Properties

Label 2268.2.bm.j.1025.11
Level $2268$
Weight $2$
Character 2268.1025
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(593,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1025.11
Character \(\chi\) \(=\) 2268.1025
Dual form 2268.2.bm.j.593.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.13332 q^{5} +(-1.77285 - 1.96392i) q^{7} -2.65687i q^{11} +(1.59436 + 0.920505i) q^{13} +(-0.267475 + 0.463281i) q^{17} +(2.57178 - 1.48482i) q^{19} -0.969928i q^{23} -3.71559 q^{25} +(2.66955 - 1.54127i) q^{29} +(-0.682710 + 0.394163i) q^{31} +(-2.00920 - 2.22575i) q^{35} +(-1.73316 - 3.00191i) q^{37} +(-2.22822 + 3.85939i) q^{41} +(-0.849465 - 1.47132i) q^{43} +(5.14286 - 8.90769i) q^{47} +(-0.713980 + 6.96349i) q^{49} +(-11.9002 - 6.87059i) q^{53} -3.01107i q^{55} +(-3.64838 - 6.31917i) q^{59} +(-1.74194 - 1.00571i) q^{61} +(1.80692 + 1.04322i) q^{65} +(1.20645 + 2.08964i) q^{67} -12.3890i q^{71} +(7.05561 + 4.07356i) q^{73} +(-5.21789 + 4.71024i) q^{77} +(-2.58634 + 4.47967i) q^{79} +(-7.56910 - 13.1101i) q^{83} +(-0.303134 + 0.525044i) q^{85} +(-6.52948 - 11.3094i) q^{89} +(-1.01877 - 4.76312i) q^{91} +(2.91464 - 1.68277i) q^{95} +(1.44234 - 0.832736i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} - 12 q^{13} + 32 q^{25} - 24 q^{31} - 4 q^{37} - 4 q^{43} - 16 q^{49} - 12 q^{61} + 4 q^{67} - 36 q^{73} + 28 q^{79} + 12 q^{85} - 36 q^{91} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.13332 0.506835 0.253417 0.967357i \(-0.418445\pi\)
0.253417 + 0.967357i \(0.418445\pi\)
\(6\) 0 0
\(7\) −1.77285 1.96392i −0.670076 0.742293i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.65687i 0.801076i −0.916280 0.400538i \(-0.868823\pi\)
0.916280 0.400538i \(-0.131177\pi\)
\(12\) 0 0
\(13\) 1.59436 + 0.920505i 0.442196 + 0.255302i 0.704529 0.709675i \(-0.251158\pi\)
−0.262333 + 0.964978i \(0.584492\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.267475 + 0.463281i −0.0648723 + 0.112362i −0.896637 0.442766i \(-0.853997\pi\)
0.831765 + 0.555128i \(0.187331\pi\)
\(18\) 0 0
\(19\) 2.57178 1.48482i 0.590006 0.340640i −0.175094 0.984552i \(-0.556023\pi\)
0.765100 + 0.643912i \(0.222690\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.969928i 0.202244i −0.994874 0.101122i \(-0.967757\pi\)
0.994874 0.101122i \(-0.0322432\pi\)
\(24\) 0 0
\(25\) −3.71559 −0.743119
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.66955 1.54127i 0.495724 0.286206i −0.231222 0.972901i \(-0.574272\pi\)
0.726946 + 0.686695i \(0.240939\pi\)
\(30\) 0 0
\(31\) −0.682710 + 0.394163i −0.122618 + 0.0707937i −0.560055 0.828456i \(-0.689220\pi\)
0.437436 + 0.899249i \(0.355887\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.00920 2.22575i −0.339618 0.376220i
\(36\) 0 0
\(37\) −1.73316 3.00191i −0.284929 0.493511i 0.687663 0.726030i \(-0.258637\pi\)
−0.972592 + 0.232519i \(0.925303\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.22822 + 3.85939i −0.347990 + 0.602736i −0.985892 0.167381i \(-0.946469\pi\)
0.637903 + 0.770117i \(0.279802\pi\)
\(42\) 0 0
\(43\) −0.849465 1.47132i −0.129542 0.224374i 0.793957 0.607974i \(-0.208017\pi\)
−0.923499 + 0.383600i \(0.874684\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.14286 8.90769i 0.750163 1.29932i −0.197580 0.980287i \(-0.563308\pi\)
0.947743 0.319034i \(-0.103358\pi\)
\(48\) 0 0
\(49\) −0.713980 + 6.96349i −0.101997 + 0.994785i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.9002 6.87059i −1.63462 0.943749i −0.982642 0.185511i \(-0.940606\pi\)
−0.651979 0.758237i \(-0.726061\pi\)
\(54\) 0 0
\(55\) 3.01107i 0.406013i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.64838 6.31917i −0.474978 0.822686i 0.524611 0.851342i \(-0.324211\pi\)
−0.999589 + 0.0286558i \(0.990877\pi\)
\(60\) 0 0
\(61\) −1.74194 1.00571i −0.223033 0.128768i 0.384321 0.923200i \(-0.374436\pi\)
−0.607354 + 0.794432i \(0.707769\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.80692 + 1.04322i 0.224120 + 0.129396i
\(66\) 0 0
\(67\) 1.20645 + 2.08964i 0.147392 + 0.255290i 0.930263 0.366894i \(-0.119579\pi\)
−0.782871 + 0.622184i \(0.786246\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.3890i 1.47030i −0.677905 0.735150i \(-0.737112\pi\)
0.677905 0.735150i \(-0.262888\pi\)
\(72\) 0 0
\(73\) 7.05561 + 4.07356i 0.825796 + 0.476774i 0.852411 0.522872i \(-0.175139\pi\)
−0.0266149 + 0.999646i \(0.508473\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.21789 + 4.71024i −0.594633 + 0.536782i
\(78\) 0 0
\(79\) −2.58634 + 4.47967i −0.290986 + 0.504002i −0.974043 0.226363i \(-0.927317\pi\)
0.683057 + 0.730365i \(0.260650\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.56910 13.1101i −0.830817 1.43902i −0.897391 0.441235i \(-0.854540\pi\)
0.0665746 0.997781i \(-0.478793\pi\)
\(84\) 0 0
\(85\) −0.303134 + 0.525044i −0.0328795 + 0.0569490i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.52948 11.3094i −0.692123 1.19879i −0.971141 0.238506i \(-0.923342\pi\)
0.279018 0.960286i \(-0.409991\pi\)
\(90\) 0 0
\(91\) −1.01877 4.76312i −0.106796 0.499311i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.91464 1.68277i 0.299035 0.172648i
\(96\) 0 0
\(97\) 1.44234 0.832736i 0.146448 0.0845515i −0.424986 0.905200i \(-0.639721\pi\)
0.571433 + 0.820649i \(0.306388\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.48905 0.247670 0.123835 0.992303i \(-0.460481\pi\)
0.123835 + 0.992303i \(0.460481\pi\)
\(102\) 0 0
\(103\) 6.64802i 0.655049i 0.944843 + 0.327524i \(0.106214\pi\)
−0.944843 + 0.327524i \(0.893786\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.217160 + 0.125377i −0.0209936 + 0.0121207i −0.510460 0.859901i \(-0.670525\pi\)
0.489466 + 0.872022i \(0.337192\pi\)
\(108\) 0 0
\(109\) 1.27998 2.21699i 0.122600 0.212349i −0.798192 0.602403i \(-0.794210\pi\)
0.920792 + 0.390053i \(0.127543\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.383124 0.221197i −0.0360413 0.0208085i 0.481871 0.876242i \(-0.339957\pi\)
−0.517912 + 0.855434i \(0.673291\pi\)
\(114\) 0 0
\(115\) 1.09924i 0.102504i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.38404 0.296028i 0.126875 0.0271369i
\(120\) 0 0
\(121\) 3.94104 0.358277
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.87753 −0.883473
\(126\) 0 0
\(127\) 17.6161 1.56317 0.781586 0.623797i \(-0.214411\pi\)
0.781586 + 0.623797i \(0.214411\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.1985 0.891049 0.445525 0.895270i \(-0.353017\pi\)
0.445525 + 0.895270i \(0.353017\pi\)
\(132\) 0 0
\(133\) −7.47545 2.41841i −0.648203 0.209703i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.41103i 0.718603i −0.933222 0.359301i \(-0.883015\pi\)
0.933222 0.359301i \(-0.116985\pi\)
\(138\) 0 0
\(139\) 8.83742 + 5.10229i 0.749580 + 0.432770i 0.825542 0.564340i \(-0.190869\pi\)
−0.0759620 + 0.997111i \(0.524203\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.44566 4.23601i 0.204517 0.354233i
\(144\) 0 0
\(145\) 3.02545 1.74674i 0.251250 0.145059i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.1997i 1.24521i 0.782536 + 0.622605i \(0.213926\pi\)
−0.782536 + 0.622605i \(0.786074\pi\)
\(150\) 0 0
\(151\) −8.40245 −0.683781 −0.341891 0.939740i \(-0.611067\pi\)
−0.341891 + 0.939740i \(0.611067\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.773727 + 0.446711i −0.0621472 + 0.0358807i
\(156\) 0 0
\(157\) −16.1793 + 9.34111i −1.29125 + 0.745501i −0.978875 0.204459i \(-0.934457\pi\)
−0.312371 + 0.949960i \(0.601123\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.90486 + 1.71954i −0.150124 + 0.135519i
\(162\) 0 0
\(163\) −10.7857 18.6813i −0.844800 1.46324i −0.885795 0.464077i \(-0.846386\pi\)
0.0409955 0.999159i \(-0.486947\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.39810 11.0818i 0.495099 0.857537i −0.504885 0.863187i \(-0.668465\pi\)
0.999984 + 0.00564941i \(0.00179827\pi\)
\(168\) 0 0
\(169\) −4.80534 8.32310i −0.369642 0.640238i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.6999 18.5328i 0.813501 1.40903i −0.0968975 0.995294i \(-0.530892\pi\)
0.910399 0.413732i \(-0.135775\pi\)
\(174\) 0 0
\(175\) 6.58720 + 7.29714i 0.497946 + 0.551612i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.36953 + 2.52275i 0.326594 + 0.188559i 0.654328 0.756211i \(-0.272952\pi\)
−0.327734 + 0.944770i \(0.606285\pi\)
\(180\) 0 0
\(181\) 11.6959i 0.869351i 0.900587 + 0.434675i \(0.143137\pi\)
−0.900587 + 0.434675i \(0.856863\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.96421 3.40212i −0.144412 0.250129i
\(186\) 0 0
\(187\) 1.23088 + 0.710647i 0.0900106 + 0.0519676i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.6083 + 11.3209i 1.41881 + 0.819148i 0.996194 0.0871622i \(-0.0277799\pi\)
0.422612 + 0.906311i \(0.361113\pi\)
\(192\) 0 0
\(193\) 0.559276 + 0.968695i 0.0402576 + 0.0697282i 0.885452 0.464731i \(-0.153849\pi\)
−0.845195 + 0.534459i \(0.820515\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.19138i 0.227377i 0.993516 + 0.113688i \(0.0362665\pi\)
−0.993516 + 0.113688i \(0.963733\pi\)
\(198\) 0 0
\(199\) 0.346408 + 0.199999i 0.0245562 + 0.0141775i 0.512228 0.858850i \(-0.328820\pi\)
−0.487672 + 0.873027i \(0.662154\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.75966 2.51035i −0.544621 0.176192i
\(204\) 0 0
\(205\) −2.52528 + 4.37391i −0.176373 + 0.305487i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.94496 6.83288i −0.272879 0.472640i
\(210\) 0 0
\(211\) −2.82379 + 4.89095i −0.194398 + 0.336707i −0.946703 0.322108i \(-0.895609\pi\)
0.752305 + 0.658815i \(0.228942\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.962712 1.66747i −0.0656564 0.113720i
\(216\) 0 0
\(217\) 1.98445 + 0.641996i 0.134713 + 0.0435816i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.852904 + 0.492425i −0.0573725 + 0.0331241i
\(222\) 0 0
\(223\) −5.40211 + 3.11891i −0.361752 + 0.208858i −0.669849 0.742497i \(-0.733641\pi\)
0.308097 + 0.951355i \(0.400308\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.3288 −1.08378 −0.541892 0.840448i \(-0.682292\pi\)
−0.541892 + 0.840448i \(0.682292\pi\)
\(228\) 0 0
\(229\) 23.4203i 1.54765i −0.633397 0.773827i \(-0.718340\pi\)
0.633397 0.773827i \(-0.281660\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.9345 + 6.31304i −0.716343 + 0.413581i −0.813405 0.581698i \(-0.802389\pi\)
0.0970623 + 0.995278i \(0.469055\pi\)
\(234\) 0 0
\(235\) 5.82849 10.0952i 0.380209 0.658541i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.56517 4.94510i −0.554035 0.319872i 0.196713 0.980461i \(-0.436973\pi\)
−0.750748 + 0.660589i \(0.770307\pi\)
\(240\) 0 0
\(241\) 20.2198i 1.30247i −0.758875 0.651236i \(-0.774251\pi\)
0.758875 0.651236i \(-0.225749\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.809165 + 7.89184i −0.0516957 + 0.504191i
\(246\) 0 0
\(247\) 5.46712 0.347865
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.4354 0.658679 0.329339 0.944212i \(-0.393174\pi\)
0.329339 + 0.944212i \(0.393174\pi\)
\(252\) 0 0
\(253\) −2.57697 −0.162013
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.81677 0.487597 0.243798 0.969826i \(-0.421606\pi\)
0.243798 + 0.969826i \(0.421606\pi\)
\(258\) 0 0
\(259\) −2.82289 + 8.72573i −0.175406 + 0.542191i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.70199i 0.104949i −0.998622 0.0524745i \(-0.983289\pi\)
0.998622 0.0524745i \(-0.0167108\pi\)
\(264\) 0 0
\(265\) −13.4867 7.78656i −0.828482 0.478324i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.59447 + 4.49375i −0.158188 + 0.273989i −0.934215 0.356710i \(-0.883898\pi\)
0.776028 + 0.630699i \(0.217232\pi\)
\(270\) 0 0
\(271\) −22.7985 + 13.1627i −1.38491 + 0.799579i −0.992736 0.120311i \(-0.961611\pi\)
−0.392176 + 0.919890i \(0.628278\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.87185i 0.595295i
\(276\) 0 0
\(277\) 23.5952 1.41770 0.708849 0.705360i \(-0.249215\pi\)
0.708849 + 0.705360i \(0.249215\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.0083 + 9.24241i −0.954976 + 0.551356i −0.894623 0.446821i \(-0.852556\pi\)
−0.0603530 + 0.998177i \(0.519223\pi\)
\(282\) 0 0
\(283\) 15.3990 8.89059i 0.915373 0.528491i 0.0332168 0.999448i \(-0.489425\pi\)
0.882156 + 0.470958i \(0.156091\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.5299 2.46609i 0.680586 0.145568i
\(288\) 0 0
\(289\) 8.35691 + 14.4746i 0.491583 + 0.851447i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.43356 + 4.21505i −0.142170 + 0.246246i −0.928314 0.371798i \(-0.878741\pi\)
0.786143 + 0.618044i \(0.212075\pi\)
\(294\) 0 0
\(295\) −4.13476 7.16162i −0.240735 0.416966i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.892823 1.54642i 0.0516333 0.0894315i
\(300\) 0 0
\(301\) −1.38357 + 4.27671i −0.0797479 + 0.246505i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.97417 1.13979i −0.113041 0.0652641i
\(306\) 0 0
\(307\) 8.37189i 0.477809i 0.971043 + 0.238905i \(0.0767883\pi\)
−0.971043 + 0.238905i \(0.923212\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.10547 14.0391i −0.459619 0.796084i 0.539322 0.842100i \(-0.318681\pi\)
−0.998941 + 0.0460162i \(0.985347\pi\)
\(312\) 0 0
\(313\) 19.9011 + 11.4899i 1.12488 + 0.649449i 0.942642 0.333806i \(-0.108333\pi\)
0.182237 + 0.983255i \(0.441666\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.8322 + 10.8728i 1.05772 + 0.610675i 0.924801 0.380452i \(-0.124231\pi\)
0.132920 + 0.991127i \(0.457565\pi\)
\(318\) 0 0
\(319\) −4.09495 7.09266i −0.229273 0.397113i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.58861i 0.0883924i
\(324\) 0 0
\(325\) −5.92400 3.42022i −0.328604 0.189720i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −26.6116 + 5.69186i −1.46714 + 0.313802i
\(330\) 0 0
\(331\) −12.8868 + 22.3207i −0.708325 + 1.22685i 0.257154 + 0.966371i \(0.417215\pi\)
−0.965478 + 0.260484i \(0.916118\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.36729 + 2.36822i 0.0747032 + 0.129390i
\(336\) 0 0
\(337\) 6.80663 11.7894i 0.370781 0.642211i −0.618905 0.785466i \(-0.712423\pi\)
0.989686 + 0.143255i \(0.0457568\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.04724 + 1.81387i 0.0567112 + 0.0982267i
\(342\) 0 0
\(343\) 14.9415 10.9431i 0.806767 0.590869i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.35635 4.82454i 0.448593 0.258995i −0.258643 0.965973i \(-0.583275\pi\)
0.707236 + 0.706978i \(0.249942\pi\)
\(348\) 0 0
\(349\) 20.1890 11.6561i 1.08069 0.623937i 0.149608 0.988745i \(-0.452199\pi\)
0.931083 + 0.364808i \(0.118865\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −31.0020 −1.65007 −0.825035 0.565081i \(-0.808845\pi\)
−0.825035 + 0.565081i \(0.808845\pi\)
\(354\) 0 0
\(355\) 14.0406i 0.745198i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.6898 9.05853i 0.828077 0.478091i −0.0251166 0.999685i \(-0.507996\pi\)
0.853194 + 0.521594i \(0.174662\pi\)
\(360\) 0 0
\(361\) −5.09064 + 8.81725i −0.267929 + 0.464066i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.99624 + 4.61663i 0.418542 + 0.241645i
\(366\) 0 0
\(367\) 3.16219i 0.165065i −0.996588 0.0825326i \(-0.973699\pi\)
0.996588 0.0825326i \(-0.0263008\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.60403 + 35.5517i 0.394782 + 1.84575i
\(372\) 0 0
\(373\) 7.37186 0.381700 0.190850 0.981619i \(-0.438876\pi\)
0.190850 + 0.981619i \(0.438876\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.67498 0.292276
\(378\) 0 0
\(379\) −17.7598 −0.912259 −0.456130 0.889913i \(-0.650765\pi\)
−0.456130 + 0.889913i \(0.650765\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 21.2701 1.08685 0.543425 0.839458i \(-0.317127\pi\)
0.543425 + 0.839458i \(0.317127\pi\)
\(384\) 0 0
\(385\) −5.91352 + 5.33819i −0.301381 + 0.272060i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.67016i 0.186085i 0.995662 + 0.0930424i \(0.0296592\pi\)
−0.995662 + 0.0930424i \(0.970341\pi\)
\(390\) 0 0
\(391\) 0.449349 + 0.259432i 0.0227245 + 0.0131200i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.93114 + 5.07688i −0.147482 + 0.255446i
\(396\) 0 0
\(397\) −16.4664 + 9.50687i −0.826424 + 0.477136i −0.852627 0.522521i \(-0.824992\pi\)
0.0262027 + 0.999657i \(0.491658\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.0462i 1.55037i 0.631733 + 0.775186i \(0.282344\pi\)
−0.631733 + 0.775186i \(0.717656\pi\)
\(402\) 0 0
\(403\) −1.45132 −0.0722952
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.97569 + 4.60477i −0.395340 + 0.228250i
\(408\) 0 0
\(409\) −30.4429 + 17.5762i −1.50530 + 0.869087i −0.505322 + 0.862931i \(0.668626\pi\)
−0.999981 + 0.00615678i \(0.998040\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5.94233 + 18.3681i −0.292403 + 0.903835i
\(414\) 0 0
\(415\) −8.57819 14.8579i −0.421087 0.729344i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.9516 25.8970i 0.730436 1.26515i −0.226261 0.974067i \(-0.572650\pi\)
0.956697 0.291085i \(-0.0940163\pi\)
\(420\) 0 0
\(421\) 13.0842 + 22.6624i 0.637683 + 1.10450i 0.985940 + 0.167100i \(0.0534402\pi\)
−0.348257 + 0.937399i \(0.613226\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.993829 1.72136i 0.0482078 0.0834984i
\(426\) 0 0
\(427\) 1.11307 + 5.20401i 0.0538652 + 0.251840i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 34.8031 + 20.0936i 1.67641 + 0.967875i 0.963921 + 0.266189i \(0.0857646\pi\)
0.712487 + 0.701685i \(0.247569\pi\)
\(432\) 0 0
\(433\) 15.4379i 0.741896i 0.928654 + 0.370948i \(0.120967\pi\)
−0.928654 + 0.370948i \(0.879033\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.44016 2.49444i −0.0688924 0.119325i
\(438\) 0 0
\(439\) 21.6747 + 12.5139i 1.03447 + 0.597254i 0.918263 0.395970i \(-0.129592\pi\)
0.116212 + 0.993224i \(0.462925\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.6906 + 7.32694i 0.602950 + 0.348113i 0.770201 0.637801i \(-0.220156\pi\)
−0.167251 + 0.985914i \(0.553489\pi\)
\(444\) 0 0
\(445\) −7.39996 12.8171i −0.350792 0.607589i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.1359i 1.46939i 0.678395 + 0.734697i \(0.262676\pi\)
−0.678395 + 0.734697i \(0.737324\pi\)
\(450\) 0 0
\(451\) 10.2539 + 5.92009i 0.482838 + 0.278766i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.15459 5.39812i −0.0541279 0.253068i
\(456\) 0 0
\(457\) 10.8976 18.8752i 0.509769 0.882945i −0.490167 0.871628i \(-0.663064\pi\)
0.999936 0.0113168i \(-0.00360234\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.3754 + 23.1670i 0.622957 + 1.07899i 0.988932 + 0.148368i \(0.0474020\pi\)
−0.365976 + 0.930624i \(0.619265\pi\)
\(462\) 0 0
\(463\) −7.62549 + 13.2077i −0.354386 + 0.613815i −0.987013 0.160642i \(-0.948644\pi\)
0.632626 + 0.774457i \(0.281977\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.9707 + 31.1262i 0.831585 + 1.44035i 0.896781 + 0.442475i \(0.145899\pi\)
−0.0651959 + 0.997872i \(0.520767\pi\)
\(468\) 0 0
\(469\) 1.96502 6.07400i 0.0907363 0.280471i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.90910 + 2.25692i −0.179740 + 0.103773i
\(474\) 0 0
\(475\) −9.55568 + 5.51697i −0.438445 + 0.253136i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −30.9451 −1.41392 −0.706959 0.707254i \(-0.749934\pi\)
−0.706959 + 0.707254i \(0.749934\pi\)
\(480\) 0 0
\(481\) 6.38151i 0.290972i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.63463 0.943753i 0.0742247 0.0428536i
\(486\) 0 0
\(487\) −7.67907 + 13.3005i −0.347972 + 0.602705i −0.985889 0.167400i \(-0.946463\pi\)
0.637917 + 0.770105i \(0.279796\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.105233 0.0607560i −0.00474908 0.00274188i 0.497624 0.867393i \(-0.334206\pi\)
−0.502373 + 0.864651i \(0.667539\pi\)
\(492\) 0 0
\(493\) 1.64900i 0.0742674i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.3310 + 21.9638i −1.09139 + 0.985212i
\(498\) 0 0
\(499\) 25.6678 1.14905 0.574524 0.818488i \(-0.305187\pi\)
0.574524 + 0.818488i \(0.305187\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.44680 0.153685 0.0768425 0.997043i \(-0.475516\pi\)
0.0768425 + 0.997043i \(0.475516\pi\)
\(504\) 0 0
\(505\) 2.82088 0.125528
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 40.2989 1.78622 0.893109 0.449840i \(-0.148519\pi\)
0.893109 + 0.449840i \(0.148519\pi\)
\(510\) 0 0
\(511\) −4.50841 21.0785i −0.199440 0.932457i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.53431i 0.332001i
\(516\) 0 0
\(517\) −23.6666 13.6639i −1.04086 0.600938i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.12248 + 3.67624i −0.0929874 + 0.161059i −0.908767 0.417304i \(-0.862975\pi\)
0.815779 + 0.578363i \(0.196308\pi\)
\(522\) 0 0
\(523\) −15.9490 + 9.20818i −0.697403 + 0.402646i −0.806379 0.591399i \(-0.798576\pi\)
0.108977 + 0.994044i \(0.465243\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.421715i 0.0183702i
\(528\) 0 0
\(529\) 22.0592 0.959097
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.10518 + 4.10218i −0.307760 + 0.177685i
\(534\) 0 0
\(535\) −0.246111 + 0.142092i −0.0106403 + 0.00614318i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.5011 + 1.89695i 0.796899 + 0.0817075i
\(540\) 0 0
\(541\) −11.7817 20.4065i −0.506535 0.877344i −0.999971 0.00756235i \(-0.997593\pi\)
0.493437 0.869782i \(-0.335741\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.45062 2.51256i 0.0621379 0.107626i
\(546\) 0 0
\(547\) 4.87688 + 8.44701i 0.208521 + 0.361168i 0.951249 0.308425i \(-0.0998019\pi\)
−0.742728 + 0.669593i \(0.766469\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.57700 7.92759i 0.194987 0.337727i
\(552\) 0 0
\(553\) 13.3829 2.86243i 0.569100 0.121723i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.22763 + 4.75023i 0.348616 + 0.201274i 0.664076 0.747666i \(-0.268825\pi\)
−0.315460 + 0.948939i \(0.602159\pi\)
\(558\) 0 0
\(559\) 3.12775i 0.132290i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.1895 24.5769i −0.598014 1.03579i −0.993114 0.117153i \(-0.962623\pi\)
0.395100 0.918638i \(-0.370710\pi\)
\(564\) 0 0
\(565\) −0.434201 0.250686i −0.0182670 0.0105464i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.8968 + 11.4874i 0.834118 + 0.481578i 0.855260 0.518198i \(-0.173397\pi\)
−0.0211427 + 0.999776i \(0.506730\pi\)
\(570\) 0 0
\(571\) −4.50245 7.79848i −0.188422 0.326356i 0.756302 0.654222i \(-0.227004\pi\)
−0.944724 + 0.327866i \(0.893671\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.60386i 0.150291i
\(576\) 0 0
\(577\) 31.7024 + 18.3034i 1.31979 + 0.761980i 0.983694 0.179848i \(-0.0575607\pi\)
0.336094 + 0.941828i \(0.390894\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.3282 + 38.1074i −0.511462 + 1.58096i
\(582\) 0 0
\(583\) −18.2543 + 31.6173i −0.756015 + 1.30946i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.3397 23.1051i −0.550589 0.953649i −0.998232 0.0594361i \(-0.981070\pi\)
0.447643 0.894212i \(-0.352264\pi\)
\(588\) 0 0
\(589\) −1.17052 + 2.02740i −0.0482304 + 0.0835375i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.167630 0.290343i −0.00688372 0.0119230i 0.862563 0.505950i \(-0.168858\pi\)
−0.869447 + 0.494027i \(0.835525\pi\)
\(594\) 0 0
\(595\) 1.56856 0.335494i 0.0643046 0.0137539i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.7019 8.48812i 0.600702 0.346815i −0.168616 0.985682i \(-0.553930\pi\)
0.769318 + 0.638867i \(0.220596\pi\)
\(600\) 0 0
\(601\) 14.5160 8.38082i 0.592120 0.341861i −0.173815 0.984778i \(-0.555609\pi\)
0.765936 + 0.642917i \(0.222276\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.46645 0.181587
\(606\) 0 0
\(607\) 41.6356i 1.68994i −0.534816 0.844968i \(-0.679619\pi\)
0.534816 0.844968i \(-0.320381\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.3991 9.46805i 0.663439 0.383036i
\(612\) 0 0
\(613\) −12.8608 + 22.2756i −0.519444 + 0.899704i 0.480300 + 0.877104i \(0.340528\pi\)
−0.999745 + 0.0225996i \(0.992806\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −37.0394 21.3847i −1.49115 0.860915i −0.491199 0.871047i \(-0.663441\pi\)
−0.999949 + 0.0101324i \(0.996775\pi\)
\(618\) 0 0
\(619\) 27.6519i 1.11142i −0.831375 0.555712i \(-0.812446\pi\)
0.831375 0.555712i \(-0.187554\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.6349 + 32.8733i −0.426080 + 1.31704i
\(624\) 0 0
\(625\) 7.38360 0.295344
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.85430 0.0739359
\(630\) 0 0
\(631\) 2.23244 0.0888720 0.0444360 0.999012i \(-0.485851\pi\)
0.0444360 + 0.999012i \(0.485851\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19.9646 0.792270
\(636\) 0 0
\(637\) −7.54827 + 10.4451i −0.299073 + 0.413850i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27.0409i 1.06805i 0.845468 + 0.534026i \(0.179321\pi\)
−0.845468 + 0.534026i \(0.820679\pi\)
\(642\) 0 0
\(643\) −10.4874 6.05488i −0.413581 0.238781i 0.278746 0.960365i \(-0.410081\pi\)
−0.692327 + 0.721584i \(0.743415\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.40271 + 5.89366i −0.133774 + 0.231704i −0.925129 0.379654i \(-0.876043\pi\)
0.791354 + 0.611358i \(0.209376\pi\)
\(648\) 0 0
\(649\) −16.7892 + 9.69326i −0.659034 + 0.380494i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 45.9211i 1.79703i 0.438940 + 0.898516i \(0.355354\pi\)
−0.438940 + 0.898516i \(0.644646\pi\)
\(654\) 0 0
\(655\) 11.5582 0.451615
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.9825 + 7.49548i −0.505728 + 0.291982i −0.731076 0.682296i \(-0.760982\pi\)
0.225348 + 0.974278i \(0.427648\pi\)
\(660\) 0 0
\(661\) 28.6619 16.5479i 1.11482 0.643640i 0.174745 0.984614i \(-0.444090\pi\)
0.940073 + 0.340974i \(0.110757\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.47205 2.74082i −0.328532 0.106285i
\(666\) 0 0
\(667\) −1.49492 2.58927i −0.0578835 0.100257i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.67204 + 4.62811i −0.103153 + 0.178666i
\(672\) 0 0
\(673\) −18.6158 32.2436i −0.717588 1.24290i −0.961953 0.273215i \(-0.911913\pi\)
0.244365 0.969683i \(-0.421420\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.1462 34.8942i 0.774280 1.34109i −0.160919 0.986968i \(-0.551446\pi\)
0.935198 0.354124i \(-0.115221\pi\)
\(678\) 0 0
\(679\) −4.19249 1.35633i −0.160893 0.0520510i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.2066 7.04746i −0.467071 0.269664i 0.247942 0.968775i \(-0.420246\pi\)
−0.715013 + 0.699111i \(0.753579\pi\)
\(684\) 0 0
\(685\) 9.53236i 0.364213i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −12.6488 21.9084i −0.481882 0.834644i
\(690\) 0 0
\(691\) 32.6993 + 18.8789i 1.24394 + 0.718188i 0.969894 0.243528i \(-0.0783049\pi\)
0.274045 + 0.961717i \(0.411638\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.0156 + 5.78251i 0.379913 + 0.219343i
\(696\) 0 0
\(697\) −1.19199 2.06458i −0.0451498 0.0782017i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.0860i 0.494252i 0.968983 + 0.247126i \(0.0794861\pi\)
−0.968983 + 0.247126i \(0.920514\pi\)
\(702\) 0 0
\(703\) −8.91458 5.14683i −0.336220 0.194116i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.41272 4.88830i −0.165957 0.183843i
\(708\) 0 0
\(709\) −11.2777 + 19.5336i −0.423544 + 0.733600i −0.996283 0.0861375i \(-0.972548\pi\)
0.572739 + 0.819738i \(0.305881\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.382310 + 0.662180i 0.0143176 + 0.0247988i
\(714\) 0 0
\(715\) 2.77171 4.80074i 0.103656 0.179538i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.27786 + 9.14152i 0.196831 + 0.340921i 0.947499 0.319758i \(-0.103602\pi\)
−0.750668 + 0.660679i \(0.770268\pi\)
\(720\) 0 0
\(721\) 13.0562 11.7860i 0.486238 0.438932i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.91898 + 5.72672i −0.368382 + 0.212685i
\(726\) 0 0
\(727\) 21.9441 12.6694i 0.813861 0.469883i −0.0344341 0.999407i \(-0.510963\pi\)
0.848295 + 0.529524i \(0.177630\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.908843 0.0336148
\(732\) 0 0
\(733\) 3.82697i 0.141352i 0.997499 + 0.0706762i \(0.0225157\pi\)
−0.997499 + 0.0706762i \(0.977484\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.55190 3.20539i 0.204507 0.118072i
\(738\) 0 0
\(739\) −18.1289 + 31.4003i −0.666884 + 1.15508i 0.311887 + 0.950119i \(0.399039\pi\)
−0.978771 + 0.204958i \(0.934294\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.3598 7.13594i −0.453438 0.261792i 0.255843 0.966718i \(-0.417647\pi\)
−0.709281 + 0.704926i \(0.750980\pi\)
\(744\) 0 0
\(745\) 17.2261i 0.631115i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.631224 + 0.204209i 0.0230644 + 0.00746165i
\(750\) 0 0
\(751\) 29.2009 1.06556 0.532778 0.846255i \(-0.321148\pi\)
0.532778 + 0.846255i \(0.321148\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.52263 −0.346564
\(756\) 0 0
\(757\) −33.2051 −1.20686 −0.603431 0.797415i \(-0.706200\pi\)
−0.603431 + 0.797415i \(0.706200\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.9369 −0.541463 −0.270731 0.962655i \(-0.587266\pi\)
−0.270731 + 0.962655i \(0.587266\pi\)
\(762\) 0 0
\(763\) −6.62322 + 1.41662i −0.239777 + 0.0512851i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.4334i 0.485052i
\(768\) 0 0
\(769\) −27.1703 15.6868i −0.979788 0.565681i −0.0775816 0.996986i \(-0.524720\pi\)
−0.902206 + 0.431305i \(0.858053\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.464799 + 0.805055i −0.0167176 + 0.0289558i −0.874263 0.485452i \(-0.838655\pi\)
0.857546 + 0.514408i \(0.171988\pi\)
\(774\) 0 0
\(775\) 2.53667 1.46455i 0.0911200 0.0526082i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 13.2340i 0.474157i
\(780\) 0 0
\(781\) −32.9159 −1.17782
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −18.3362 + 10.5864i −0.654448 + 0.377846i
\(786\) 0 0
\(787\) −34.9455 + 20.1758i −1.24567 + 0.719189i −0.970243 0.242132i \(-0.922153\pi\)
−0.275429 + 0.961321i \(0.588820\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.244810 + 1.14458i 0.00870443 + 0.0406964i
\(792\) 0 0
\(793\) −1.85152 3.20693i −0.0657495 0.113881i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.2121 19.4199i 0.397152 0.687888i −0.596221 0.802820i \(-0.703332\pi\)
0.993373 + 0.114932i \(0.0366652\pi\)
\(798\) 0 0
\(799\) 2.75117 + 4.76517i 0.0973296 + 0.168580i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.8229 18.7458i 0.381932 0.661526i
\(804\) 0 0
\(805\) −2.15881 + 1.94878i −0.0760881 + 0.0686856i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −18.2271 10.5234i −0.640832 0.369985i 0.144103 0.989563i \(-0.453970\pi\)
−0.784935 + 0.619578i \(0.787304\pi\)
\(810\) 0 0
\(811\) 31.5558i 1.10808i −0.832492 0.554038i \(-0.813086\pi\)
0.832492 0.554038i \(-0.186914\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −12.2236 21.1719i −0.428174 0.741619i
\(816\) 0 0
\(817\) −4.36927 2.52260i −0.152861 0.0882545i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 47.3134 + 27.3164i 1.65125 + 0.953349i 0.976560 + 0.215246i \(0.0690553\pi\)
0.674688 + 0.738103i \(0.264278\pi\)
\(822\) 0 0
\(823\) 5.88746 + 10.1974i 0.205224 + 0.355458i 0.950204 0.311628i \(-0.100874\pi\)
−0.744980 + 0.667087i \(0.767541\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.9059i 0.970383i −0.874408 0.485192i \(-0.838750\pi\)
0.874408 0.485192i \(-0.161250\pi\)
\(828\) 0 0
\(829\) 21.7374 + 12.5501i 0.754972 + 0.435883i 0.827488 0.561484i \(-0.189769\pi\)
−0.0725156 + 0.997367i \(0.523103\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.03508 2.19333i −0.105159 0.0759946i
\(834\) 0 0
\(835\) 7.25107 12.5592i 0.250934 0.434630i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.6654 39.2576i −0.782497 1.35532i −0.930483 0.366335i \(-0.880613\pi\)
0.147987 0.988989i \(-0.452721\pi\)
\(840\) 0 0
\(841\) −9.74899 + 16.8857i −0.336172 + 0.582267i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −5.44597 9.43270i −0.187347 0.324495i
\(846\) 0 0
\(847\) −6.98689 7.73990i −0.240072 0.265946i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.91164 + 1.68104i −0.0998097 + 0.0576252i
\(852\) 0 0
\(853\) 20.8404 12.0322i 0.713560 0.411974i −0.0988175 0.995106i \(-0.531506\pi\)
0.812378 + 0.583131i \(0.198173\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −50.7738 −1.73440 −0.867200 0.497960i \(-0.834083\pi\)
−0.867200 + 0.497960i \(0.834083\pi\)
\(858\) 0 0
\(859\) 7.83143i 0.267205i 0.991035 + 0.133603i \(0.0426545\pi\)
−0.991035 + 0.133603i \(0.957345\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.68312 + 2.12645i −0.125375 + 0.0723852i −0.561376 0.827561i \(-0.689728\pi\)
0.436001 + 0.899946i \(0.356394\pi\)
\(864\) 0 0
\(865\) 12.1264 21.0036i 0.412311 0.714143i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.9019 + 6.87156i 0.403744 + 0.233102i
\(870\) 0 0
\(871\) 4.44218i 0.150518i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 17.5114 + 19.3987i 0.591994 + 0.655795i
\(876\) 0 0
\(877\) 34.1070 1.15171 0.575855 0.817552i \(-0.304669\pi\)
0.575855 + 0.817552i \(0.304669\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 8.87180 0.298898 0.149449 0.988769i \(-0.452250\pi\)
0.149449 + 0.988769i \(0.452250\pi\)
\(882\) 0 0
\(883\) 43.8791 1.47665 0.738325 0.674446i \(-0.235617\pi\)
0.738325 + 0.674446i \(0.235617\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.7398 1.23360 0.616801 0.787119i \(-0.288428\pi\)
0.616801 + 0.787119i \(0.288428\pi\)
\(888\) 0 0
\(889\) −31.2307 34.5966i −1.04744 1.16033i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 30.5448i 1.02214i
\(894\) 0 0
\(895\) 4.95206 + 2.85907i 0.165529 + 0.0955683i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.21502 + 2.10448i −0.0405232 + 0.0701883i
\(900\) 0 0
\(901\) 6.36603 3.67543i 0.212083 0.122446i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.2552i 0.440617i
\(906\) 0 0
\(907\) −16.6579 −0.553118 −0.276559 0.960997i \(-0.589194\pi\)
−0.276559 + 0.960997i \(0.589194\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 29.0963 16.7988i 0.964004 0.556568i 0.0666011 0.997780i \(-0.478785\pi\)
0.897403 + 0.441212i \(0.145451\pi\)
\(912\) 0 0
\(913\) −34.8317 + 20.1101i −1.15276 + 0.665548i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −18.0805 20.0291i −0.597071 0.661420i
\(918\) 0 0
\(919\) −5.96310 10.3284i −0.196705 0.340702i 0.750753 0.660583i \(-0.229691\pi\)
−0.947458 + 0.319880i \(0.896357\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11.4041 19.7525i 0.375371 0.650161i
\(924\) 0 0
\(925\) 6.43970 + 11.1539i 0.211736 + 0.366738i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.8590 37.8609i 0.717170 1.24217i −0.244947 0.969536i \(-0.578771\pi\)
0.962117 0.272638i \(-0.0878961\pi\)
\(930\) 0 0
\(931\) 8.50331 + 18.9687i 0.278685 + 0.621673i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.39497 + 0.805388i 0.0456205 + 0.0263390i
\(936\) 0 0
\(937\) 47.1189i 1.53931i 0.638461 + 0.769654i \(0.279571\pi\)
−0.638461 + 0.769654i \(0.720429\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.0516 + 19.1420i 0.360273 + 0.624011i 0.988006 0.154418i \(-0.0493502\pi\)
−0.627733 + 0.778429i \(0.716017\pi\)
\(942\) 0 0
\(943\) 3.74333 + 2.16121i 0.121900 + 0.0703788i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.0288642 0.0166647i −0.000937959 0.000541531i 0.499531 0.866296i \(-0.333506\pi\)
−0.500469 + 0.865755i \(0.666839\pi\)
\(948\) 0 0
\(949\) 7.49946 + 12.9894i 0.243443 + 0.421655i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.6371i 0.700893i 0.936583 + 0.350446i \(0.113970\pi\)
−0.936583 + 0.350446i \(0.886030\pi\)
\(954\) 0 0
\(955\) 22.2224 + 12.8301i 0.719100 + 0.415173i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.5186 + 14.9115i −0.533414 + 0.481518i
\(960\) 0 0
\(961\) −15.1893 + 26.3086i −0.489976 + 0.848664i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.633837 + 1.09784i 0.0204039 + 0.0353406i
\(966\) 0 0
\(967\) −26.4627 + 45.8347i −0.850983 + 1.47395i 0.0293390 + 0.999570i \(0.490660\pi\)
−0.880322 + 0.474376i \(0.842674\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8.18246 14.1724i −0.262588 0.454815i 0.704341 0.709862i \(-0.251243\pi\)
−0.966929 + 0.255047i \(0.917909\pi\)
\(972\) 0 0
\(973\) −5.64696 26.4016i −0.181033 0.846397i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.2685 14.5888i 0.808412 0.466737i −0.0379920 0.999278i \(-0.512096\pi\)
0.846404 + 0.532541i \(0.178763\pi\)
\(978\) 0 0
\(979\) −30.0476 + 17.3480i −0.960324 + 0.554444i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16.8109 −0.536184 −0.268092 0.963393i \(-0.586393\pi\)
−0.268092 + 0.963393i \(0.586393\pi\)
\(984\) 0 0
\(985\) 3.61685i 0.115242i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.42707 + 0.823919i −0.0453782 + 0.0261991i
\(990\) 0 0
\(991\) 24.5748 42.5649i 0.780645 1.35212i −0.150921 0.988546i \(-0.548224\pi\)
0.931566 0.363571i \(-0.118443\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.392590 + 0.226662i 0.0124459 + 0.00718567i
\(996\) 0 0
\(997\) 17.8806i 0.566284i −0.959078 0.283142i \(-0.908623\pi\)
0.959078 0.283142i \(-0.0913768\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.bm.j.1025.11 32
3.2 odd 2 inner 2268.2.bm.j.1025.6 32
7.5 odd 6 2268.2.w.j.1349.11 32
9.2 odd 6 2268.2.w.j.269.11 32
9.4 even 3 2268.2.t.c.1781.6 32
9.5 odd 6 2268.2.t.c.1781.11 yes 32
9.7 even 3 2268.2.w.j.269.6 32
21.5 even 6 2268.2.w.j.1349.6 32
63.5 even 6 2268.2.t.c.2105.6 yes 32
63.40 odd 6 2268.2.t.c.2105.11 yes 32
63.47 even 6 inner 2268.2.bm.j.593.11 32
63.61 odd 6 inner 2268.2.bm.j.593.6 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.6 32 9.4 even 3
2268.2.t.c.1781.11 yes 32 9.5 odd 6
2268.2.t.c.2105.6 yes 32 63.5 even 6
2268.2.t.c.2105.11 yes 32 63.40 odd 6
2268.2.w.j.269.6 32 9.7 even 3
2268.2.w.j.269.11 32 9.2 odd 6
2268.2.w.j.1349.6 32 21.5 even 6
2268.2.w.j.1349.11 32 7.5 odd 6
2268.2.bm.j.593.6 32 63.61 odd 6 inner
2268.2.bm.j.593.11 32 63.47 even 6 inner
2268.2.bm.j.1025.6 32 3.2 odd 2 inner
2268.2.bm.j.1025.11 32 1.1 even 1 trivial