.516309i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14.4813 + 23.7062i −0.478214 + 0.782849i
\(918\) 0 0
\(919\) 22.9971 39.8322i 0.758605 1.31394i −0.184957 0.982747i \(-0.559215\pi\)
0.943562 0.331196i \(-0.107452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.28089 + 3.95062i −0.0750765 + 0.130036i
\(924\) 0 0
\(925\) 0.0666158 + 0.115382i 0.00219031 + 0.00379373i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 35.8070 1.17479 0.587394 0.809301i \(-0.300154\pi\)
0.587394 + 0.809301i \(0.300154\pi\)
\(930\) 0 0
\(931\) −26.5260 + 13.6100i −0.869353 + 0.446050i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.742515 0.428691i 0.0242828 0.0140197i
\(936\) 0 0
\(937\) 1.01234i 0.0330718i −0.999863 0.0165359i \(-0.994736\pi\)
0.999863 0.0165359i \(-0.00526377\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 35.5905 1.16022 0.580109 0.814539i \(-0.303010\pi\)
0.580109 + 0.814539i \(0.303010\pi\)
\(942\) 0 0
\(943\) 10.9032i 0.355056i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31.9268i 1.03748i −0.854932 0.518741i \(-0.826401\pi\)
0.854932 0.518741i \(-0.173599\pi\)
\(948\) 0 0
\(949\) 4.30689 0.139808
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.6179i 0.700273i −0.936699 0.350136i \(-0.886135\pi\)
0.936699 0.350136i \(-0.113865\pi\)
\(954\) 0 0
\(955\) 14.7429 8.51181i 0.477069 0.275436i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.00826 + 40.6969i −0.0325585 + 1.31417i
\(960\) 0 0
\(961\) 5.69565 0.183731
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.6199 + 23.5903i 0.438439 + 0.759398i
\(966\) 0 0
\(967\) 7.79433 13.5002i 0.250649 0.434137i −0.713056 0.701107i \(-0.752689\pi\)
0.963705 + 0.266971i \(0.0860227\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.94294 10.2935i 0.190718 0.330334i −0.754770 0.655989i \(-0.772252\pi\)
0.945488 + 0.325656i \(0.105585\pi\)
\(972\) 0 0
\(973\) 0.956188 38.5949i 0.0306540 1.23730i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 43.4289i 1.38941i 0.719294 + 0.694706i \(0.244466\pi\)
−0.719294 + 0.694706i \(0.755534\pi\)
\(978\) 0 0
\(979\) 8.83971 5.10361i 0.282518 0.163112i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.4704 + 30.2596i −0.557218 + 0.965130i 0.440509 + 0.897748i \(0.354798\pi\)
−0.997727 + 0.0673821i \(0.978535\pi\)
\(984\) 0 0
\(985\) −40.8725 + 23.5977i −1.30231 + 0.751887i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.16036 + 3.55669i 0.195888 + 0.113096i
\(990\) 0 0
\(991\) 2.17783 + 3.77211i 0.0691811 + 0.119825i 0.898541 0.438889i \(-0.144628\pi\)
−0.829360 + 0.558715i \(0.811295\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −23.6004 13.6257i −0.748183 0.431964i
\(996\) 0 0
\(997\) 43.7264 + 25.2454i 1.38483 + 0.799531i 0.992727 0.120391i \(-0.0384149\pi\)
0.392102 + 0.919922i \(0.371748\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.w.j.1349.13 32
3.2 odd 2 inner 2268.2.w.j.1349.4 32
7.3 odd 6 2268.2.bm.j.1025.13 32
9.2 odd 6 2268.2.bm.j.593.13 32
9.4 even 3 2268.2.t.c.2105.13 yes 32
9.5 odd 6 2268.2.t.c.2105.4 yes 32
9.7 even 3 2268.2.bm.j.593.4 32
21.17 even 6 2268.2.bm.j.1025.4 32
63.31 odd 6 2268.2.t.c.1781.4 32
63.38 even 6 inner 2268.2.w.j.269.13 32
63.52 odd 6 inner 2268.2.w.j.269.4 32
63.59 even 6 2268.2.t.c.1781.13 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.4 32 63.31 odd 6
2268.2.t.c.1781.13 yes 32 63.59 even 6
2268.2.t.c.2105.4 yes 32 9.5 odd 6
2268.2.t.c.2105.13 yes 32 9.4 even 3
2268.2.w.j.269.4 32 63.52 odd 6 inner
2268.2.w.j.269.13 32 63.38 even 6 inner
2268.2.w.j.1349.4 32 3.2 odd 2 inner
2268.2.w.j.1349.13 32 1.1 even 1 trivial
2268.2.bm.j.593.4 32 9.7 even 3
2268.2.bm.j.593.13 32 9.2 odd 6
2268.2.bm.j.1025.4 32 21.17 even 6
2268.2.bm.j.1025.13 32 7.3 odd 6