Properties

Label 2268.2.w.j.269.11
Level $2268$
Weight $2$
Character 2268.269
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(269,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.269"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.11
Character \(\chi\) \(=\) 2268.269
Dual form 2268.2.w.j.1349.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.566658 - 0.981481i) q^{5} +(-0.814380 + 2.51730i) q^{7} +(2.30092 - 1.32843i) q^{11} +(-1.59436 + 0.920505i) q^{13} +(0.267475 - 0.463281i) q^{17} +(2.57178 - 1.48482i) q^{19} +(-0.839982 - 0.484964i) q^{23} +(1.85780 + 3.21780i) q^{25} +(2.66955 + 1.54127i) q^{29} -0.788326i q^{31} +(2.00920 + 2.22575i) q^{35} +(-1.73316 - 3.00191i) q^{37} +(2.22822 + 3.85939i) q^{41} +(-0.849465 + 1.47132i) q^{43} +10.2857 q^{47} +(-5.67357 - 4.10007i) q^{49} +(11.9002 + 6.87059i) q^{53} -3.01107i q^{55} -7.29675 q^{59} +2.01142i q^{61} +2.08645i q^{65} -2.41291 q^{67} +12.3890i q^{71} +(7.05561 + 4.07356i) q^{73} +(1.47025 + 6.87394i) q^{77} +5.17268 q^{79} +(7.56910 - 13.1101i) q^{83} +(-0.303134 - 0.525044i) q^{85} +(6.52948 + 11.3094i) q^{89} +(-1.01877 - 4.76312i) q^{91} -3.36553i q^{95} +(-1.44234 - 0.832736i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} + 12 q^{13} - 16 q^{25} - 4 q^{37} - 4 q^{43} + 20 q^{49} - 8 q^{67} - 36 q^{73} - 56 q^{79} + 12 q^{85} - 36 q^{91} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.566658 0.981481i 0.253417 0.438932i −0.711047 0.703144i \(-0.751779\pi\)
0.964464 + 0.264213i \(0.0851121\pi\)
\(6\) 0 0
\(7\) −0.814380 + 2.51730i −0.307807 + 0.951449i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.30092 1.32843i 0.693753 0.400538i −0.111264 0.993791i \(-0.535490\pi\)
0.805016 + 0.593253i \(0.202157\pi\)
\(12\) 0 0
\(13\) −1.59436 + 0.920505i −0.442196 + 0.255302i −0.704529 0.709675i \(-0.748842\pi\)
0.262333 + 0.964978i \(0.415508\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.267475 0.463281i 0.0648723 0.112362i −0.831765 0.555128i \(-0.812669\pi\)
0.896637 + 0.442766i \(0.146003\pi\)
\(18\) 0 0
\(19\) 2.57178 1.48482i 0.590006 0.340640i −0.175094 0.984552i \(-0.556023\pi\)
0.765100 + 0.643912i \(0.222690\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.839982 0.484964i −0.175148 0.101122i 0.409863 0.912147i \(-0.365577\pi\)
−0.585011 + 0.811025i \(0.698910\pi\)
\(24\) 0 0
\(25\) 1.85780 + 3.21780i 0.371559 + 0.643560i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.66955 + 1.54127i 0.495724 + 0.286206i 0.726946 0.686695i \(-0.240939\pi\)
−0.231222 + 0.972901i \(0.574272\pi\)
\(30\) 0 0
\(31\) 0.788326i 0.141587i −0.997491 0.0707937i \(-0.977447\pi\)
0.997491 0.0707937i \(-0.0225532\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00920 + 2.22575i 0.339618 + 0.376220i
\(36\) 0 0
\(37\) −1.73316 3.00191i −0.284929 0.493511i 0.687663 0.726030i \(-0.258637\pi\)
−0.972592 + 0.232519i \(0.925303\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.22822 + 3.85939i 0.347990 + 0.602736i 0.985892 0.167381i \(-0.0535311\pi\)
−0.637903 + 0.770117i \(0.720198\pi\)
\(42\) 0 0
\(43\) −0.849465 + 1.47132i −0.129542 + 0.224374i −0.923499 0.383600i \(-0.874684\pi\)
0.793957 + 0.607974i \(0.208017\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.2857 1.50033 0.750163 0.661253i \(-0.229975\pi\)
0.750163 + 0.661253i \(0.229975\pi\)
\(48\) 0 0
\(49\) −5.67357 4.10007i −0.810510 0.585724i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.9002 + 6.87059i 1.63462 + 0.943749i 0.982642 + 0.185511i \(0.0593942\pi\)
0.651979 + 0.758237i \(0.273939\pi\)
\(54\) 0 0
\(55\) 3.01107i 0.406013i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.29675 −0.949956 −0.474978 0.879998i \(-0.657544\pi\)
−0.474978 + 0.879998i \(0.657544\pi\)
\(60\) 0 0
\(61\) 2.01142i 0.257536i 0.991675 + 0.128768i \(0.0411022\pi\)
−0.991675 + 0.128768i \(0.958898\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.08645i 0.258792i
\(66\) 0 0
\(67\) −2.41291 −0.294783 −0.147392 0.989078i \(-0.547088\pi\)
−0.147392 + 0.989078i \(0.547088\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.3890i 1.47030i 0.677905 + 0.735150i \(0.262888\pi\)
−0.677905 + 0.735150i \(0.737112\pi\)
\(72\) 0 0
\(73\) 7.05561 + 4.07356i 0.825796 + 0.476774i 0.852411 0.522872i \(-0.175139\pi\)
−0.0266149 + 0.999646i \(0.508473\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.47025 + 6.87394i 0.167550 + 0.783358i
\(78\) 0 0
\(79\) 5.17268 0.581972 0.290986 0.956727i \(-0.406017\pi\)
0.290986 + 0.956727i \(0.406017\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.56910 13.1101i 0.830817 1.43902i −0.0665746 0.997781i \(-0.521207\pi\)
0.897391 0.441235i \(-0.145460\pi\)
\(84\) 0 0
\(85\) −0.303134 0.525044i −0.0328795 0.0569490i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.52948 + 11.3094i 0.692123 + 1.19879i 0.971141 + 0.238506i \(0.0766578\pi\)
−0.279018 + 0.960286i \(0.590009\pi\)
\(90\) 0 0
\(91\) −1.01877 4.76312i −0.106796 0.499311i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.36553i 0.345296i
\(96\) 0 0
\(97\) −1.44234 0.832736i −0.146448 0.0845515i 0.424986 0.905200i \(-0.360279\pi\)
−0.571433 + 0.820649i \(0.693612\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.24453 + 2.15558i 0.123835 + 0.214488i 0.921277 0.388907i \(-0.127147\pi\)
−0.797442 + 0.603396i \(0.793814\pi\)
\(102\) 0 0
\(103\) −5.75735 3.32401i −0.567289 0.327524i 0.188777 0.982020i \(-0.439548\pi\)
−0.756066 + 0.654496i \(0.772881\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.217160 0.125377i 0.0209936 0.0121207i −0.489466 0.872022i \(-0.662808\pi\)
0.510460 + 0.859901i \(0.329475\pi\)
\(108\) 0 0
\(109\) 1.27998 2.21699i 0.122600 0.212349i −0.798192 0.602403i \(-0.794210\pi\)
0.920792 + 0.390053i \(0.127543\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.383124 + 0.221197i −0.0360413 + 0.0208085i −0.517912 0.855434i \(-0.673291\pi\)
0.481871 + 0.876242i \(0.339957\pi\)
\(114\) 0 0
\(115\) −0.951966 + 0.549618i −0.0887713 + 0.0512521i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.948389 + 1.05060i 0.0869387 + 0.0963084i
\(120\) 0 0
\(121\) −1.97052 + 3.41304i −0.179138 + 0.310277i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.87753 0.883473
\(126\) 0 0
\(127\) 17.6161 1.56317 0.781586 0.623797i \(-0.214411\pi\)
0.781586 + 0.623797i \(0.214411\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.09926 8.83218i 0.445525 0.771671i −0.552564 0.833471i \(-0.686350\pi\)
0.998089 + 0.0617991i \(0.0196838\pi\)
\(132\) 0 0
\(133\) 1.64332 + 7.68313i 0.142494 + 0.666212i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.28417 4.20552i 0.622328 0.359301i −0.155447 0.987844i \(-0.549682\pi\)
0.777775 + 0.628543i \(0.216348\pi\)
\(138\) 0 0
\(139\) −8.83742 + 5.10229i −0.749580 + 0.432770i −0.825542 0.564340i \(-0.809131\pi\)
0.0759620 + 0.997111i \(0.475797\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.44566 + 4.23601i −0.204517 + 0.354233i
\(144\) 0 0
\(145\) 3.02545 1.74674i 0.251250 0.145059i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.1633 + 7.59986i 1.07838 + 0.622605i 0.930460 0.366394i \(-0.119408\pi\)
0.147923 + 0.988999i \(0.452741\pi\)
\(150\) 0 0
\(151\) 4.20122 + 7.27673i 0.341891 + 0.592172i 0.984784 0.173784i \(-0.0555994\pi\)
−0.642893 + 0.765956i \(0.722266\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.773727 0.446711i −0.0621472 0.0358807i
\(156\) 0 0
\(157\) 18.6822i 1.49100i −0.666504 0.745501i \(-0.732210\pi\)
0.666504 0.745501i \(-0.267790\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.90486 1.71954i 0.150124 0.135519i
\(162\) 0 0
\(163\) −10.7857 18.6813i −0.844800 1.46324i −0.885795 0.464077i \(-0.846386\pi\)
0.0409955 0.999159i \(-0.486947\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.39810 11.0818i −0.495099 0.857537i 0.504885 0.863187i \(-0.331535\pi\)
−0.999984 + 0.00564941i \(0.998202\pi\)
\(168\) 0 0
\(169\) −4.80534 + 8.32310i −0.369642 + 0.640238i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 21.3999 1.62700 0.813501 0.581563i \(-0.197559\pi\)
0.813501 + 0.581563i \(0.197559\pi\)
\(174\) 0 0
\(175\) −9.61311 + 2.05612i −0.726683 + 0.155428i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.36953 2.52275i −0.326594 0.188559i 0.327734 0.944770i \(-0.393715\pi\)
−0.654328 + 0.756211i \(0.727048\pi\)
\(180\) 0 0
\(181\) 11.6959i 0.869351i 0.900587 + 0.434675i \(0.143137\pi\)
−0.900587 + 0.434675i \(0.856863\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.92843 −0.288824
\(186\) 0 0
\(187\) 1.42129i 0.103935i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.6417i 1.63830i 0.573582 + 0.819148i \(0.305553\pi\)
−0.573582 + 0.819148i \(0.694447\pi\)
\(192\) 0 0
\(193\) −1.11855 −0.0805152 −0.0402576 0.999189i \(-0.512818\pi\)
−0.0402576 + 0.999189i \(0.512818\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.19138i 0.227377i −0.993516 0.113688i \(-0.963733\pi\)
0.993516 0.113688i \(-0.0362665\pi\)
\(198\) 0 0
\(199\) 0.346408 + 0.199999i 0.0245562 + 0.0141775i 0.512228 0.858850i \(-0.328820\pi\)
−0.487672 + 0.873027i \(0.662154\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.05386 + 5.46488i −0.424898 + 0.383560i
\(204\) 0 0
\(205\) 5.05056 0.352746
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.94496 6.83288i 0.272879 0.472640i
\(210\) 0 0
\(211\) −2.82379 4.89095i −0.194398 0.336707i 0.752305 0.658815i \(-0.228942\pi\)
−0.946703 + 0.322108i \(0.895609\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.962712 + 1.66747i 0.0656564 + 0.113720i
\(216\) 0 0
\(217\) 1.98445 + 0.641996i 0.134713 + 0.0435816i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.984849i 0.0662481i
\(222\) 0 0
\(223\) 5.40211 + 3.11891i 0.361752 + 0.208858i 0.669849 0.742497i \(-0.266359\pi\)
−0.308097 + 0.951355i \(0.599692\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.16442 14.1412i −0.541892 0.938584i −0.998795 0.0490677i \(-0.984375\pi\)
0.456904 0.889516i \(-0.348958\pi\)
\(228\) 0 0
\(229\) 20.2825 + 11.7101i 1.34031 + 0.773827i 0.986852 0.161624i \(-0.0516733\pi\)
0.353455 + 0.935451i \(0.385007\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.9345 6.31304i 0.716343 0.413581i −0.0970623 0.995278i \(-0.530945\pi\)
0.813405 + 0.581698i \(0.197611\pi\)
\(234\) 0 0
\(235\) 5.82849 10.0952i 0.380209 0.658541i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.56517 + 4.94510i −0.554035 + 0.319872i −0.750748 0.660589i \(-0.770307\pi\)
0.196713 + 0.980461i \(0.436973\pi\)
\(240\) 0 0
\(241\) −17.5109 + 10.1099i −1.12797 + 0.651236i −0.943425 0.331587i \(-0.892416\pi\)
−0.184550 + 0.982823i \(0.559083\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.23912 + 3.24516i −0.462490 + 0.207326i
\(246\) 0 0
\(247\) −2.73356 + 4.73467i −0.173932 + 0.301260i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −10.4354 −0.658679 −0.329339 0.944212i \(-0.606826\pi\)
−0.329339 + 0.944212i \(0.606826\pi\)
\(252\) 0 0
\(253\) −2.57697 −0.162013
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.90839 6.76953i 0.243798 0.422271i −0.717995 0.696049i \(-0.754940\pi\)
0.961793 + 0.273777i \(0.0882731\pi\)
\(258\) 0 0
\(259\) 8.96815 1.91817i 0.557254 0.119189i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.47396 0.850994i 0.0908885 0.0524745i −0.453867 0.891070i \(-0.649956\pi\)
0.544755 + 0.838595i \(0.316623\pi\)
\(264\) 0 0
\(265\) 13.4867 7.78656i 0.828482 0.478324i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.59447 4.49375i 0.158188 0.273989i −0.776028 0.630699i \(-0.782768\pi\)
0.934215 + 0.356710i \(0.116102\pi\)
\(270\) 0 0
\(271\) −22.7985 + 13.1627i −1.38491 + 0.799579i −0.992736 0.120311i \(-0.961611\pi\)
−0.392176 + 0.919890i \(0.628278\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.54927 + 4.93592i 0.515541 + 0.297647i
\(276\) 0 0
\(277\) −11.7976 20.4340i −0.708849 1.22776i −0.965284 0.261201i \(-0.915881\pi\)
0.256436 0.966561i \(-0.417452\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.0083 9.24241i −0.954976 0.551356i −0.0603530 0.998177i \(-0.519223\pi\)
−0.894623 + 0.446821i \(0.852556\pi\)
\(282\) 0 0
\(283\) 17.7812i 1.05698i 0.848939 + 0.528491i \(0.177242\pi\)
−0.848939 + 0.528491i \(0.822758\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.5299 + 2.46609i −0.680586 + 0.145568i
\(288\) 0 0
\(289\) 8.35691 + 14.4746i 0.491583 + 0.851447i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.43356 + 4.21505i 0.142170 + 0.246246i 0.928314 0.371798i \(-0.121259\pi\)
−0.786143 + 0.618044i \(0.787925\pi\)
\(294\) 0 0
\(295\) −4.13476 + 7.16162i −0.240735 + 0.416966i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.78565 0.103267
\(300\) 0 0
\(301\) −3.01195 3.33657i −0.173606 0.192316i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.97417 + 1.13979i 0.113041 + 0.0652641i
\(306\) 0 0
\(307\) 8.37189i 0.477809i 0.971043 + 0.238905i \(0.0767883\pi\)
−0.971043 + 0.238905i \(0.923212\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −16.2109 −0.919238 −0.459619 0.888116i \(-0.652014\pi\)
−0.459619 + 0.888116i \(0.652014\pi\)
\(312\) 0 0
\(313\) 22.9798i 1.29890i −0.760405 0.649449i \(-0.775000\pi\)
0.760405 0.649449i \(-0.225000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.7455i 1.22135i 0.791881 + 0.610675i \(0.209102\pi\)
−0.791881 + 0.610675i \(0.790898\pi\)
\(318\) 0 0
\(319\) 8.18990 0.458546
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.58861i 0.0883924i
\(324\) 0 0
\(325\) −5.92400 3.42022i −0.328604 0.189720i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.37648 + 25.8922i −0.461810 + 1.42748i
\(330\) 0 0
\(331\) 25.7737 1.41665 0.708325 0.705887i \(-0.249451\pi\)
0.708325 + 0.705887i \(0.249451\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.36729 + 2.36822i −0.0747032 + 0.129390i
\(336\) 0 0
\(337\) 6.80663 + 11.7894i 0.370781 + 0.642211i 0.989686 0.143255i \(-0.0457568\pi\)
−0.618905 + 0.785466i \(0.712423\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.04724 1.81387i −0.0567112 0.0982267i
\(342\) 0 0
\(343\) 14.9415 10.9431i 0.806767 0.590869i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.64908i 0.517990i −0.965879 0.258995i \(-0.916609\pi\)
0.965879 0.258995i \(-0.0833913\pi\)
\(348\) 0 0
\(349\) −20.1890 11.6561i −1.08069 0.623937i −0.149608 0.988745i \(-0.547801\pi\)
−0.931083 + 0.364808i \(0.881135\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.5010 26.8485i −0.825035 1.42900i −0.901892 0.431961i \(-0.857822\pi\)
0.0768568 0.997042i \(-0.475512\pi\)
\(354\) 0 0
\(355\) 12.1595 + 7.02031i 0.645361 + 0.372599i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.6898 + 9.05853i −0.828077 + 0.478091i −0.853194 0.521594i \(-0.825338\pi\)
0.0251166 + 0.999685i \(0.492004\pi\)
\(360\) 0 0
\(361\) −5.09064 + 8.81725i −0.267929 + 0.464066i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.99624 4.61663i 0.418542 0.241645i
\(366\) 0 0
\(367\) −2.73854 + 1.58110i −0.142951 + 0.0825326i −0.569769 0.821805i \(-0.692968\pi\)
0.426819 + 0.904337i \(0.359634\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −26.9866 + 24.3611i −1.40108 + 1.26477i
\(372\) 0 0
\(373\) −3.68593 + 6.38422i −0.190850 + 0.330562i −0.945532 0.325528i \(-0.894458\pi\)
0.754682 + 0.656091i \(0.227791\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.67498 −0.292276
\(378\) 0 0
\(379\) −17.7598 −0.912259 −0.456130 0.889913i \(-0.650765\pi\)
−0.456130 + 0.889913i \(0.650765\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.6350 18.4204i 0.543425 0.941239i −0.455280 0.890349i \(-0.650461\pi\)
0.998704 0.0508905i \(-0.0162060\pi\)
\(384\) 0 0
\(385\) 7.57977 + 2.45216i 0.386301 + 0.124974i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.17846 + 1.83508i −0.161154 + 0.0930424i −0.578408 0.815748i \(-0.696326\pi\)
0.417254 + 0.908790i \(0.362993\pi\)
\(390\) 0 0
\(391\) −0.449349 + 0.259432i −0.0227245 + 0.0131200i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.93114 5.07688i 0.147482 0.255446i
\(396\) 0 0
\(397\) −16.4664 + 9.50687i −0.826424 + 0.477136i −0.852627 0.522521i \(-0.824992\pi\)
0.0262027 + 0.999657i \(0.491658\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.8868 + 15.5231i 1.34266 + 0.775186i 0.987197 0.159504i \(-0.0509894\pi\)
0.355464 + 0.934690i \(0.384323\pi\)
\(402\) 0 0
\(403\) 0.725658 + 1.25688i 0.0361476 + 0.0626095i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.97569 4.60477i −0.395340 0.228250i
\(408\) 0 0
\(409\) 35.1524i 1.73817i −0.494659 0.869087i \(-0.664707\pi\)
0.494659 0.869087i \(-0.335293\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.94233 18.3681i 0.292403 0.903835i
\(414\) 0 0
\(415\) −8.57819 14.8579i −0.421087 0.729344i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.9516 25.8970i −0.730436 1.26515i −0.956697 0.291085i \(-0.905984\pi\)
0.226261 0.974067i \(-0.427350\pi\)
\(420\) 0 0
\(421\) 13.0842 22.6624i 0.637683 1.10450i −0.348257 0.937399i \(-0.613226\pi\)
0.985940 0.167100i \(-0.0534402\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.98766 0.0964156
\(426\) 0 0
\(427\) −5.06334 1.63806i −0.245032 0.0792713i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −34.8031 20.0936i −1.67641 0.967875i −0.963921 0.266189i \(-0.914235\pi\)
−0.712487 0.701685i \(-0.752431\pi\)
\(432\) 0 0
\(433\) 15.4379i 0.741896i 0.928654 + 0.370948i \(0.120967\pi\)
−0.928654 + 0.370948i \(0.879033\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.88033 −0.137785
\(438\) 0 0
\(439\) 25.0277i 1.19451i −0.802052 0.597254i \(-0.796258\pi\)
0.802052 0.597254i \(-0.203742\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.6539i 0.696227i 0.937452 + 0.348113i \(0.113178\pi\)
−0.937452 + 0.348113i \(0.886822\pi\)
\(444\) 0 0
\(445\) 14.7999 0.701584
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.1359i 1.46939i −0.678395 0.734697i \(-0.737324\pi\)
0.678395 0.734697i \(-0.262676\pi\)
\(450\) 0 0
\(451\) 10.2539 + 5.92009i 0.482838 + 0.278766i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.25221 1.69916i −0.246227 0.0796578i
\(456\) 0 0
\(457\) −21.7952 −1.01954 −0.509769 0.860312i \(-0.670269\pi\)
−0.509769 + 0.860312i \(0.670269\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −13.3754 + 23.1670i −0.622957 + 1.07899i 0.365976 + 0.930624i \(0.380735\pi\)
−0.988932 + 0.148368i \(0.952598\pi\)
\(462\) 0 0
\(463\) −7.62549 13.2077i −0.354386 0.613815i 0.632626 0.774457i \(-0.281977\pi\)
−0.987013 + 0.160642i \(0.948644\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.9707 31.1262i −0.831585 1.44035i −0.896781 0.442475i \(-0.854101\pi\)
0.0651959 0.997872i \(-0.479233\pi\)
\(468\) 0 0
\(469\) 1.96502 6.07400i 0.0907363 0.280471i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.51383i 0.207546i
\(474\) 0 0
\(475\) 9.55568 + 5.51697i 0.438445 + 0.253136i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.4726 26.7993i −0.706959 1.22449i −0.965980 0.258618i \(-0.916733\pi\)
0.259020 0.965872i \(-0.416600\pi\)
\(480\) 0 0
\(481\) 5.52655 + 3.19076i 0.251989 + 0.145486i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.63463 + 0.943753i −0.0742247 + 0.0428536i
\(486\) 0 0
\(487\) −7.67907 + 13.3005i −0.347972 + 0.602705i −0.985889 0.167400i \(-0.946463\pi\)
0.637917 + 0.770105i \(0.279796\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.105233 + 0.0607560i −0.00474908 + 0.00274188i −0.502373 0.864651i \(-0.667539\pi\)
0.497624 + 0.867393i \(0.334206\pi\)
\(492\) 0 0
\(493\) 1.42808 0.824502i 0.0643175 0.0371337i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −31.1867 10.0893i −1.39891 0.452568i
\(498\) 0 0
\(499\) −12.8339 + 22.2290i −0.574524 + 0.995105i 0.421569 + 0.906796i \(0.361479\pi\)
−0.996093 + 0.0883085i \(0.971854\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.44680 −0.153685 −0.0768425 0.997043i \(-0.524484\pi\)
−0.0768425 + 0.997043i \(0.524484\pi\)
\(504\) 0 0
\(505\) 2.82088 0.125528
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.1495 34.8999i 0.893109 1.54691i 0.0569818 0.998375i \(-0.481852\pi\)
0.836127 0.548535i \(-0.184814\pi\)
\(510\) 0 0
\(511\) −16.0003 + 14.4436i −0.707811 + 0.638949i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.52490 + 3.76715i −0.287522 + 0.166001i
\(516\) 0 0
\(517\) 23.6666 13.6639i 1.04086 0.600938i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.12248 3.67624i 0.0929874 0.161059i −0.815779 0.578363i \(-0.803692\pi\)
0.908767 + 0.417304i \(0.137025\pi\)
\(522\) 0 0
\(523\) −15.9490 + 9.20818i −0.697403 + 0.402646i −0.806379 0.591399i \(-0.798576\pi\)
0.108977 + 0.994044i \(0.465243\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.365216 0.210858i −0.0159091 0.00918510i
\(528\) 0 0
\(529\) −11.0296 19.1039i −0.479549 0.830603i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.10518 4.10218i −0.307760 0.177685i
\(534\) 0 0
\(535\) 0.284184i 0.0122864i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.5011 1.89695i −0.796899 0.0817075i
\(540\) 0 0
\(541\) −11.7817 20.4065i −0.506535 0.877344i −0.999971 0.00756235i \(-0.997593\pi\)
0.493437 0.869782i \(-0.335741\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.45062 2.51256i −0.0621379 0.107626i
\(546\) 0 0
\(547\) 4.87688 8.44701i 0.208521 0.361168i −0.742728 0.669593i \(-0.766469\pi\)
0.951249 + 0.308425i \(0.0998019\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.15400 0.389973
\(552\) 0 0
\(553\) −4.21252 + 13.0212i −0.179135 + 0.553716i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.22763 4.75023i −0.348616 0.201274i 0.315460 0.948939i \(-0.397841\pi\)
−0.664076 + 0.747666i \(0.731175\pi\)
\(558\) 0 0
\(559\) 3.12775i 0.132290i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.3789 −1.19603 −0.598014 0.801485i \(-0.704043\pi\)
−0.598014 + 0.801485i \(0.704043\pi\)
\(564\) 0 0
\(565\) 0.501372i 0.0210929i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.9749i 0.963156i 0.876403 + 0.481578i \(0.159936\pi\)
−0.876403 + 0.481578i \(0.840064\pi\)
\(570\) 0 0
\(571\) 9.00491 0.376844 0.188422 0.982088i \(-0.439663\pi\)
0.188422 + 0.982088i \(0.439663\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.60386i 0.150291i
\(576\) 0 0
\(577\) 31.7024 + 18.3034i 1.31979 + 0.761980i 0.983694 0.179848i \(-0.0575607\pi\)
0.336094 + 0.941828i \(0.390894\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 26.8378 + 29.7303i 1.11342 + 1.23342i
\(582\) 0 0
\(583\) 36.5086 1.51203
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.3397 23.1051i 0.550589 0.953649i −0.447643 0.894212i \(-0.647736\pi\)
0.998232 0.0594361i \(-0.0189303\pi\)
\(588\) 0 0
\(589\) −1.17052 2.02740i −0.0482304 0.0835375i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.167630 + 0.290343i 0.00688372 + 0.0119230i 0.869447 0.494027i \(-0.164475\pi\)
−0.862563 + 0.505950i \(0.831142\pi\)
\(594\) 0 0
\(595\) 1.56856 0.335494i 0.0643046 0.0137539i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.9762i 0.693630i −0.937933 0.346815i \(-0.887263\pi\)
0.937933 0.346815i \(-0.112737\pi\)
\(600\) 0 0
\(601\) −14.5160 8.38082i −0.592120 0.341861i 0.173815 0.984778i \(-0.444391\pi\)
−0.765936 + 0.642917i \(0.777724\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.23322 + 3.86806i 0.0907935 + 0.157259i
\(606\) 0 0
\(607\) 36.0575 + 20.8178i 1.46353 + 0.844968i 0.999172 0.0406801i \(-0.0129525\pi\)
0.464356 + 0.885649i \(0.346286\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16.3991 + 9.46805i −0.663439 + 0.383036i
\(612\) 0 0
\(613\) −12.8608 + 22.2756i −0.519444 + 0.899704i 0.480300 + 0.877104i \(0.340528\pi\)
−0.999745 + 0.0225996i \(0.992806\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −37.0394 + 21.3847i −1.49115 + 0.860915i −0.999949 0.0101324i \(-0.996775\pi\)
−0.491199 + 0.871047i \(0.663441\pi\)
\(618\) 0 0
\(619\) −23.9473 + 13.8260i −0.962522 + 0.555712i −0.896948 0.442136i \(-0.854221\pi\)
−0.0655735 + 0.997848i \(0.520888\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −33.7866 + 7.22650i −1.35363 + 0.289524i
\(624\) 0 0
\(625\) −3.69180 + 6.39439i −0.147672 + 0.255776i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.85430 −0.0739359
\(630\) 0 0
\(631\) 2.23244 0.0888720 0.0444360 0.999012i \(-0.485851\pi\)
0.0444360 + 0.999012i \(0.485851\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.98229 17.2898i 0.396135 0.686126i
\(636\) 0 0
\(637\) 12.8199 + 1.31444i 0.507941 + 0.0520802i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −23.4181 + 13.5205i −0.924960 + 0.534026i −0.885214 0.465184i \(-0.845988\pi\)
−0.0397458 + 0.999210i \(0.512655\pi\)
\(642\) 0 0
\(643\) 10.4874 6.05488i 0.413581 0.238781i −0.278746 0.960365i \(-0.589919\pi\)
0.692327 + 0.721584i \(0.256585\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.40271 5.89366i 0.133774 0.231704i −0.791354 0.611358i \(-0.790624\pi\)
0.925129 + 0.379654i \(0.123957\pi\)
\(648\) 0 0
\(649\) −16.7892 + 9.69326i −0.659034 + 0.380494i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 39.7689 + 22.9606i 1.55628 + 0.898516i 0.997608 + 0.0691245i \(0.0220206\pi\)
0.558668 + 0.829392i \(0.311313\pi\)
\(654\) 0 0
\(655\) −5.77908 10.0097i −0.225807 0.391110i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.9825 7.49548i −0.505728 0.291982i 0.225348 0.974278i \(-0.427648\pi\)
−0.731076 + 0.682296i \(0.760982\pi\)
\(660\) 0 0
\(661\) 33.0959i 1.28728i 0.765328 + 0.643640i \(0.222577\pi\)
−0.765328 + 0.643640i \(0.777423\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.47205 + 2.74082i 0.328532 + 0.106285i
\(666\) 0 0
\(667\) −1.49492 2.58927i −0.0578835 0.100257i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.67204 + 4.62811i 0.103153 + 0.178666i
\(672\) 0 0
\(673\) −18.6158 + 32.2436i −0.717588 + 1.24290i 0.244365 + 0.969683i \(0.421420\pi\)
−0.961953 + 0.273215i \(0.911913\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.2923 1.54856 0.774280 0.632844i \(-0.218112\pi\)
0.774280 + 0.632844i \(0.218112\pi\)
\(678\) 0 0
\(679\) 3.27086 2.95264i 0.125524 0.113312i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.2066 + 7.04746i 0.467071 + 0.269664i 0.715013 0.699111i \(-0.246421\pi\)
−0.247942 + 0.968775i \(0.579754\pi\)
\(684\) 0 0
\(685\) 9.53236i 0.364213i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −25.2977 −0.963764
\(690\) 0 0
\(691\) 37.7579i 1.43638i −0.695849 0.718188i \(-0.744972\pi\)
0.695849 0.718188i \(-0.255028\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11.5650i 0.438686i
\(696\) 0 0
\(697\) 2.38398 0.0902995
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.0860i 0.494252i −0.968983 0.247126i \(-0.920514\pi\)
0.968983 0.247126i \(-0.0794861\pi\)
\(702\) 0 0
\(703\) −8.91458 5.14683i −0.336220 0.194116i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.43975 + 1.37738i −0.242192 + 0.0518017i
\(708\) 0 0
\(709\) 22.5555 0.847089 0.423544 0.905875i \(-0.360786\pi\)
0.423544 + 0.905875i \(0.360786\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.382310 + 0.662180i −0.0143176 + 0.0247988i
\(714\) 0 0
\(715\) 2.77171 + 4.80074i 0.103656 + 0.179538i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5.27786 9.14152i −0.196831 0.340921i 0.750668 0.660679i \(-0.229732\pi\)
−0.947499 + 0.319758i \(0.896398\pi\)
\(720\) 0 0
\(721\) 13.0562 11.7860i 0.486238 0.438932i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.4534i 0.425370i
\(726\) 0 0
\(727\) −21.9441 12.6694i −0.813861 0.469883i 0.0344341 0.999407i \(-0.489037\pi\)
−0.848295 + 0.529524i \(0.822370\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.454422 + 0.787081i 0.0168074 + 0.0291112i
\(732\) 0 0
\(733\) −3.31425 1.91348i −0.122415 0.0706762i 0.437542 0.899198i \(-0.355849\pi\)
−0.559957 + 0.828522i \(0.689182\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.55190 + 3.20539i −0.204507 + 0.118072i
\(738\) 0 0
\(739\) −18.1289 + 31.4003i −0.666884 + 1.15508i 0.311887 + 0.950119i \(0.399039\pi\)
−0.978771 + 0.204958i \(0.934294\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.3598 + 7.13594i −0.453438 + 0.261792i −0.709281 0.704926i \(-0.750980\pi\)
0.255843 + 0.966718i \(0.417647\pi\)
\(744\) 0 0
\(745\) 14.9182 8.61305i 0.546562 0.315558i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.138761 + 0.648761i 0.00507023 + 0.0237052i
\(750\) 0 0
\(751\) −14.6005 + 25.2887i −0.532778 + 0.922799i 0.466489 + 0.884527i \(0.345519\pi\)
−0.999267 + 0.0382721i \(0.987815\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.52263 0.346564
\(756\) 0 0
\(757\) −33.2051 −1.20686 −0.603431 0.797415i \(-0.706200\pi\)
−0.603431 + 0.797415i \(0.706200\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.46846 + 12.9358i −0.270731 + 0.468921i −0.969049 0.246867i \(-0.920599\pi\)
0.698318 + 0.715788i \(0.253932\pi\)
\(762\) 0 0
\(763\) 4.53844 + 5.02757i 0.164303 + 0.182010i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.6337 6.71669i 0.420067 0.242526i
\(768\) 0 0
\(769\) 27.1703 15.6868i 0.979788 0.565681i 0.0775816 0.996986i \(-0.475280\pi\)
0.902206 + 0.431305i \(0.141947\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.464799 0.805055i 0.0167176 0.0289558i −0.857546 0.514408i \(-0.828012\pi\)
0.874263 + 0.485452i \(0.161345\pi\)
\(774\) 0 0
\(775\) 2.53667 1.46455i 0.0911200 0.0526082i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.4610 + 6.61700i 0.410632 + 0.237079i
\(780\) 0 0
\(781\) 16.4579 + 28.5060i 0.588911 + 1.02002i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −18.3362 10.5864i −0.654448 0.377846i
\(786\) 0 0
\(787\) 40.3516i 1.43838i −0.694814 0.719189i \(-0.744513\pi\)
0.694814 0.719189i \(-0.255487\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.244810 1.14458i −0.00870443 0.0406964i
\(792\) 0 0
\(793\) −1.85152 3.20693i −0.0657495 0.113881i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.2121 19.4199i −0.397152 0.687888i 0.596221 0.802820i \(-0.296668\pi\)
−0.993373 + 0.114932i \(0.963335\pi\)
\(798\) 0 0
\(799\) 2.75117 4.76517i 0.0973296 0.168580i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 21.6458 0.763864
\(804\) 0 0
\(805\) −0.608290 2.84398i −0.0214394 0.100237i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.2271 + 10.5234i 0.640832 + 0.369985i 0.784935 0.619578i \(-0.212696\pi\)
−0.144103 + 0.989563i \(0.546030\pi\)
\(810\) 0 0
\(811\) 31.5558i 1.10808i −0.832492 0.554038i \(-0.813086\pi\)
0.832492 0.554038i \(-0.186914\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −24.4472 −0.856347
\(816\) 0 0
\(817\) 5.04520i 0.176509i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 54.6328i 1.90670i 0.301871 + 0.953349i \(0.402389\pi\)
−0.301871 + 0.953349i \(0.597611\pi\)
\(822\) 0 0
\(823\) −11.7749 −0.410448 −0.205224 0.978715i \(-0.565792\pi\)
−0.205224 + 0.978715i \(0.565792\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.9059i 0.970383i 0.874408 + 0.485192i \(0.161250\pi\)
−0.874408 + 0.485192i \(0.838750\pi\)
\(828\) 0 0
\(829\) 21.7374 + 12.5501i 0.754972 + 0.435883i 0.827488 0.561484i \(-0.189769\pi\)
−0.0725156 + 0.997367i \(0.523103\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.41702 + 1.53179i −0.118393 + 0.0530733i
\(834\) 0 0
\(835\) −14.5021 −0.501867
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 22.6654 39.2576i 0.782497 1.35532i −0.147987 0.988989i \(-0.547279\pi\)
0.930483 0.366335i \(-0.119387\pi\)
\(840\) 0 0
\(841\) −9.74899 16.8857i −0.336172 0.582267i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.44597 + 9.43270i 0.187347 + 0.324495i
\(846\) 0 0
\(847\) −6.98689 7.73990i −0.240072 0.265946i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.36207i 0.115250i
\(852\) 0 0
\(853\) −20.8404 12.0322i −0.713560 0.411974i 0.0988175 0.995106i \(-0.468494\pi\)
−0.812378 + 0.583131i \(0.801827\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25.3869 43.9714i −0.867200 1.50203i −0.864846 0.502037i \(-0.832584\pi\)
−0.00235426 0.999997i \(-0.500749\pi\)
\(858\) 0 0
\(859\) −6.78222 3.91572i −0.231406 0.133603i 0.379814 0.925063i \(-0.375988\pi\)
−0.611221 + 0.791460i \(0.709321\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.68312 2.12645i 0.125375 0.0723852i −0.436001 0.899946i \(-0.643606\pi\)
0.561376 + 0.827561i \(0.310272\pi\)
\(864\) 0 0
\(865\) 12.1264 21.0036i 0.412311 0.714143i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.9019 6.87156i 0.403744 0.233102i
\(870\) 0 0
\(871\) 3.84704 2.22109i 0.130352 0.0752588i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.04406 + 24.8647i −0.271939 + 0.840579i
\(876\) 0 0
\(877\) −17.0535 + 29.5375i −0.575855 + 0.997411i 0.420093 + 0.907481i \(0.361997\pi\)
−0.995948 + 0.0899294i \(0.971336\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −8.87180 −0.298898 −0.149449 0.988769i \(-0.547750\pi\)
−0.149449 + 0.988769i \(0.547750\pi\)
\(882\) 0 0
\(883\) 43.8791 1.47665 0.738325 0.674446i \(-0.235617\pi\)
0.738325 + 0.674446i \(0.235617\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.3699 31.8176i 0.616801 1.06833i −0.373265 0.927725i \(-0.621762\pi\)
0.990066 0.140605i \(-0.0449049\pi\)
\(888\) 0 0
\(889\) −14.3462 + 44.3449i −0.481155 + 1.48728i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 26.4526 15.2724i 0.885202 0.511071i
\(894\) 0 0
\(895\) −4.95206 + 2.85907i −0.165529 + 0.0955683i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.21502 2.10448i 0.0405232 0.0701883i
\(900\) 0 0
\(901\) 6.36603 3.67543i 0.212083 0.122446i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.4793 + 6.62759i 0.381585 + 0.220308i
\(906\) 0 0
\(907\) 8.32897 + 14.4262i 0.276559 + 0.479014i 0.970527 0.240991i \(-0.0774726\pi\)
−0.693968 + 0.720006i \(0.744139\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 29.0963 + 16.7988i 0.964004 + 0.556568i 0.897403 0.441212i \(-0.145451\pi\)
0.0666011 + 0.997780i \(0.478785\pi\)
\(912\) 0 0
\(913\) 40.2202i 1.33110i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.0805 + 20.0291i 0.597071 + 0.661420i
\(918\) 0 0
\(919\) −5.96310 10.3284i −0.196705 0.340702i 0.750753 0.660583i \(-0.229691\pi\)
−0.947458 + 0.319880i \(0.896357\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −11.4041 19.7525i −0.375371 0.650161i
\(924\) 0 0
\(925\) 6.43970 11.1539i 0.211736 0.366738i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 43.7180 1.43434 0.717170 0.696899i \(-0.245437\pi\)
0.717170 + 0.696899i \(0.245437\pi\)
\(930\) 0 0
\(931\) −20.6790 2.12026i −0.677727 0.0694886i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.39497 0.805388i −0.0456205 0.0263390i
\(936\) 0 0
\(937\) 47.1189i 1.53931i 0.638461 + 0.769654i \(0.279571\pi\)
−0.638461 + 0.769654i \(0.720429\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.1033 0.720546 0.360273 0.932847i \(-0.382684\pi\)
0.360273 + 0.932847i \(0.382684\pi\)
\(942\) 0 0
\(943\) 4.32243i 0.140758i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.0333295i 0.00108306i −1.00000 0.000541531i \(-0.999828\pi\)
1.00000 0.000541531i \(-0.000172375\pi\)
\(948\) 0 0
\(949\) −14.9989 −0.486885
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.6371i 0.700893i −0.936583 0.350446i \(-0.886030\pi\)
0.936583 0.350446i \(-0.113970\pi\)
\(954\) 0 0
\(955\) 22.2224 + 12.8301i 0.719100 + 0.415173i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.65446 + 21.7613i 0.150300 + 0.702709i
\(960\) 0 0
\(961\) 30.3785 0.979953
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.633837 + 1.09784i −0.0204039 + 0.0353406i
\(966\) 0 0
\(967\) −26.4627 45.8347i −0.850983 1.47395i −0.880322 0.474376i \(-0.842674\pi\)
0.0293390 0.999570i \(-0.490660\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.18246 + 14.1724i 0.262588 + 0.454815i 0.966929 0.255047i \(-0.0820908\pi\)
−0.704341 + 0.709862i \(0.748757\pi\)
\(972\) 0 0
\(973\) −5.64696 26.4016i −0.181033 0.846397i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29.1776i 0.933474i −0.884396 0.466737i \(-0.845429\pi\)
0.884396 0.466737i \(-0.154571\pi\)
\(978\) 0 0
\(979\) 30.0476 + 17.3480i 0.960324 + 0.554444i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.40545 14.5587i −0.268092 0.464349i 0.700277 0.713871i \(-0.253060\pi\)
−0.968369 + 0.249522i \(0.919726\pi\)
\(984\) 0 0
\(985\) −3.13228 1.80842i −0.0998027 0.0576211i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.42707 0.823919i 0.0453782 0.0261991i
\(990\) 0 0
\(991\) 24.5748 42.5649i 0.780645 1.35212i −0.150921 0.988546i \(-0.548224\pi\)
0.931566 0.363571i \(-0.118443\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.392590 0.226662i 0.0124459 0.00718567i
\(996\) 0 0
\(997\) −15.4850 + 8.94029i −0.490416 + 0.283142i −0.724747 0.689015i \(-0.758043\pi\)
0.234331 + 0.972157i \(0.424710\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.w.j.269.11 32
3.2 odd 2 inner 2268.2.w.j.269.6 32
7.5 odd 6 2268.2.bm.j.593.11 32
9.2 odd 6 2268.2.t.c.1781.6 32
9.4 even 3 2268.2.bm.j.1025.6 32
9.5 odd 6 2268.2.bm.j.1025.11 32
9.7 even 3 2268.2.t.c.1781.11 yes 32
21.5 even 6 2268.2.bm.j.593.6 32
63.5 even 6 inner 2268.2.w.j.1349.11 32
63.40 odd 6 inner 2268.2.w.j.1349.6 32
63.47 even 6 2268.2.t.c.2105.11 yes 32
63.61 odd 6 2268.2.t.c.2105.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.6 32 9.2 odd 6
2268.2.t.c.1781.11 yes 32 9.7 even 3
2268.2.t.c.2105.6 yes 32 63.61 odd 6
2268.2.t.c.2105.11 yes 32 63.47 even 6
2268.2.w.j.269.6 32 3.2 odd 2 inner
2268.2.w.j.269.11 32 1.1 even 1 trivial
2268.2.w.j.1349.6 32 63.40 odd 6 inner
2268.2.w.j.1349.11 32 63.5 even 6 inner
2268.2.bm.j.593.6 32 21.5 even 6
2268.2.bm.j.593.11 32 7.5 odd 6
2268.2.bm.j.1025.6 32 9.4 even 3
2268.2.bm.j.1025.11 32 9.5 odd 6