Properties

Label 2268.2.t.c.2105.11
Level $2268$
Weight $2$
Character 2268.2105
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(1781,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.1781"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,-8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2105.11
Character \(\chi\) \(=\) 2268.2105
Dual form 2268.2.t.c.1781.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.566658 - 0.981481i) q^{5} +(2.58723 + 0.553375i) q^{7} +(-2.30092 + 1.32843i) q^{11} +1.84101i q^{13} +(0.267475 + 0.463281i) q^{17} +(2.57178 + 1.48482i) q^{19} +(0.839982 + 0.484964i) q^{23} +(1.85780 + 3.21780i) q^{25} +3.08254i q^{29} +(0.682710 - 0.394163i) q^{31} +(2.00920 - 2.22575i) q^{35} +(-1.73316 + 3.00191i) q^{37} -4.45644 q^{41} +1.69893 q^{43} +(-5.14286 + 8.90769i) q^{47} +(6.38755 + 2.86342i) q^{49} +(11.9002 - 6.87059i) q^{53} +3.01107i q^{55} +(3.64838 + 6.31917i) q^{59} +(1.74194 + 1.00571i) q^{61} +(1.80692 + 1.04322i) q^{65} +(1.20645 + 2.08964i) q^{67} -12.3890i q^{71} +(7.05561 - 4.07356i) q^{73} +(-6.68813 + 2.16370i) q^{77} +(-2.58634 + 4.47967i) q^{79} -15.1382 q^{83} +0.606268 q^{85} +(6.52948 - 11.3094i) q^{89} +(-1.01877 + 4.76312i) q^{91} +(2.91464 - 1.68277i) q^{95} -1.66547i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{7} - 16 q^{25} + 24 q^{31} - 4 q^{37} + 8 q^{43} - 4 q^{49} + 12 q^{61} + 4 q^{67} - 36 q^{73} + 28 q^{79} - 24 q^{85} - 36 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.566658 0.981481i 0.253417 0.438932i −0.711047 0.703144i \(-0.751779\pi\)
0.964464 + 0.264213i \(0.0851121\pi\)
\(6\) 0 0
\(7\) 2.58723 + 0.553375i 0.977882 + 0.209156i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.30092 + 1.32843i −0.693753 + 0.400538i −0.805016 0.593253i \(-0.797843\pi\)
0.111264 + 0.993791i \(0.464510\pi\)
\(12\) 0 0
\(13\) 1.84101i 0.510604i 0.966861 + 0.255302i \(0.0821749\pi\)
−0.966861 + 0.255302i \(0.917825\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.267475 + 0.463281i 0.0648723 + 0.112362i 0.896637 0.442766i \(-0.146003\pi\)
−0.831765 + 0.555128i \(0.812669\pi\)
\(18\) 0 0
\(19\) 2.57178 + 1.48482i 0.590006 + 0.340640i 0.765100 0.643912i \(-0.222690\pi\)
−0.175094 + 0.984552i \(0.556023\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.839982 + 0.484964i 0.175148 + 0.101122i 0.585011 0.811025i \(-0.301090\pi\)
−0.409863 + 0.912147i \(0.634423\pi\)
\(24\) 0 0
\(25\) 1.85780 + 3.21780i 0.371559 + 0.643560i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.08254i 0.572412i 0.958168 + 0.286206i \(0.0923943\pi\)
−0.958168 + 0.286206i \(0.907606\pi\)
\(30\) 0 0
\(31\) 0.682710 0.394163i 0.122618 0.0707937i −0.437436 0.899249i \(-0.644113\pi\)
0.560055 + 0.828456i \(0.310780\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00920 2.22575i 0.339618 0.376220i
\(36\) 0 0
\(37\) −1.73316 + 3.00191i −0.284929 + 0.493511i −0.972592 0.232519i \(-0.925303\pi\)
0.687663 + 0.726030i \(0.258637\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.45644 −0.695979 −0.347990 0.937498i \(-0.613136\pi\)
−0.347990 + 0.937498i \(0.613136\pi\)
\(42\) 0 0
\(43\) 1.69893 0.259084 0.129542 0.991574i \(-0.458649\pi\)
0.129542 + 0.991574i \(0.458649\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.14286 + 8.90769i −0.750163 + 1.29932i 0.197580 + 0.980287i \(0.436692\pi\)
−0.947743 + 0.319034i \(0.896642\pi\)
\(48\) 0 0
\(49\) 6.38755 + 2.86342i 0.912507 + 0.409060i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.9002 6.87059i 1.63462 0.943749i 0.651979 0.758237i \(-0.273939\pi\)
0.982642 0.185511i \(-0.0593942\pi\)
\(54\) 0 0
\(55\) 3.01107i 0.406013i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.64838 + 6.31917i 0.474978 + 0.822686i 0.999589 0.0286558i \(-0.00912267\pi\)
−0.524611 + 0.851342i \(0.675789\pi\)
\(60\) 0 0
\(61\) 1.74194 + 1.00571i 0.223033 + 0.128768i 0.607354 0.794432i \(-0.292231\pi\)
−0.384321 + 0.923200i \(0.625564\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.80692 + 1.04322i 0.224120 + 0.129396i
\(66\) 0 0
\(67\) 1.20645 + 2.08964i 0.147392 + 0.255290i 0.930263 0.366894i \(-0.119579\pi\)
−0.782871 + 0.622184i \(0.786246\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.3890i 1.47030i −0.677905 0.735150i \(-0.737112\pi\)
0.677905 0.735150i \(-0.262888\pi\)
\(72\) 0 0
\(73\) 7.05561 4.07356i 0.825796 0.476774i −0.0266149 0.999646i \(-0.508473\pi\)
0.852411 + 0.522872i \(0.175139\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.68813 + 2.16370i −0.762183 + 0.246577i
\(78\) 0 0
\(79\) −2.58634 + 4.47967i −0.290986 + 0.504002i −0.974043 0.226363i \(-0.927317\pi\)
0.683057 + 0.730365i \(0.260650\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −15.1382 −1.66163 −0.830817 0.556546i \(-0.812126\pi\)
−0.830817 + 0.556546i \(0.812126\pi\)
\(84\) 0 0
\(85\) 0.606268 0.0657590
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.52948 11.3094i 0.692123 1.19879i −0.279018 0.960286i \(-0.590009\pi\)
0.971141 0.238506i \(-0.0766578\pi\)
\(90\) 0 0
\(91\) −1.01877 + 4.76312i −0.106796 + 0.499311i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.91464 1.68277i 0.299035 0.172648i
\(96\) 0 0
\(97\) 1.66547i 0.169103i −0.996419 0.0845515i \(-0.973054\pi\)
0.996419 0.0845515i \(-0.0269458\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.24453 + 2.15558i 0.123835 + 0.214488i 0.921277 0.388907i \(-0.127147\pi\)
−0.797442 + 0.603396i \(0.793814\pi\)
\(102\) 0 0
\(103\) 5.75735 + 3.32401i 0.567289 + 0.327524i 0.756066 0.654496i \(-0.227119\pi\)
−0.188777 + 0.982020i \(0.560452\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.217160 + 0.125377i 0.0209936 + 0.0121207i 0.510460 0.859901i \(-0.329475\pi\)
−0.489466 + 0.872022i \(0.662808\pi\)
\(108\) 0 0
\(109\) 1.27998 + 2.21699i 0.122600 + 0.212349i 0.920792 0.390053i \(-0.127543\pi\)
−0.798192 + 0.602403i \(0.794210\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.442394i 0.0416169i 0.999783 + 0.0208085i \(0.00662402\pi\)
−0.999783 + 0.0208085i \(0.993376\pi\)
\(114\) 0 0
\(115\) 0.951966 0.549618i 0.0887713 0.0512521i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.435653 + 1.34663i 0.0399362 + 0.123445i
\(120\) 0 0
\(121\) −1.97052 + 3.41304i −0.179138 + 0.310277i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.87753 0.883473
\(126\) 0 0
\(127\) 17.6161 1.56317 0.781586 0.623797i \(-0.214411\pi\)
0.781586 + 0.623797i \(0.214411\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.09926 8.83218i 0.445525 0.771671i −0.552564 0.833471i \(-0.686350\pi\)
0.998089 + 0.0617991i \(0.0196838\pi\)
\(132\) 0 0
\(133\) 5.83213 + 5.26472i 0.505709 + 0.456509i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.28417 + 4.20552i −0.622328 + 0.359301i −0.777775 0.628543i \(-0.783652\pi\)
0.155447 + 0.987844i \(0.450318\pi\)
\(138\) 0 0
\(139\) 10.2046i 0.865541i 0.901504 + 0.432770i \(0.142464\pi\)
−0.901504 + 0.432770i \(0.857536\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.44566 4.23601i −0.204517 0.354233i
\(144\) 0 0
\(145\) 3.02545 + 1.74674i 0.251250 + 0.145059i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −13.1633 7.59986i −1.07838 0.622605i −0.147923 0.988999i \(-0.547259\pi\)
−0.930460 + 0.366394i \(0.880592\pi\)
\(150\) 0 0
\(151\) 4.20122 + 7.27673i 0.341891 + 0.592172i 0.984784 0.173784i \(-0.0555994\pi\)
−0.642893 + 0.765956i \(0.722266\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.893423i 0.0717614i
\(156\) 0 0
\(157\) 16.1793 9.34111i 1.29125 0.745501i 0.312371 0.949960i \(-0.398877\pi\)
0.978875 + 0.204459i \(0.0655434\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.90486 + 1.71954i 0.150124 + 0.135519i
\(162\) 0 0
\(163\) −10.7857 + 18.6813i −0.844800 + 1.46324i 0.0409955 + 0.999159i \(0.486947\pi\)
−0.885795 + 0.464077i \(0.846386\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.7962 0.990199 0.495099 0.868836i \(-0.335132\pi\)
0.495099 + 0.868836i \(0.335132\pi\)
\(168\) 0 0
\(169\) 9.61068 0.739283
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.6999 + 18.5328i −0.813501 + 1.40903i 0.0968975 + 0.995294i \(0.469108\pi\)
−0.910399 + 0.413732i \(0.864225\pi\)
\(174\) 0 0
\(175\) 3.02590 + 9.35325i 0.228737 + 0.707040i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.36953 + 2.52275i −0.326594 + 0.188559i −0.654328 0.756211i \(-0.727048\pi\)
0.327734 + 0.944770i \(0.393715\pi\)
\(180\) 0 0
\(181\) 11.6959i 0.869351i −0.900587 0.434675i \(-0.856863\pi\)
0.900587 0.434675i \(-0.143137\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.96421 + 3.40212i 0.144412 + 0.250129i
\(186\) 0 0
\(187\) −1.23088 0.710647i −0.0900106 0.0519676i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.6083 + 11.3209i 1.41881 + 0.819148i 0.996194 0.0871622i \(-0.0277799\pi\)
0.422612 + 0.906311i \(0.361113\pi\)
\(192\) 0 0
\(193\) 0.559276 + 0.968695i 0.0402576 + 0.0697282i 0.885452 0.464731i \(-0.153849\pi\)
−0.845195 + 0.534459i \(0.820515\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.19138i 0.227377i 0.993516 + 0.113688i \(0.0362665\pi\)
−0.993516 + 0.113688i \(0.963733\pi\)
\(198\) 0 0
\(199\) 0.346408 0.199999i 0.0245562 0.0141775i −0.487672 0.873027i \(-0.662154\pi\)
0.512228 + 0.858850i \(0.328820\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.70580 + 7.97524i −0.119724 + 0.559752i
\(204\) 0 0
\(205\) −2.52528 + 4.37391i −0.176373 + 0.305487i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.88993 −0.545758
\(210\) 0 0
\(211\) 5.64759 0.388796 0.194398 0.980923i \(-0.437725\pi\)
0.194398 + 0.980923i \(0.437725\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.962712 1.66747i 0.0656564 0.113720i
\(216\) 0 0
\(217\) 1.98445 0.641996i 0.134713 0.0435816i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.852904 + 0.492425i −0.0573725 + 0.0331241i
\(222\) 0 0
\(223\) 6.23782i 0.417715i 0.977946 + 0.208858i \(0.0669745\pi\)
−0.977946 + 0.208858i \(0.933025\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.16442 14.1412i −0.541892 0.938584i −0.998795 0.0490677i \(-0.984375\pi\)
0.456904 0.889516i \(-0.348958\pi\)
\(228\) 0 0
\(229\) −20.2825 11.7101i −1.34031 0.773827i −0.353455 0.935451i \(-0.614993\pi\)
−0.986852 + 0.161624i \(0.948327\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.9345 + 6.31304i 0.716343 + 0.413581i 0.813405 0.581698i \(-0.197611\pi\)
−0.0970623 + 0.995278i \(0.530945\pi\)
\(234\) 0 0
\(235\) 5.82849 + 10.0952i 0.380209 + 0.658541i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.89021i 0.639744i 0.947461 + 0.319872i \(0.103640\pi\)
−0.947461 + 0.319872i \(0.896360\pi\)
\(240\) 0 0
\(241\) 17.5109 10.1099i 1.12797 0.651236i 0.184550 0.982823i \(-0.440917\pi\)
0.943425 + 0.331587i \(0.107584\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.42995 4.64668i 0.410795 0.296865i
\(246\) 0 0
\(247\) −2.73356 + 4.73467i −0.173932 + 0.301260i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −10.4354 −0.658679 −0.329339 0.944212i \(-0.606826\pi\)
−0.329339 + 0.944212i \(0.606826\pi\)
\(252\) 0 0
\(253\) −2.57697 −0.162013
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.90839 6.76953i 0.243798 0.422271i −0.717995 0.696049i \(-0.754940\pi\)
0.961793 + 0.273777i \(0.0882731\pi\)
\(258\) 0 0
\(259\) −6.14526 + 6.80756i −0.381848 + 0.423001i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.47396 + 0.850994i −0.0908885 + 0.0524745i −0.544755 0.838595i \(-0.683377\pi\)
0.453867 + 0.891070i \(0.350044\pi\)
\(264\) 0 0
\(265\) 15.5731i 0.956649i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.59447 + 4.49375i 0.158188 + 0.273989i 0.934215 0.356710i \(-0.116102\pi\)
−0.776028 + 0.630699i \(0.782768\pi\)
\(270\) 0 0
\(271\) −22.7985 13.1627i −1.38491 0.799579i −0.392176 0.919890i \(-0.628278\pi\)
−0.992736 + 0.120311i \(0.961611\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.54927 4.93592i −0.515541 0.297647i
\(276\) 0 0
\(277\) −11.7976 20.4340i −0.708849 1.22776i −0.965284 0.261201i \(-0.915881\pi\)
0.256436 0.966561i \(-0.417452\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.4848i 1.10271i −0.834270 0.551356i \(-0.814111\pi\)
0.834270 0.551356i \(-0.185889\pi\)
\(282\) 0 0
\(283\) −15.3990 + 8.89059i −0.915373 + 0.528491i −0.882156 0.470958i \(-0.843909\pi\)
−0.0332168 + 0.999448i \(0.510575\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.5299 2.46609i −0.680586 0.145568i
\(288\) 0 0
\(289\) 8.35691 14.4746i 0.491583 0.851447i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.86712 −0.284340 −0.142170 0.989842i \(-0.545408\pi\)
−0.142170 + 0.989842i \(0.545408\pi\)
\(294\) 0 0
\(295\) 8.26953 0.481471
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.892823 + 1.54642i −0.0516333 + 0.0894315i
\(300\) 0 0
\(301\) 4.39553 + 0.940145i 0.253354 + 0.0541891i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.97417 1.13979i 0.113041 0.0652641i
\(306\) 0 0
\(307\) 8.37189i 0.477809i −0.971043 0.238905i \(-0.923212\pi\)
0.971043 0.238905i \(-0.0767883\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.10547 + 14.0391i 0.459619 + 0.796084i 0.998941 0.0460162i \(-0.0146526\pi\)
−0.539322 + 0.842100i \(0.681319\pi\)
\(312\) 0 0
\(313\) −19.9011 11.4899i −1.12488 0.649449i −0.182237 0.983255i \(-0.558334\pi\)
−0.942642 + 0.333806i \(0.891667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.8322 + 10.8728i 1.05772 + 0.610675i 0.924801 0.380452i \(-0.124231\pi\)
0.132920 + 0.991127i \(0.457565\pi\)
\(318\) 0 0
\(319\) −4.09495 7.09266i −0.229273 0.397113i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.58861i 0.0883924i
\(324\) 0 0
\(325\) −5.92400 + 3.42022i −0.328604 + 0.189720i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −18.2351 + 20.2003i −1.00533 + 1.11368i
\(330\) 0 0
\(331\) −12.8868 + 22.3207i −0.708325 + 1.22685i 0.257154 + 0.966371i \(0.417215\pi\)
−0.965478 + 0.260484i \(0.916118\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.73459 0.149406
\(336\) 0 0
\(337\) −13.6133 −0.741562 −0.370781 0.928720i \(-0.620910\pi\)
−0.370781 + 0.928720i \(0.620910\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.04724 + 1.81387i −0.0567112 + 0.0982267i
\(342\) 0 0
\(343\) 14.9415 + 10.9431i 0.806767 + 0.590869i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.35635 4.82454i 0.448593 0.258995i −0.258643 0.965973i \(-0.583275\pi\)
0.707236 + 0.706978i \(0.249942\pi\)
\(348\) 0 0
\(349\) 23.3122i 1.24787i −0.781475 0.623937i \(-0.785532\pi\)
0.781475 0.623937i \(-0.214468\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.5010 26.8485i −0.825035 1.42900i −0.901892 0.431961i \(-0.857822\pi\)
0.0768568 0.997042i \(-0.475512\pi\)
\(354\) 0 0
\(355\) −12.1595 7.02031i −0.645361 0.372599i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.6898 9.05853i −0.828077 0.478091i 0.0251166 0.999685i \(-0.492004\pi\)
−0.853194 + 0.521594i \(0.825338\pi\)
\(360\) 0 0
\(361\) −5.09064 8.81725i −0.267929 0.464066i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.23326i 0.483291i
\(366\) 0 0
\(367\) 2.73854 1.58110i 0.142951 0.0825326i −0.426819 0.904337i \(-0.640366\pi\)
0.569769 + 0.821805i \(0.307032\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 34.5907 11.1905i 1.79586 0.580984i
\(372\) 0 0
\(373\) −3.68593 + 6.38422i −0.190850 + 0.330562i −0.945532 0.325528i \(-0.894458\pi\)
0.754682 + 0.656091i \(0.227791\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.67498 −0.292276
\(378\) 0 0
\(379\) −17.7598 −0.912259 −0.456130 0.889913i \(-0.650765\pi\)
−0.456130 + 0.889913i \(0.650765\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.6350 18.4204i 0.543425 0.941239i −0.455280 0.890349i \(-0.650461\pi\)
0.998704 0.0508905i \(-0.0162060\pi\)
\(384\) 0 0
\(385\) −1.66625 + 7.79035i −0.0849202 + 0.397033i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.17846 1.83508i 0.161154 0.0930424i −0.417254 0.908790i \(-0.637007\pi\)
0.578408 + 0.815748i \(0.303674\pi\)
\(390\) 0 0
\(391\) 0.518863i 0.0262400i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.93114 + 5.07688i 0.147482 + 0.255446i
\(396\) 0 0
\(397\) −16.4664 9.50687i −0.826424 0.477136i 0.0262027 0.999657i \(-0.491658\pi\)
−0.852627 + 0.522521i \(0.824992\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.8868 15.5231i −1.34266 0.775186i −0.355464 0.934690i \(-0.615677\pi\)
−0.987197 + 0.159504i \(0.949011\pi\)
\(402\) 0 0
\(403\) 0.725658 + 1.25688i 0.0361476 + 0.0626095i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.20954i 0.456500i
\(408\) 0 0
\(409\) 30.4429 17.5762i 1.50530 0.869087i 0.505322 0.862931i \(-0.331374\pi\)
0.999981 0.00615678i \(-0.00195978\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.94233 + 18.3681i 0.292403 + 0.903835i
\(414\) 0 0
\(415\) −8.57819 + 14.8579i −0.421087 + 0.729344i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 29.9033 1.46087 0.730436 0.682981i \(-0.239317\pi\)
0.730436 + 0.682981i \(0.239317\pi\)
\(420\) 0 0
\(421\) −26.1683 −1.27537 −0.637683 0.770299i \(-0.720107\pi\)
−0.637683 + 0.770299i \(0.720107\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.993829 + 1.72136i −0.0482078 + 0.0834984i
\(426\) 0 0
\(427\) 3.95027 + 3.56595i 0.191167 + 0.172569i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −34.8031 + 20.0936i −1.67641 + 0.967875i −0.712487 + 0.701685i \(0.752431\pi\)
−0.963921 + 0.266189i \(0.914235\pi\)
\(432\) 0 0
\(433\) 15.4379i 0.741896i −0.928654 0.370948i \(-0.879033\pi\)
0.928654 0.370948i \(-0.120967\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.44016 + 2.49444i 0.0688924 + 0.119325i
\(438\) 0 0
\(439\) −21.6747 12.5139i −1.03447 0.597254i −0.116212 0.993224i \(-0.537075\pi\)
−0.918263 + 0.395970i \(0.870408\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.6906 + 7.32694i 0.602950 + 0.348113i 0.770201 0.637801i \(-0.220156\pi\)
−0.167251 + 0.985914i \(0.553489\pi\)
\(444\) 0 0
\(445\) −7.39996 12.8171i −0.350792 0.607589i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.1359i 1.46939i 0.678395 + 0.734697i \(0.262676\pi\)
−0.678395 + 0.734697i \(0.737324\pi\)
\(450\) 0 0
\(451\) 10.2539 5.92009i 0.482838 0.278766i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.09762 + 3.69896i 0.192099 + 0.173410i
\(456\) 0 0
\(457\) 10.8976 18.8752i 0.509769 0.882945i −0.490167 0.871628i \(-0.663064\pi\)
0.999936 0.0113168i \(-0.00360234\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 26.7509 1.24591 0.622957 0.782256i \(-0.285931\pi\)
0.622957 + 0.782256i \(0.285931\pi\)
\(462\) 0 0
\(463\) 15.2510 0.708773 0.354386 0.935099i \(-0.384690\pi\)
0.354386 + 0.935099i \(0.384690\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.9707 + 31.1262i −0.831585 + 1.44035i 0.0651959 + 0.997872i \(0.479233\pi\)
−0.896781 + 0.442475i \(0.854101\pi\)
\(468\) 0 0
\(469\) 1.96502 + 6.07400i 0.0907363 + 0.280471i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.90910 + 2.25692i −0.179740 + 0.103773i
\(474\) 0 0
\(475\) 11.0339i 0.506272i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.4726 26.7993i −0.706959 1.22449i −0.965980 0.258618i \(-0.916733\pi\)
0.259020 0.965872i \(-0.416600\pi\)
\(480\) 0 0
\(481\) −5.52655 3.19076i −0.251989 0.145486i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.63463 0.943753i −0.0742247 0.0428536i
\(486\) 0 0
\(487\) −7.67907 13.3005i −0.347972 0.602705i 0.637917 0.770105i \(-0.279796\pi\)
−0.985889 + 0.167400i \(0.946463\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.121512i 0.00548376i 0.999996 + 0.00274188i \(0.000872769\pi\)
−0.999996 + 0.00274188i \(0.999127\pi\)
\(492\) 0 0
\(493\) −1.42808 + 0.824502i −0.0643175 + 0.0371337i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.85574 32.0531i 0.307522 1.43778i
\(498\) 0 0
\(499\) −12.8339 + 22.2290i −0.574524 + 0.995105i 0.421569 + 0.906796i \(0.361479\pi\)
−0.996093 + 0.0883085i \(0.971854\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.44680 −0.153685 −0.0768425 0.997043i \(-0.524484\pi\)
−0.0768425 + 0.997043i \(0.524484\pi\)
\(504\) 0 0
\(505\) 2.82088 0.125528
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.1495 34.8999i 0.893109 1.54691i 0.0569818 0.998375i \(-0.481852\pi\)
0.836127 0.548535i \(-0.184814\pi\)
\(510\) 0 0
\(511\) 20.5087 6.63484i 0.907252 0.293508i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.52490 3.76715i 0.287522 0.166001i
\(516\) 0 0
\(517\) 27.3278i 1.20188i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.12248 + 3.67624i 0.0929874 + 0.161059i 0.908767 0.417304i \(-0.137025\pi\)
−0.815779 + 0.578363i \(0.803692\pi\)
\(522\) 0 0
\(523\) −15.9490 9.20818i −0.697403 0.402646i 0.108977 0.994044i \(-0.465243\pi\)
−0.806379 + 0.591399i \(0.798576\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.365216 + 0.210858i 0.0159091 + 0.00918510i
\(528\) 0 0
\(529\) −11.0296 19.1039i −0.479549 0.830603i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.20436i 0.355370i
\(534\) 0 0
\(535\) 0.246111 0.142092i 0.0106403 0.00614318i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.5011 + 1.89695i −0.796899 + 0.0817075i
\(540\) 0 0
\(541\) −11.7817 + 20.4065i −0.506535 + 0.877344i 0.493437 + 0.869782i \(0.335741\pi\)
−0.999971 + 0.00756235i \(0.997593\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.90125 0.124276
\(546\) 0 0
\(547\) −9.75377 −0.417041 −0.208521 0.978018i \(-0.566865\pi\)
−0.208521 + 0.978018i \(0.566865\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.57700 + 7.92759i −0.194987 + 0.337727i
\(552\) 0 0
\(553\) −9.17040 + 10.1587i −0.389965 + 0.431993i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.22763 + 4.75023i −0.348616 + 0.201274i −0.664076 0.747666i \(-0.731175\pi\)
0.315460 + 0.948939i \(0.397841\pi\)
\(558\) 0 0
\(559\) 3.12775i 0.132290i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.1895 + 24.5769i 0.598014 + 1.03579i 0.993114 + 0.117153i \(0.0373768\pi\)
−0.395100 + 0.918638i \(0.629290\pi\)
\(564\) 0 0
\(565\) 0.434201 + 0.250686i 0.0182670 + 0.0105464i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.8968 + 11.4874i 0.834118 + 0.481578i 0.855260 0.518198i \(-0.173397\pi\)
−0.0211427 + 0.999776i \(0.506730\pi\)
\(570\) 0 0
\(571\) −4.50245 7.79848i −0.188422 0.326356i 0.756302 0.654222i \(-0.227004\pi\)
−0.944724 + 0.327866i \(0.893671\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.60386i 0.150291i
\(576\) 0 0
\(577\) 31.7024 18.3034i 1.31979 0.761980i 0.336094 0.941828i \(-0.390894\pi\)
0.983694 + 0.179848i \(0.0575607\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −39.1661 8.37711i −1.62488 0.347541i
\(582\) 0 0
\(583\) −18.2543 + 31.6173i −0.756015 + 1.30946i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −26.6794 −1.10118 −0.550589 0.834776i \(-0.685597\pi\)
−0.550589 + 0.834776i \(0.685597\pi\)
\(588\) 0 0
\(589\) 2.34104 0.0964608
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.167630 0.290343i 0.00688372 0.0119230i −0.862563 0.505950i \(-0.831142\pi\)
0.869447 + 0.494027i \(0.164475\pi\)
\(594\) 0 0
\(595\) 1.56856 + 0.335494i 0.0643046 + 0.0137539i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.7019 8.48812i 0.600702 0.346815i −0.168616 0.985682i \(-0.553930\pi\)
0.769318 + 0.638867i \(0.220596\pi\)
\(600\) 0 0
\(601\) 16.7616i 0.683722i −0.939751 0.341861i \(-0.888943\pi\)
0.939751 0.341861i \(-0.111057\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.23322 + 3.86806i 0.0907935 + 0.157259i
\(606\) 0 0
\(607\) −36.0575 20.8178i −1.46353 0.844968i −0.464356 0.885649i \(-0.653714\pi\)
−0.999172 + 0.0406801i \(0.987048\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16.3991 9.46805i −0.663439 0.383036i
\(612\) 0 0
\(613\) −12.8608 22.2756i −0.519444 0.899704i −0.999745 0.0225996i \(-0.992806\pi\)
0.480300 0.877104i \(-0.340528\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 42.7694i 1.72183i 0.508749 + 0.860915i \(0.330108\pi\)
−0.508749 + 0.860915i \(0.669892\pi\)
\(618\) 0 0
\(619\) 23.9473 13.8260i 0.962522 0.555712i 0.0655735 0.997848i \(-0.479112\pi\)
0.896948 + 0.442136i \(0.145779\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 23.1516 25.6468i 0.927550 1.02752i
\(624\) 0 0
\(625\) −3.69180 + 6.39439i −0.147672 + 0.255776i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.85430 −0.0739359
\(630\) 0 0
\(631\) 2.23244 0.0888720 0.0444360 0.999012i \(-0.485851\pi\)
0.0444360 + 0.999012i \(0.485851\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.98229 17.2898i 0.396135 0.686126i
\(636\) 0 0
\(637\) −5.27159 + 11.7595i −0.208868 + 0.465930i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.4181 13.5205i 0.924960 0.534026i 0.0397458 0.999210i \(-0.487345\pi\)
0.885214 + 0.465184i \(0.154012\pi\)
\(642\) 0 0
\(643\) 12.1098i 0.477563i −0.971073 0.238781i \(-0.923252\pi\)
0.971073 0.238781i \(-0.0767479\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.40271 + 5.89366i 0.133774 + 0.231704i 0.925129 0.379654i \(-0.123957\pi\)
−0.791354 + 0.611358i \(0.790624\pi\)
\(648\) 0 0
\(649\) −16.7892 9.69326i −0.659034 0.380494i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −39.7689 22.9606i −1.55628 0.898516i −0.997608 0.0691245i \(-0.977979\pi\)
−0.558668 0.829392i \(-0.688687\pi\)
\(654\) 0 0
\(655\) −5.77908 10.0097i −0.225807 0.391110i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.9910i 0.583965i −0.956424 0.291982i \(-0.905685\pi\)
0.956424 0.291982i \(-0.0943148\pi\)
\(660\) 0 0
\(661\) −28.6619 + 16.5479i −1.11482 + 0.643640i −0.940073 0.340974i \(-0.889243\pi\)
−0.174745 + 0.984614i \(0.555910\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.47205 2.74082i 0.328532 0.106285i
\(666\) 0 0
\(667\) −1.49492 + 2.58927i −0.0578835 + 0.100257i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.34408 −0.206306
\(672\) 0 0
\(673\) 37.2317 1.43518 0.717588 0.696468i \(-0.245246\pi\)
0.717588 + 0.696468i \(0.245246\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −20.1462 + 34.8942i −0.774280 + 1.34109i 0.160919 + 0.986968i \(0.448554\pi\)
−0.935198 + 0.354124i \(0.884779\pi\)
\(678\) 0 0
\(679\) 0.921631 4.30896i 0.0353689 0.165363i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.2066 7.04746i 0.467071 0.269664i −0.247942 0.968775i \(-0.579754\pi\)
0.715013 + 0.699111i \(0.246421\pi\)
\(684\) 0 0
\(685\) 9.53236i 0.364213i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.6488 + 21.9084i 0.481882 + 0.834644i
\(690\) 0 0
\(691\) −32.6993 18.8789i −1.24394 0.718188i −0.274045 0.961717i \(-0.588362\pi\)
−0.969894 + 0.243528i \(0.921695\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.0156 + 5.78251i 0.379913 + 0.219343i
\(696\) 0 0
\(697\) −1.19199 2.06458i −0.0451498 0.0782017i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.0860i 0.494252i 0.968983 + 0.247126i \(0.0794861\pi\)
−0.968983 + 0.247126i \(0.920514\pi\)
\(702\) 0 0
\(703\) −8.91458 + 5.14683i −0.336220 + 0.194116i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.02703 + 6.26568i 0.0762344 + 0.235645i
\(708\) 0 0
\(709\) −11.2777 + 19.5336i −0.423544 + 0.733600i −0.996283 0.0861375i \(-0.972548\pi\)
0.572739 + 0.819738i \(0.305881\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.764619 0.0286352
\(714\) 0 0
\(715\) −5.54342 −0.207312
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5.27786 + 9.14152i −0.196831 + 0.340921i −0.947499 0.319758i \(-0.896398\pi\)
0.750668 + 0.660679i \(0.229732\pi\)
\(720\) 0 0
\(721\) 13.0562 + 11.7860i 0.486238 + 0.438932i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.91898 + 5.72672i −0.368382 + 0.212685i
\(726\) 0 0
\(727\) 25.3388i 0.939765i −0.882729 0.469883i \(-0.844296\pi\)
0.882729 0.469883i \(-0.155704\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.454422 + 0.787081i 0.0168074 + 0.0291112i
\(732\) 0 0
\(733\) 3.31425 + 1.91348i 0.122415 + 0.0706762i 0.559957 0.828522i \(-0.310818\pi\)
−0.437542 + 0.899198i \(0.644151\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.55190 3.20539i −0.204507 0.118072i
\(738\) 0 0
\(739\) −18.1289 31.4003i −0.666884 1.15508i −0.978771 0.204958i \(-0.934294\pi\)
0.311887 0.950119i \(-0.399039\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.2719i 0.523585i 0.965124 + 0.261792i \(0.0843136\pi\)
−0.965124 + 0.261792i \(0.915686\pi\)
\(744\) 0 0
\(745\) −14.9182 + 8.61305i −0.546562 + 0.315558i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.492462 + 0.444551i 0.0179942 + 0.0162435i
\(750\) 0 0
\(751\) −14.6005 + 25.2887i −0.532778 + 0.922799i 0.466489 + 0.884527i \(0.345519\pi\)
−0.999267 + 0.0382721i \(0.987815\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.52263 0.346564
\(756\) 0 0
\(757\) −33.2051 −1.20686 −0.603431 0.797415i \(-0.706200\pi\)
−0.603431 + 0.797415i \(0.706200\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.46846 + 12.9358i −0.270731 + 0.468921i −0.969049 0.246867i \(-0.920599\pi\)
0.698318 + 0.715788i \(0.253932\pi\)
\(762\) 0 0
\(763\) 2.08478 + 6.44419i 0.0754742 + 0.233295i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.6337 + 6.71669i −0.420067 + 0.242526i
\(768\) 0 0
\(769\) 31.3736i 1.13136i −0.824624 0.565681i \(-0.808613\pi\)
0.824624 0.565681i \(-0.191387\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.464799 + 0.805055i 0.0167176 + 0.0289558i 0.874263 0.485452i \(-0.161345\pi\)
−0.857546 + 0.514408i \(0.828012\pi\)
\(774\) 0 0
\(775\) 2.53667 + 1.46455i 0.0911200 + 0.0526082i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.4610 6.61700i −0.410632 0.237079i
\(780\) 0 0
\(781\) 16.4579 + 28.5060i 0.588911 + 1.02002i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 21.1729i 0.755692i
\(786\) 0 0
\(787\) 34.9455 20.1758i 1.24567 0.719189i 0.275429 0.961321i \(-0.411180\pi\)
0.970243 + 0.242132i \(0.0778467\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.244810 + 1.14458i −0.00870443 + 0.0406964i
\(792\) 0 0
\(793\) −1.85152 + 3.20693i −0.0657495 + 0.113881i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.4242 0.794304 0.397152 0.917753i \(-0.369998\pi\)
0.397152 + 0.917753i \(0.369998\pi\)
\(798\) 0 0
\(799\) −5.50235 −0.194659
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.8229 + 18.7458i −0.381932 + 0.661526i
\(804\) 0 0
\(805\) 2.76710 0.895195i 0.0975275 0.0315515i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.2271 10.5234i 0.640832 0.369985i −0.144103 0.989563i \(-0.546030\pi\)
0.784935 + 0.619578i \(0.212696\pi\)
\(810\) 0 0
\(811\) 31.5558i 1.10808i 0.832492 + 0.554038i \(0.186914\pi\)
−0.832492 + 0.554038i \(0.813086\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12.2236 + 21.1719i 0.428174 + 0.741619i
\(816\) 0 0
\(817\) 4.36927 + 2.52260i 0.152861 + 0.0882545i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 47.3134 + 27.3164i 1.65125 + 0.953349i 0.976560 + 0.215246i \(0.0690553\pi\)
0.674688 + 0.738103i \(0.264278\pi\)
\(822\) 0 0
\(823\) 5.88746 + 10.1974i 0.205224 + 0.355458i 0.950204 0.311628i \(-0.100874\pi\)
−0.744980 + 0.667087i \(0.767541\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.9059i 0.970383i −0.874408 0.485192i \(-0.838750\pi\)
0.874408 0.485192i \(-0.161250\pi\)
\(828\) 0 0
\(829\) 21.7374 12.5501i 0.754972 0.435883i −0.0725156 0.997367i \(-0.523103\pi\)
0.827488 + 0.561484i \(0.189769\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.381944 + 3.72512i 0.0132336 + 0.129068i
\(834\) 0 0
\(835\) 7.25107 12.5592i 0.250934 0.434630i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −45.3308 −1.56499 −0.782497 0.622655i \(-0.786054\pi\)
−0.782497 + 0.622655i \(0.786054\pi\)
\(840\) 0 0
\(841\) 19.4980 0.672344
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.44597 9.43270i 0.187347 0.324495i
\(846\) 0 0
\(847\) −6.98689 + 7.73990i −0.240072 + 0.265946i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.91164 + 1.68104i −0.0998097 + 0.0576252i
\(852\) 0 0
\(853\) 24.0644i 0.823949i −0.911195 0.411974i \(-0.864839\pi\)
0.911195 0.411974i \(-0.135161\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25.3869 43.9714i −0.867200 1.50203i −0.864846 0.502037i \(-0.832584\pi\)
−0.00235426 0.999997i \(-0.500749\pi\)
\(858\) 0 0
\(859\) 6.78222 + 3.91572i 0.231406 + 0.133603i 0.611221 0.791460i \(-0.290679\pi\)
−0.379814 + 0.925063i \(0.624012\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.68312 + 2.12645i 0.125375 + 0.0723852i 0.561376 0.827561i \(-0.310272\pi\)
−0.436001 + 0.899946i \(0.643606\pi\)
\(864\) 0 0
\(865\) 12.1264 + 21.0036i 0.412311 + 0.714143i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13.7431i 0.466204i
\(870\) 0 0
\(871\) −3.84704 + 2.22109i −0.130352 + 0.0752588i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 25.5555 + 5.46598i 0.863932 + 0.184784i
\(876\) 0 0
\(877\) −17.0535 + 29.5375i −0.575855 + 0.997411i 0.420093 + 0.907481i \(0.361997\pi\)
−0.995948 + 0.0899294i \(0.971336\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −8.87180 −0.298898 −0.149449 0.988769i \(-0.547750\pi\)
−0.149449 + 0.988769i \(0.547750\pi\)
\(882\) 0 0
\(883\) 43.8791 1.47665 0.738325 0.674446i \(-0.235617\pi\)
0.738325 + 0.674446i \(0.235617\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.3699 31.8176i 0.616801 1.06833i −0.373265 0.927725i \(-0.621762\pi\)
0.990066 0.140605i \(-0.0449049\pi\)
\(888\) 0 0
\(889\) 45.5769 + 9.74829i 1.52860 + 0.326947i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −26.4526 + 15.2724i −0.885202 + 0.511071i
\(894\) 0 0
\(895\) 5.71815i 0.191137i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.21502 + 2.10448i 0.0405232 + 0.0701883i
\(900\) 0 0
\(901\) 6.36603 + 3.67543i 0.212083 + 0.122446i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11.4793 6.62759i −0.381585 0.220308i
\(906\) 0 0
\(907\) 8.32897 + 14.4262i 0.276559 + 0.479014i 0.970527 0.240991i \(-0.0774726\pi\)
−0.693968 + 0.720006i \(0.744139\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 33.5975i 1.11314i 0.830802 + 0.556568i \(0.187882\pi\)
−0.830802 + 0.556568i \(0.812118\pi\)
\(912\) 0 0
\(913\) 34.8317 20.1101i 1.15276 0.665548i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.0805 20.0291i 0.597071 0.661420i
\(918\) 0 0
\(919\) −5.96310 + 10.3284i −0.196705 + 0.340702i −0.947458 0.319880i \(-0.896357\pi\)
0.750753 + 0.660583i \(0.229691\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 22.8082 0.750741
\(924\) 0 0
\(925\) −12.8794 −0.423472
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −21.8590 + 37.8609i −0.717170 + 1.24217i 0.244947 + 0.969536i \(0.421229\pi\)
−0.962117 + 0.272638i \(0.912104\pi\)
\(930\) 0 0
\(931\) 12.1757 + 16.8484i 0.399043 + 0.552185i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.39497 + 0.805388i −0.0456205 + 0.0263390i
\(936\) 0 0
\(937\) 47.1189i 1.53931i −0.638461 0.769654i \(-0.720429\pi\)
0.638461 0.769654i \(-0.279571\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −11.0516 19.1420i −0.360273 0.624011i 0.627733 0.778429i \(-0.283983\pi\)
−0.988006 + 0.154418i \(0.950650\pi\)
\(942\) 0 0
\(943\) −3.74333 2.16121i −0.121900 0.0703788i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.0288642 0.0166647i −0.000937959 0.000541531i 0.499531 0.866296i \(-0.333506\pi\)
−0.500469 + 0.865755i \(0.666839\pi\)
\(948\) 0 0
\(949\) 7.49946 + 12.9894i 0.243443 + 0.421655i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.6371i 0.700893i 0.936583 + 0.350446i \(0.113970\pi\)
−0.936583 + 0.350446i \(0.886030\pi\)
\(954\) 0 0
\(955\) 22.2224 12.8301i 0.719100 0.415173i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −21.1731 + 6.84977i −0.683714 + 0.221191i
\(960\) 0 0
\(961\) −15.1893 + 26.3086i −0.489976 + 0.848664i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.26767 0.0408079
\(966\) 0 0
\(967\) 52.9254 1.70197 0.850983 0.525193i \(-0.176007\pi\)
0.850983 + 0.525193i \(0.176007\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.18246 14.1724i 0.262588 0.454815i −0.704341 0.709862i \(-0.748757\pi\)
0.966929 + 0.255047i \(0.0820908\pi\)
\(972\) 0 0
\(973\) −5.64696 + 26.4016i −0.181033 + 0.846397i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.2685 14.5888i 0.808412 0.466737i −0.0379920 0.999278i \(-0.512096\pi\)
0.846404 + 0.532541i \(0.178763\pi\)
\(978\) 0 0
\(979\) 34.6959i 1.10889i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.40545 14.5587i −0.268092 0.464349i 0.700277 0.713871i \(-0.253060\pi\)
−0.968369 + 0.249522i \(0.919726\pi\)
\(984\) 0 0
\(985\) 3.13228 + 1.80842i 0.0998027 + 0.0576211i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.42707 + 0.823919i 0.0453782 + 0.0261991i
\(990\) 0 0
\(991\) 24.5748 + 42.5649i 0.780645 + 1.35212i 0.931566 + 0.363571i \(0.118443\pi\)
−0.150921 + 0.988546i \(0.548224\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.453324i 0.0143713i
\(996\) 0 0
\(997\) 15.4850 8.94029i 0.490416 0.283142i −0.234331 0.972157i \(-0.575290\pi\)
0.724747 + 0.689015i \(0.241957\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.t.c.2105.11 yes 32
3.2 odd 2 inner 2268.2.t.c.2105.6 yes 32
7.3 odd 6 inner 2268.2.t.c.1781.6 32
9.2 odd 6 2268.2.w.j.1349.6 32
9.4 even 3 2268.2.bm.j.593.6 32
9.5 odd 6 2268.2.bm.j.593.11 32
9.7 even 3 2268.2.w.j.1349.11 32
21.17 even 6 inner 2268.2.t.c.1781.11 yes 32
63.31 odd 6 2268.2.w.j.269.6 32
63.38 even 6 2268.2.bm.j.1025.6 32
63.52 odd 6 2268.2.bm.j.1025.11 32
63.59 even 6 2268.2.w.j.269.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.6 32 7.3 odd 6 inner
2268.2.t.c.1781.11 yes 32 21.17 even 6 inner
2268.2.t.c.2105.6 yes 32 3.2 odd 2 inner
2268.2.t.c.2105.11 yes 32 1.1 even 1 trivial
2268.2.w.j.269.6 32 63.31 odd 6
2268.2.w.j.269.11 32 63.59 even 6
2268.2.w.j.1349.6 32 9.2 odd 6
2268.2.w.j.1349.11 32 9.7 even 3
2268.2.bm.j.593.6 32 9.4 even 3
2268.2.bm.j.593.11 32 9.5 odd 6
2268.2.bm.j.1025.6 32 63.38 even 6
2268.2.bm.j.1025.11 32 63.52 odd 6