Properties

Label 2268.2.t.c.1781.13
Level $2268$
Weight $2$
Character 2268.1781
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(1781,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.1781"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,-8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1781.13
Character \(\chi\) \(=\) 2268.1781
Dual form 2268.2.t.c.2105.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00175 + 1.73509i) q^{5} +(-2.64494 + 0.0655283i) q^{7} +(-4.15726 - 2.40020i) q^{11} +0.998235i q^{13} +(-0.0445736 + 0.0772037i) q^{17} +(3.68849 - 2.12955i) q^{19} +(0.839792 - 0.484854i) q^{23} +(0.492982 - 0.853871i) q^{25} -3.38338i q^{29} +(-4.35640 - 2.51517i) q^{31} +(-2.76327 - 4.52356i) q^{35} +(-0.0675641 - 0.117024i) q^{37} +11.2438 q^{41} +7.33558 q^{43} +(-1.76803 - 3.06231i) q^{47} +(6.99141 - 0.346637i) q^{49} +(-5.31849 - 3.07063i) q^{53} -9.61761i q^{55} +(-4.88252 + 8.45678i) q^{59} +(11.2876 - 6.51692i) q^{61} +(-1.73203 + 0.999985i) q^{65} +(7.57741 - 13.1245i) q^{67} -4.56985i q^{71} +(3.73647 + 2.15725i) q^{73} +(11.1530 + 6.07596i) q^{77} +(-5.94084 - 10.2898i) q^{79} +3.24989 q^{83} -0.178607 q^{85} +(1.06316 + 1.84146i) q^{89} +(-0.0654127 - 2.64027i) q^{91} +(7.38992 + 4.26657i) q^{95} -1.19543i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{7} - 16 q^{25} + 24 q^{31} - 4 q^{37} + 8 q^{43} - 4 q^{49} + 12 q^{61} + 4 q^{67} - 36 q^{73} + 28 q^{79} - 24 q^{85} - 36 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00175 + 1.73509i 0.447998 + 0.775954i 0.998256 0.0590402i \(-0.0188040\pi\)
−0.550258 + 0.834995i \(0.685471\pi\)
\(6\) 0 0
\(7\) −2.64494 + 0.0655283i −0.999693 + 0.0247674i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.15726 2.40020i −1.25346 0.723686i −0.281666 0.959512i \(-0.590887\pi\)
−0.971795 + 0.235826i \(0.924220\pi\)
\(12\) 0 0
\(13\) 0.998235i 0.276861i 0.990372 + 0.138430i \(0.0442057\pi\)
−0.990372 + 0.138430i \(0.955794\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.0445736 + 0.0772037i −0.0108107 + 0.0187246i −0.871380 0.490608i \(-0.836775\pi\)
0.860569 + 0.509333i \(0.170108\pi\)
\(18\) 0 0
\(19\) 3.68849 2.12955i 0.846198 0.488553i −0.0131681 0.999913i \(-0.504192\pi\)
0.859366 + 0.511361i \(0.170858\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.839792 0.484854i 0.175109 0.101099i −0.409884 0.912138i \(-0.634431\pi\)
0.584993 + 0.811039i \(0.301097\pi\)
\(24\) 0 0
\(25\) 0.492982 0.853871i 0.0985965 0.170774i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.38338i 0.628278i −0.949377 0.314139i \(-0.898284\pi\)
0.949377 0.314139i \(-0.101716\pi\)
\(30\) 0 0
\(31\) −4.35640 2.51517i −0.782433 0.451738i 0.0548586 0.998494i \(-0.482529\pi\)
−0.837292 + 0.546756i \(0.815863\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.76327 4.52356i −0.467078 0.764621i
\(36\) 0 0
\(37\) −0.0675641 0.117024i −0.0111075 0.0192387i 0.860418 0.509589i \(-0.170202\pi\)
−0.871526 + 0.490350i \(0.836869\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.2438 1.75598 0.877992 0.478676i \(-0.158883\pi\)
0.877992 + 0.478676i \(0.158883\pi\)
\(42\) 0 0
\(43\) 7.33558 1.11867 0.559333 0.828943i \(-0.311057\pi\)
0.559333 + 0.828943i \(0.311057\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.76803 3.06231i −0.257893 0.446684i 0.707784 0.706429i \(-0.249695\pi\)
−0.965677 + 0.259745i \(0.916362\pi\)
\(48\) 0 0
\(49\) 6.99141 0.346637i 0.998773 0.0495195i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.31849 3.07063i −0.730551 0.421784i 0.0880726 0.996114i \(-0.471929\pi\)
−0.818624 + 0.574330i \(0.805263\pi\)
\(54\) 0 0
\(55\) 9.61761i 1.29684i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.88252 + 8.45678i −0.635650 + 1.10098i 0.350727 + 0.936478i \(0.385935\pi\)
−0.986377 + 0.164501i \(0.947399\pi\)
\(60\) 0 0
\(61\) 11.2876 6.51692i 1.44523 0.834407i 0.447043 0.894513i \(-0.352477\pi\)
0.998192 + 0.0601058i \(0.0191438\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.73203 + 0.999985i −0.214831 + 0.124033i
\(66\) 0 0
\(67\) 7.57741 13.1245i 0.925728 1.60341i 0.135343 0.990799i \(-0.456786\pi\)
0.790386 0.612610i \(-0.209880\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.56985i 0.542341i −0.962531 0.271171i \(-0.912589\pi\)
0.962531 0.271171i \(-0.0874108\pi\)
\(72\) 0 0
\(73\) 3.73647 + 2.15725i 0.437321 + 0.252487i 0.702460 0.711723i \(-0.252085\pi\)
−0.265140 + 0.964210i \(0.585418\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.1530 + 6.07596i 1.27100 + 0.692420i
\(78\) 0 0
\(79\) −5.94084 10.2898i −0.668397 1.15770i −0.978352 0.206946i \(-0.933647\pi\)
0.309955 0.950751i \(-0.399686\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.24989 0.356722 0.178361 0.983965i \(-0.442921\pi\)
0.178361 + 0.983965i \(0.442921\pi\)
\(84\) 0 0
\(85\) −0.178607 −0.0193726
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.06316 + 1.84146i 0.112695 + 0.195194i 0.916856 0.399218i \(-0.130718\pi\)
−0.804161 + 0.594412i \(0.797385\pi\)
\(90\) 0 0
\(91\) −0.0654127 2.64027i −0.00685711 0.276776i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.38992 + 4.26657i 0.758189 + 0.437741i
\(96\) 0 0
\(97\) 1.19543i 0.121377i −0.998157 0.0606885i \(-0.980670\pi\)
0.998157 0.0606885i \(-0.0193296\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.99395 + 10.3818i −0.596420 + 1.03303i 0.396925 + 0.917851i \(0.370077\pi\)
−0.993345 + 0.115179i \(0.963256\pi\)
\(102\) 0 0
\(103\) 8.25554 4.76634i 0.813442 0.469641i −0.0347074 0.999398i \(-0.511050\pi\)
0.848150 + 0.529756i \(0.177717\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.2170 + 9.36287i −1.56775 + 0.905143i −0.571323 + 0.820725i \(0.693570\pi\)
−0.996430 + 0.0844177i \(0.973097\pi\)
\(108\) 0 0
\(109\) 0.901223 1.56096i 0.0863215 0.149513i −0.819632 0.572890i \(-0.805822\pi\)
0.905954 + 0.423377i \(0.139155\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.2761i 1.15484i 0.816448 + 0.577419i \(0.195940\pi\)
−0.816448 + 0.577419i \(0.804060\pi\)
\(114\) 0 0
\(115\) 1.68253 + 0.971408i 0.156896 + 0.0905842i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.112835 0.207120i 0.0103436 0.0189866i
\(120\) 0 0
\(121\) 6.02189 + 10.4302i 0.547444 + 0.948201i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.9929 1.07268
\(126\) 0 0
\(127\) −7.35545 −0.652690 −0.326345 0.945251i \(-0.605817\pi\)
−0.326345 + 0.945251i \(0.605817\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.24981 + 9.09293i 0.458678 + 0.794453i 0.998891 0.0470748i \(-0.0149899\pi\)
−0.540214 + 0.841528i \(0.681657\pi\)
\(132\) 0 0
\(133\) −9.61629 + 5.87424i −0.833838 + 0.509361i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.3253 7.69335i −1.13845 0.657287i −0.192407 0.981315i \(-0.561629\pi\)
−0.946047 + 0.324028i \(0.894963\pi\)
\(138\) 0 0
\(139\) 14.5920i 1.23768i −0.785518 0.618838i \(-0.787604\pi\)
0.785518 0.618838i \(-0.212396\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.39596 4.14993i 0.200360 0.347034i
\(144\) 0 0
\(145\) 5.87046 3.38931i 0.487515 0.281467i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.4588 7.19307i 1.02066 0.589279i 0.106366 0.994327i \(-0.466079\pi\)
0.914295 + 0.405048i \(0.132745\pi\)
\(150\) 0 0
\(151\) 7.75751 13.4364i 0.631297 1.09344i −0.355990 0.934490i \(-0.615856\pi\)
0.987287 0.158949i \(-0.0508104\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 10.0783i 0.809510i
\(156\) 0 0
\(157\) −3.02449 1.74619i −0.241381 0.139361i 0.374431 0.927255i \(-0.377838\pi\)
−0.615811 + 0.787894i \(0.711172\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.18943 + 1.33744i −0.172551 + 0.105405i
\(162\) 0 0
\(163\) 6.91917 + 11.9844i 0.541951 + 0.938687i 0.998792 + 0.0491384i \(0.0156475\pi\)
−0.456841 + 0.889548i \(0.651019\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.90503 0.302180 0.151090 0.988520i \(-0.451722\pi\)
0.151090 + 0.988520i \(0.451722\pi\)
\(168\) 0 0
\(169\) 12.0035 0.923348
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.96624 15.5300i −0.681690 1.18072i −0.974465 0.224541i \(-0.927912\pi\)
0.292774 0.956182i \(-0.405422\pi\)
\(174\) 0 0
\(175\) −1.24796 + 2.29074i −0.0943366 + 0.173164i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.93535 3.42678i −0.443629 0.256129i 0.261507 0.965202i \(-0.415781\pi\)
−0.705136 + 0.709072i \(0.749114\pi\)
\(180\) 0 0
\(181\) 12.1011i 0.899468i −0.893163 0.449734i \(-0.851519\pi\)
0.893163 0.449734i \(-0.148481\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.135365 0.234459i 0.00995223 0.0172378i
\(186\) 0 0
\(187\) 0.370608 0.213971i 0.0271015 0.0156471i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.35854 4.24846i 0.532446 0.307408i −0.209566 0.977794i \(-0.567205\pi\)
0.742012 + 0.670387i \(0.233872\pi\)
\(192\) 0 0
\(193\) −6.79801 + 11.7745i −0.489331 + 0.847547i −0.999925 0.0122755i \(-0.996092\pi\)
0.510593 + 0.859822i \(0.329426\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.5565i 1.67833i −0.543878 0.839164i \(-0.683045\pi\)
0.543878 0.839164i \(-0.316955\pi\)
\(198\) 0 0
\(199\) −11.7796 6.80093i −0.835030 0.482105i 0.0205416 0.999789i \(-0.493461\pi\)
−0.855572 + 0.517684i \(0.826794\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.221707 + 8.94884i 0.0155608 + 0.628086i
\(204\) 0 0
\(205\) 11.2635 + 19.5089i 0.786676 + 1.36256i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −20.4454 −1.41424
\(210\) 0 0
\(211\) −16.8830 −1.16227 −0.581136 0.813807i \(-0.697391\pi\)
−0.581136 + 0.813807i \(0.697391\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.34844 + 12.7279i 0.501160 + 0.868034i
\(216\) 0 0
\(217\) 11.6872 + 6.36701i 0.793382 + 0.432221i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.0770674 0.0444949i −0.00518412 0.00299305i
\(222\) 0 0
\(223\) 4.42723i 0.296469i 0.988952 + 0.148235i \(0.0473591\pi\)
−0.988952 + 0.148235i \(0.952641\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.69552 11.5970i 0.444397 0.769718i −0.553613 0.832774i \(-0.686751\pi\)
0.998010 + 0.0630557i \(0.0200846\pi\)
\(228\) 0 0
\(229\) 6.62507 3.82498i 0.437797 0.252762i −0.264866 0.964285i \(-0.585328\pi\)
0.702663 + 0.711523i \(0.251994\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.1646 + 7.02323i −0.796929 + 0.460107i −0.842396 0.538859i \(-0.818856\pi\)
0.0454674 + 0.998966i \(0.485522\pi\)
\(234\) 0 0
\(235\) 3.54225 6.13535i 0.231071 0.400226i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.7472i 1.08329i −0.840608 0.541644i \(-0.817802\pi\)
0.840608 0.541644i \(-0.182198\pi\)
\(240\) 0 0
\(241\) −26.5411 15.3235i −1.70967 0.987076i −0.934960 0.354753i \(-0.884565\pi\)
−0.774705 0.632323i \(-0.782102\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.60511 + 11.7835i 0.485873 + 0.752818i
\(246\) 0 0
\(247\) 2.12579 + 3.68198i 0.135261 + 0.234279i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.56378 0.288063 0.144032 0.989573i \(-0.453993\pi\)
0.144032 + 0.989573i \(0.453993\pi\)
\(252\) 0 0
\(253\) −4.65498 −0.292656
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.3918 23.1954i −0.835361 1.44689i −0.893736 0.448592i \(-0.851926\pi\)
0.0583759 0.998295i \(-0.481408\pi\)
\(258\) 0 0
\(259\) 0.186371 + 0.305095i 0.0115805 + 0.0189577i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.1138 + 10.4580i 1.11695 + 0.644869i 0.940619 0.339463i \(-0.110245\pi\)
0.176326 + 0.984332i \(0.443579\pi\)
\(264\) 0 0
\(265\) 12.3041i 0.755833i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.3200 23.0709i 0.812133 1.40666i −0.0992351 0.995064i \(-0.531640\pi\)
0.911368 0.411592i \(-0.135027\pi\)
\(270\) 0 0
\(271\) 17.6224 10.1743i 1.07048 0.618045i 0.142171 0.989842i \(-0.454592\pi\)
0.928314 + 0.371798i \(0.121258\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.09891 + 2.36651i −0.247174 + 0.142706i
\(276\) 0 0
\(277\) −1.02112 + 1.76863i −0.0613531 + 0.106267i −0.895070 0.445925i \(-0.852875\pi\)
0.833717 + 0.552191i \(0.186208\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.9288i 1.00989i 0.863152 + 0.504945i \(0.168487\pi\)
−0.863152 + 0.504945i \(0.831513\pi\)
\(282\) 0 0
\(283\) 9.97089 + 5.75670i 0.592708 + 0.342200i 0.766168 0.642641i \(-0.222161\pi\)
−0.173460 + 0.984841i \(0.555495\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −29.7391 + 0.736786i −1.75544 + 0.0434911i
\(288\) 0 0
\(289\) 8.49603 + 14.7155i 0.499766 + 0.865621i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −20.8111 −1.21580 −0.607898 0.794015i \(-0.707987\pi\)
−0.607898 + 0.794015i \(0.707987\pi\)
\(294\) 0 0
\(295\) −19.5643 −1.13908
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.483998 + 0.838310i 0.0279903 + 0.0484807i
\(300\) 0 0
\(301\) −19.4022 + 0.480688i −1.11832 + 0.0277064i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 22.6149 + 13.0567i 1.29492 + 0.747624i
\(306\) 0 0
\(307\) 2.00298i 0.114316i 0.998365 + 0.0571580i \(0.0182039\pi\)
−0.998365 + 0.0571580i \(0.981796\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.35374 + 7.54089i −0.246878 + 0.427605i −0.962658 0.270721i \(-0.912738\pi\)
0.715780 + 0.698326i \(0.246071\pi\)
\(312\) 0 0
\(313\) 9.54198 5.50906i 0.539345 0.311391i −0.205469 0.978664i \(-0.565872\pi\)
0.744813 + 0.667273i \(0.232539\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.92196 + 5.72844i −0.557273 + 0.321742i −0.752050 0.659106i \(-0.770935\pi\)
0.194777 + 0.980847i \(0.437602\pi\)
\(318\) 0 0
\(319\) −8.12078 + 14.0656i −0.454677 + 0.787523i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.379687i 0.0211263i
\(324\) 0 0
\(325\) 0.852364 + 0.492113i 0.0472806 + 0.0272975i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.87699 + 7.98377i 0.268877 + 0.440159i
\(330\) 0 0
\(331\) −2.70596 4.68685i −0.148733 0.257613i 0.782027 0.623245i \(-0.214186\pi\)
−0.930759 + 0.365632i \(0.880853\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 30.3628 1.65890
\(336\) 0 0
\(337\) 24.3709 1.32757 0.663783 0.747926i \(-0.268950\pi\)
0.663783 + 0.747926i \(0.268950\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0738 + 20.9125i 0.653834 + 1.13247i
\(342\) 0 0
\(343\) −18.4691 + 1.37497i −0.997240 + 0.0742413i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.74410 4.47106i −0.415725 0.240019i 0.277522 0.960719i \(-0.410487\pi\)
−0.693247 + 0.720700i \(0.743820\pi\)
\(348\) 0 0
\(349\) 11.1848i 0.598706i 0.954142 + 0.299353i \(0.0967709\pi\)
−0.954142 + 0.299353i \(0.903229\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.75651 + 11.7026i −0.359613 + 0.622867i −0.987896 0.155117i \(-0.950424\pi\)
0.628284 + 0.777984i \(0.283758\pi\)
\(354\) 0 0
\(355\) 7.92908 4.57786i 0.420832 0.242968i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.5673 + 17.0707i −1.56050 + 0.900957i −0.563297 + 0.826254i \(0.690467\pi\)
−0.997206 + 0.0747023i \(0.976199\pi\)
\(360\) 0 0
\(361\) −0.430017 + 0.744810i −0.0226324 + 0.0392006i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.64413i 0.452454i
\(366\) 0 0
\(367\) −0.922490 0.532600i −0.0481536 0.0278015i 0.475730 0.879591i \(-0.342184\pi\)
−0.523884 + 0.851790i \(0.675517\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14.2683 + 7.77313i 0.740774 + 0.403561i
\(372\) 0 0
\(373\) 2.16655 + 3.75257i 0.112180 + 0.194301i 0.916649 0.399694i \(-0.130883\pi\)
−0.804469 + 0.593994i \(0.797550\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.37741 0.173946
\(378\) 0 0
\(379\) 2.43862 0.125263 0.0626317 0.998037i \(-0.480051\pi\)
0.0626317 + 0.998037i \(0.480051\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.7552 32.4849i −0.958344 1.65990i −0.726524 0.687141i \(-0.758865\pi\)
−0.231819 0.972759i \(-0.574468\pi\)
\(384\) 0 0
\(385\) 0.630226 + 25.4380i 0.0321193 + 1.29644i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.97057 + 3.44711i 0.302720 + 0.174775i 0.643664 0.765308i \(-0.277413\pi\)
−0.340944 + 0.940083i \(0.610747\pi\)
\(390\) 0 0
\(391\) 0.0864467i 0.00437180i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.9025 20.6158i 0.598880 1.03729i
\(396\) 0 0
\(397\) −33.7783 + 19.5019i −1.69529 + 0.978774i −0.745172 + 0.666872i \(0.767633\pi\)
−0.950114 + 0.311902i \(0.899034\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.1101 9.30115i 0.804498 0.464477i −0.0405433 0.999178i \(-0.512909\pi\)
0.845042 + 0.534700i \(0.179576\pi\)
\(402\) 0 0
\(403\) 2.51073 4.34872i 0.125069 0.216625i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.648668i 0.0321533i
\(408\) 0 0
\(409\) −1.89129 1.09193i −0.0935181 0.0539927i 0.452512 0.891759i \(-0.350528\pi\)
−0.546030 + 0.837766i \(0.683861\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.3598 22.6876i 0.608187 1.11638i
\(414\) 0 0
\(415\) 3.25559 + 5.63884i 0.159810 + 0.276800i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −29.8666 −1.45908 −0.729540 0.683938i \(-0.760266\pi\)
−0.729540 + 0.683938i \(0.760266\pi\)
\(420\) 0 0
\(421\) −1.34630 −0.0656147 −0.0328073 0.999462i \(-0.510445\pi\)
−0.0328073 + 0.999462i \(0.510445\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.0439480 + 0.0761201i 0.00213179 + 0.00369237i
\(426\) 0 0
\(427\) −29.4281 + 17.9765i −1.42413 + 0.869945i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 22.9854 + 13.2706i 1.10717 + 0.639223i 0.938094 0.346381i \(-0.112590\pi\)
0.169072 + 0.985604i \(0.445923\pi\)
\(432\) 0 0
\(433\) 27.4682i 1.32004i 0.751250 + 0.660018i \(0.229451\pi\)
−0.751250 + 0.660018i \(0.770549\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.06504 3.57676i 0.0987844 0.171100i
\(438\) 0 0
\(439\) 3.49248 2.01638i 0.166687 0.0962367i −0.414336 0.910124i \(-0.635986\pi\)
0.581023 + 0.813887i \(0.302653\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.3085 16.9212i 1.39249 0.803953i 0.398897 0.916996i \(-0.369393\pi\)
0.993590 + 0.113043i \(0.0360598\pi\)
\(444\) 0 0
\(445\) −2.13006 + 3.68937i −0.100974 + 0.174893i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.7395i 1.49788i 0.662638 + 0.748940i \(0.269437\pi\)
−0.662638 + 0.748940i \(0.730563\pi\)
\(450\) 0 0
\(451\) −46.7433 26.9873i −2.20106 1.27078i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.51558 2.75840i 0.211693 0.129316i
\(456\) 0 0
\(457\) 17.7802 + 30.7963i 0.831724 + 1.44059i 0.896670 + 0.442700i \(0.145979\pi\)
−0.0649459 + 0.997889i \(0.520687\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −32.5894 −1.51784 −0.758919 0.651185i \(-0.774272\pi\)
−0.758919 + 0.651185i \(0.774272\pi\)
\(462\) 0 0
\(463\) −21.2795 −0.988941 −0.494471 0.869194i \(-0.664638\pi\)
−0.494471 + 0.869194i \(0.664638\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.0189 + 32.9417i 0.880090 + 1.52436i 0.851240 + 0.524777i \(0.175851\pi\)
0.0288500 + 0.999584i \(0.490815\pi\)
\(468\) 0 0
\(469\) −19.1818 + 35.2100i −0.885732 + 1.62584i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −30.4959 17.6068i −1.40221 0.809563i
\(474\) 0 0
\(475\) 4.19933i 0.192678i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.26814 + 9.12468i −0.240707 + 0.416917i −0.960916 0.276840i \(-0.910713\pi\)
0.720209 + 0.693758i \(0.244046\pi\)
\(480\) 0 0
\(481\) 0.116818 0.0674448i 0.00532644 0.00307522i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.07417 1.19752i 0.0941831 0.0543766i
\(486\) 0 0
\(487\) −4.92393 + 8.52850i −0.223125 + 0.386463i −0.955755 0.294163i \(-0.904959\pi\)
0.732631 + 0.680627i \(0.238292\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.79146i 0.351624i −0.984424 0.175812i \(-0.943745\pi\)
0.984424 0.175812i \(-0.0562550\pi\)
\(492\) 0 0
\(493\) 0.261210 + 0.150809i 0.0117643 + 0.00679211i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.299454 + 12.0870i 0.0134324 + 0.542175i
\(498\) 0 0
\(499\) 11.8950 + 20.6027i 0.532493 + 0.922305i 0.999280 + 0.0379356i \(0.0120782\pi\)
−0.466787 + 0.884370i \(0.654589\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.1692 0.676363 0.338182 0.941081i \(-0.390188\pi\)
0.338182 + 0.941081i \(0.390188\pi\)
\(504\) 0 0
\(505\) −24.0178 −1.06878
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.59151 14.8809i −0.380812 0.659586i 0.610367 0.792119i \(-0.291022\pi\)
−0.991179 + 0.132533i \(0.957689\pi\)
\(510\) 0 0
\(511\) −10.0241 5.46095i −0.443440 0.241578i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.5400 + 9.54939i 0.728840 + 0.420796i
\(516\) 0 0
\(517\) 16.9744i 0.746535i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.70778 15.0823i 0.381495 0.660768i −0.609782 0.792570i \(-0.708743\pi\)
0.991276 + 0.131802i \(0.0420762\pi\)
\(522\) 0 0
\(523\) 25.5361 14.7432i 1.11661 0.644677i 0.176079 0.984376i \(-0.443658\pi\)
0.940534 + 0.339699i \(0.110325\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.388361 0.224220i 0.0169173 0.00976719i
\(528\) 0 0
\(529\) −11.0298 + 19.1042i −0.479558 + 0.830619i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.2239i 0.486163i
\(534\) 0 0
\(535\) −32.4908 18.7586i −1.40470 0.811004i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −29.8971 15.3397i −1.28776 0.660728i
\(540\) 0 0
\(541\) 3.51522 + 6.08854i 0.151131 + 0.261767i 0.931644 0.363373i \(-0.118375\pi\)
−0.780512 + 0.625140i \(0.785042\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.61121 0.154687
\(546\) 0 0
\(547\) −31.9694 −1.36691 −0.683456 0.729992i \(-0.739524\pi\)
−0.683456 + 0.729992i \(0.739524\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.20509 12.4796i −0.306947 0.531648i
\(552\) 0 0
\(553\) 16.3874 + 26.8267i 0.696865 + 1.14079i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.37676 3.10427i −0.227821 0.131532i 0.381746 0.924267i \(-0.375323\pi\)
−0.609566 + 0.792735i \(0.708656\pi\)
\(558\) 0 0
\(559\) 7.32264i 0.309715i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.0447 + 24.3261i −0.591913 + 1.02522i 0.402062 + 0.915613i \(0.368294\pi\)
−0.993975 + 0.109611i \(0.965040\pi\)
\(564\) 0 0
\(565\) −21.3001 + 12.2976i −0.896101 + 0.517364i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.3016 16.3399i 1.18646 0.685005i 0.228963 0.973435i \(-0.426467\pi\)
0.957501 + 0.288430i \(0.0931333\pi\)
\(570\) 0 0
\(571\) 8.71183 15.0893i 0.364579 0.631469i −0.624130 0.781321i \(-0.714546\pi\)
0.988708 + 0.149852i \(0.0478797\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.956098i 0.0398720i
\(576\) 0 0
\(577\) 29.9406 + 17.2862i 1.24645 + 0.719635i 0.970399 0.241509i \(-0.0776423\pi\)
0.276047 + 0.961144i \(0.410976\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8.59576 + 0.212960i −0.356612 + 0.00883506i
\(582\) 0 0
\(583\) 14.7402 + 25.5309i 0.610479 + 1.05738i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.0388 0.579445 0.289722 0.957111i \(-0.406437\pi\)
0.289722 + 0.957111i \(0.406437\pi\)
\(588\) 0 0
\(589\) −21.4248 −0.882792
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.5686 + 39.0900i 0.926782 + 1.60523i 0.788670 + 0.614817i \(0.210770\pi\)
0.138112 + 0.990417i \(0.455897\pi\)
\(594\) 0 0
\(595\) 0.472404 0.0117038i 0.0193667 0.000479809i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −9.51980 5.49626i −0.388969 0.224571i 0.292745 0.956191i \(-0.405431\pi\)
−0.681713 + 0.731620i \(0.738765\pi\)
\(600\) 0 0
\(601\) 35.9629i 1.46696i −0.679712 0.733479i \(-0.737895\pi\)
0.679712 0.733479i \(-0.262105\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −12.0649 + 20.8970i −0.490507 + 0.849584i
\(606\) 0 0
\(607\) 21.8936 12.6403i 0.888634 0.513053i 0.0151385 0.999885i \(-0.495181\pi\)
0.873495 + 0.486832i \(0.161848\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.05691 1.76491i 0.123669 0.0714004i
\(612\) 0 0
\(613\) 1.24691 2.15971i 0.0503621 0.0872298i −0.839745 0.542980i \(-0.817296\pi\)
0.890108 + 0.455751i \(0.150629\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.14453i 0.368145i −0.982913 0.184072i \(-0.941072\pi\)
0.982913 0.184072i \(-0.0589281\pi\)
\(618\) 0 0
\(619\) −21.4791 12.4010i −0.863317 0.498437i 0.00180436 0.999998i \(-0.499426\pi\)
−0.865122 + 0.501562i \(0.832759\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.93267 4.80087i −0.117495 0.192343i
\(624\) 0 0
\(625\) 9.54902 + 16.5394i 0.381961 + 0.661576i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.0120463 0.000480317
\(630\) 0 0
\(631\) 8.66061 0.344773 0.172387 0.985029i \(-0.444852\pi\)
0.172387 + 0.985029i \(0.444852\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.36834 12.7623i −0.292404 0.506458i
\(636\) 0 0
\(637\) 0.346025 + 6.97908i 0.0137100 + 0.276521i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −19.9823 11.5368i −0.789253 0.455676i 0.0504463 0.998727i \(-0.483936\pi\)
−0.839700 + 0.543051i \(0.817269\pi\)
\(642\) 0 0
\(643\) 18.2567i 0.719975i 0.932957 + 0.359988i \(0.117219\pi\)
−0.932957 + 0.359988i \(0.882781\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.59782 + 2.76751i −0.0628168 + 0.108802i −0.895723 0.444612i \(-0.853342\pi\)
0.832907 + 0.553413i \(0.186675\pi\)
\(648\) 0 0
\(649\) 40.5959 23.4380i 1.59353 0.920023i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.3561 10.0206i 0.679197 0.392134i −0.120356 0.992731i \(-0.538403\pi\)
0.799552 + 0.600596i \(0.205070\pi\)
\(654\) 0 0
\(655\) −10.5180 + 18.2177i −0.410973 + 0.711826i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 34.3056i 1.33636i 0.744002 + 0.668178i \(0.232925\pi\)
−0.744002 + 0.668178i \(0.767075\pi\)
\(660\) 0 0
\(661\) −24.6383 14.2249i −0.958320 0.553286i −0.0626645 0.998035i \(-0.519960\pi\)
−0.895656 + 0.444748i \(0.853293\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −19.8255 10.8006i −0.768798 0.418828i
\(666\) 0 0
\(667\) −1.64045 2.84134i −0.0635183 0.110017i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −62.5676 −2.41540
\(672\) 0 0
\(673\) −25.9411 −0.999954 −0.499977 0.866039i \(-0.666658\pi\)
−0.499977 + 0.866039i \(0.666658\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.1894 + 31.5050i 0.699075 + 1.21083i 0.968787 + 0.247893i \(0.0797381\pi\)
−0.269712 + 0.962941i \(0.586929\pi\)
\(678\) 0 0
\(679\) 0.0783342 + 3.16183i 0.00300619 + 0.121340i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.25354 + 0.723729i 0.0479652 + 0.0276927i 0.523791 0.851847i \(-0.324517\pi\)
−0.475826 + 0.879540i \(0.657851\pi\)
\(684\) 0 0
\(685\) 30.8273i 1.17785i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.06522 5.30911i 0.116775 0.202261i
\(690\) 0 0
\(691\) 31.1043 17.9581i 1.18326 0.683157i 0.226495 0.974012i \(-0.427273\pi\)
0.956767 + 0.290856i \(0.0939400\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 25.3184 14.6176i 0.960381 0.554476i
\(696\) 0 0
\(697\) −0.501175 + 0.868061i −0.0189834 + 0.0328802i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.3851i 1.56309i −0.623847 0.781547i \(-0.714431\pi\)
0.623847 0.781547i \(-0.285569\pi\)
\(702\) 0 0
\(703\) −0.498419 0.287762i −0.0187982 0.0108532i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.1733 27.8521i 0.570652 1.04748i
\(708\) 0 0
\(709\) 9.22204 + 15.9730i 0.346341 + 0.599880i 0.985596 0.169114i \(-0.0540907\pi\)
−0.639256 + 0.768994i \(0.720757\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.87796 −0.182681
\(714\) 0 0
\(715\) 9.60064 0.359044
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.923351 + 1.59929i 0.0344352 + 0.0596435i 0.882729 0.469882i \(-0.155703\pi\)
−0.848294 + 0.529525i \(0.822370\pi\)
\(720\) 0 0
\(721\) −21.5231 + 13.1476i −0.801561 + 0.489644i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.88897 1.66795i −0.107294 0.0619460i
\(726\) 0 0
\(727\) 32.8216i 1.21728i −0.793445 0.608642i \(-0.791714\pi\)
0.793445 0.608642i \(-0.208286\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.326973 + 0.566334i −0.0120935 + 0.0209466i
\(732\) 0 0
\(733\) −13.3583 + 7.71244i −0.493402 + 0.284866i −0.725985 0.687711i \(-0.758616\pi\)
0.232583 + 0.972577i \(0.425282\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −63.0026 + 36.3746i −2.32073 + 1.33987i
\(738\) 0 0
\(739\) −11.6142 + 20.1165i −0.427237 + 0.739996i −0.996626 0.0820719i \(-0.973846\pi\)
0.569390 + 0.822068i \(0.307180\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.2228i 0.998709i 0.866398 + 0.499355i \(0.166430\pi\)
−0.866398 + 0.499355i \(0.833570\pi\)
\(744\) 0 0
\(745\) 24.9612 + 14.4113i 0.914507 + 0.527991i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 42.2794 25.8269i 1.54485 0.943694i
\(750\) 0 0
\(751\) −10.6549 18.4549i −0.388804 0.673428i 0.603485 0.797374i \(-0.293778\pi\)
−0.992289 + 0.123946i \(0.960445\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 31.0844 1.13128
\(756\) 0 0
\(757\) 43.2079 1.57042 0.785209 0.619231i \(-0.212556\pi\)
0.785209 + 0.619231i \(0.212556\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −24.8852 43.1024i −0.902087 1.56246i −0.824780 0.565453i \(-0.808701\pi\)
−0.0773067 0.997007i \(-0.524632\pi\)
\(762\) 0 0
\(763\) −2.28139 + 4.18771i −0.0825920 + 0.151605i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.44185 4.87391i −0.304818 0.175987i
\(768\) 0 0
\(769\) 17.4769i 0.630232i 0.949053 + 0.315116i \(0.102043\pi\)
−0.949053 + 0.315116i \(0.897957\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 20.7020 35.8569i 0.744598 1.28968i −0.205784 0.978597i \(-0.565974\pi\)
0.950382 0.311085i \(-0.100692\pi\)
\(774\) 0 0
\(775\) −4.29526 + 2.47987i −0.154290 + 0.0890796i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 41.4726 23.9442i 1.48591 0.857891i
\(780\) 0 0
\(781\) −10.9685 + 18.9981i −0.392485 + 0.679804i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.99700i 0.249734i
\(786\) 0 0
\(787\) −21.8422 12.6106i −0.778591 0.449519i 0.0573400 0.998355i \(-0.481738\pi\)
−0.835931 + 0.548835i \(0.815071\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.804431 32.4695i −0.0286023 1.15448i
\(792\) 0 0
\(793\) 6.50543 + 11.2677i 0.231014 + 0.400129i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.6641 1.05075 0.525377 0.850869i \(-0.323924\pi\)
0.525377 + 0.850869i \(0.323924\pi\)
\(798\) 0 0
\(799\) 0.315229 0.0111520
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.3557 17.9365i −0.365443 0.632966i
\(804\) 0 0
\(805\) −4.51384 2.45906i −0.159092 0.0866705i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.88592 3.39824i −0.206938 0.119476i 0.392950 0.919560i \(-0.371455\pi\)
−0.599888 + 0.800084i \(0.704788\pi\)
\(810\) 0 0
\(811\) 0.00414872i 0.000145681i −1.00000 7.28407e-5i \(-0.999977\pi\)
1.00000 7.28407e-5i \(-2.31859e-5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.8626 + 24.0107i −0.485585 + 0.841059i
\(816\) 0 0
\(817\) 27.0572 15.6215i 0.946613 0.546527i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.8842 + 14.3669i −0.868465 + 0.501409i −0.866838 0.498590i \(-0.833851\pi\)
−0.00162745 + 0.999999i \(0.500518\pi\)
\(822\) 0 0
\(823\) 25.3472 43.9026i 0.883547 1.53035i 0.0361761 0.999345i \(-0.488482\pi\)
0.847371 0.531002i \(-0.178184\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.19233i 0.111008i −0.998458 0.0555041i \(-0.982323\pi\)
0.998458 0.0555041i \(-0.0176766\pi\)
\(828\) 0 0
\(829\) −41.4645 23.9395i −1.44012 0.831454i −0.442264 0.896885i \(-0.645824\pi\)
−0.997857 + 0.0654311i \(0.979158\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.284871 + 0.555214i −0.00987018 + 0.0192370i
\(834\) 0 0
\(835\) 3.91188 + 6.77557i 0.135376 + 0.234478i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.3657 −0.426913 −0.213456 0.976953i \(-0.568472\pi\)
−0.213456 + 0.976953i \(0.568472\pi\)
\(840\) 0 0
\(841\) 17.5527 0.605266
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.0246 + 20.8272i 0.413658 + 0.716476i
\(846\) 0 0
\(847\) −16.6110 27.1927i −0.570761 0.934352i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.113479 0.0655174i −0.00389003 0.00224591i
\(852\) 0 0
\(853\) 23.4951i 0.804457i −0.915539 0.402229i \(-0.868236\pi\)
0.915539 0.402229i \(-0.131764\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.75960 15.1721i 0.299222 0.518268i −0.676736 0.736226i \(-0.736606\pi\)
0.975958 + 0.217958i \(0.0699395\pi\)
\(858\) 0 0
\(859\) −11.9224 + 6.88338i −0.406786 + 0.234858i −0.689408 0.724373i \(-0.742129\pi\)
0.282622 + 0.959231i \(0.408796\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22.0835 + 12.7499i −0.751732 + 0.434013i −0.826319 0.563202i \(-0.809569\pi\)
0.0745872 + 0.997214i \(0.476236\pi\)
\(864\) 0 0
\(865\) 17.9639 31.1144i 0.610791 1.05792i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 57.0368i 1.93484i
\(870\) 0 0
\(871\) 13.1013 + 7.56404i 0.443921 + 0.256298i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −31.7205 + 0.785875i −1.07235 + 0.0265674i
\(876\) 0 0
\(877\) 25.9895 + 45.0152i 0.877604 + 1.52005i 0.853963 + 0.520334i \(0.174193\pi\)
0.0236415 + 0.999721i \(0.492474\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37.6723 1.26921 0.634607 0.772835i \(-0.281162\pi\)
0.634607 + 0.772835i \(0.281162\pi\)
\(882\) 0 0
\(883\) −37.4259 −1.25948 −0.629741 0.776805i \(-0.716839\pi\)
−0.629741 + 0.776805i \(0.716839\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27.4541 + 47.5518i 0.921817 + 1.59663i 0.796602 + 0.604504i \(0.206629\pi\)
0.125215 + 0.992130i \(0.460038\pi\)
\(888\) 0 0
\(889\) 19.4547 0.481990i 0.652490 0.0161654i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13.0427 7.53020i −0.436457 0.251989i
\(894\) 0 0
\(895\) 13.7311i 0.458981i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.50979 + 14.7394i −0.283817 + 0.491586i
\(900\) 0 0
\(901\) 0.474128 0.273738i 0.0157955 0.00911954i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.9965 12.1223i 0.697946 0.402959i
\(906\) 0 0
\(907\) 4.32671 7.49408i 0.143666 0.248837i −0.785208 0.619232i \(-0.787444\pi\)
0.928874 + 0.370395i \(0.120778\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.1238i 0.368547i 0.982875 + 0.184273i \(0.0589932\pi\)
−0.982875 + 0.184273i \(0.941007\pi\)
\(912\) 0 0
\(913\) −13.5106 7.80037i −0.447137 0.258155i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14.4813 23.7062i −0.478214 0.782849i
\(918\) 0 0
\(919\) 22.9971 + 39.8322i 0.758605 + 1.31394i 0.943562 + 0.331196i \(0.107452\pi\)
−0.184957 + 0.982747i \(0.559215\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.56178 0.150153
\(924\) 0 0
\(925\) −0.133232 −0.00438063
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.9035 31.0097i −0.587394 1.01740i −0.994572 0.104048i \(-0.966820\pi\)
0.407178 0.913349i \(-0.366513\pi\)
\(930\) 0 0
\(931\) 25.0496 16.1671i 0.820967 0.529857i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.742515 + 0.428691i 0.0242828 + 0.0140197i
\(936\) 0 0
\(937\) 1.01234i 0.0330718i 0.999863 + 0.0165359i \(0.00526377\pi\)
−0.999863 + 0.0165359i \(0.994736\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −17.7953 + 30.8223i −0.580109 + 1.00478i 0.415357 + 0.909658i \(0.363657\pi\)
−0.995466 + 0.0951193i \(0.969677\pi\)
\(942\) 0 0
\(943\) 9.44243 5.45159i 0.307488 0.177528i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.6494 15.9634i 0.898485 0.518741i 0.0217769 0.999763i \(-0.493068\pi\)
0.876708 + 0.481022i \(0.159734\pi\)
\(948\) 0 0
\(949\) −2.15344 + 3.72988i −0.0699038 + 0.121077i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.6179i 0.700273i 0.936699 + 0.350136i \(0.113865\pi\)
−0.936699 + 0.350136i \(0.886135\pi\)
\(954\) 0 0
\(955\) 14.7429 + 8.51181i 0.477069 + 0.275436i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 35.7487 + 19.4753i 1.15438 + 0.628889i
\(960\) 0 0
\(961\) −2.84783 4.93258i −0.0918653 0.159115i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −27.2397 −0.876877
\(966\) 0 0
\(967\) −15.5887 −0.501298 −0.250649 0.968078i \(-0.580644\pi\)
−0.250649 + 0.968078i \(0.580644\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.94294 + 10.2935i 0.190718 + 0.330334i 0.945488 0.325656i \(-0.105585\pi\)
−0.754770 + 0.655989i \(0.772252\pi\)
\(972\) 0 0
\(973\) 0.956188 + 38.5949i 0.0306540 + 1.23730i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.6105 + 21.7144i 1.20327 + 0.694706i 0.961280 0.275573i \(-0.0888677\pi\)
0.241986 + 0.970280i \(0.422201\pi\)
\(978\) 0 0
\(979\) 10.2072i 0.326224i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.4704 + 30.2596i −0.557218 + 0.965130i 0.440509 + 0.897748i \(0.354798\pi\)
−0.997727 + 0.0673821i \(0.978535\pi\)
\(984\) 0 0
\(985\) 40.8725 23.5977i 1.30231 0.751887i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.16036 3.55669i 0.195888 0.113096i
\(990\) 0 0
\(991\) 2.17783 3.77211i 0.0691811 0.119825i −0.829360 0.558715i \(-0.811295\pi\)
0.898541 + 0.438889i \(0.144628\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 27.2514i 0.863927i
\(996\) 0 0
\(997\) −43.7264 25.2454i −1.38483 0.799531i −0.392102 0.919922i \(-0.628252\pi\)
−0.992727 + 0.120391i \(0.961585\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.t.c.1781.13 yes 32
3.2 odd 2 inner 2268.2.t.c.1781.4 32
7.5 odd 6 inner 2268.2.t.c.2105.4 yes 32
9.2 odd 6 2268.2.bm.j.1025.13 32
9.4 even 3 2268.2.w.j.269.13 32
9.5 odd 6 2268.2.w.j.269.4 32
9.7 even 3 2268.2.bm.j.1025.4 32
21.5 even 6 inner 2268.2.t.c.2105.13 yes 32
63.5 even 6 2268.2.bm.j.593.4 32
63.40 odd 6 2268.2.bm.j.593.13 32
63.47 even 6 2268.2.w.j.1349.13 32
63.61 odd 6 2268.2.w.j.1349.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.4 32 3.2 odd 2 inner
2268.2.t.c.1781.13 yes 32 1.1 even 1 trivial
2268.2.t.c.2105.4 yes 32 7.5 odd 6 inner
2268.2.t.c.2105.13 yes 32 21.5 even 6 inner
2268.2.w.j.269.4 32 9.5 odd 6
2268.2.w.j.269.13 32 9.4 even 3
2268.2.w.j.1349.4 32 63.61 odd 6
2268.2.w.j.1349.13 32 63.47 even 6
2268.2.bm.j.593.4 32 63.5 even 6
2268.2.bm.j.593.13 32 63.40 odd 6
2268.2.bm.j.1025.4 32 9.7 even 3
2268.2.bm.j.1025.13 32 9.2 odd 6